Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities

Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara

PDF(218 KB)
PDF(218 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 10. DOI: 10.1007/s11783-017-0933-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities

Author information +
History +

Highlights

CH4 and N2O emissions from pig wastewater treatment facilities were measured.

N2O emission rate was affected by environmental conditions, location, management.

Emission factors: CH4,0.91% (kgCH4·kgVS−1) and N2O, 2.87% (kgN2O-N·kgN−1).

Abstract

The activated sludge process to remove nitrogen and biochemical oxygen demand (BOD) is reportedly cost-effective for swine wastewater treatment, and it use has thus increased in pig farming. Nitrous oxide (N2O) is generated on farms as an intermediate product in nitrification and denitrification, and methane (CH4) is also generated from organic degradation under anaerobic conditions by microorganisms in manure or wastewater. This study was carried out at five activated sludge treatment facilities across Japan between August 2014 and January 2015. Measurements were conducted over several weeks at wastewater purification facilities for swine farms: two in Chiba prefecture (East Japan), two in Okayama prefecture (West Japan), and one in Saga (Southern Japan). Taking several environmental fluctuations into account, we collected measurement data continuously day and night, during both high-temperature and low-temperature periods. The results indicated that CH4 and N2O emission factors were 0.91% (kgCH4· kg volatile solids−1) and 2.87% (g N2O-N· kg total N−1), respectively. Ammonia emissions were negligible in all of the measurements from the wastewater facilities. The N2O emission factor calculated under this experiment was low compared to our previous finding (5.0%; g N2O-N· kg N−1) in a laboratory experiment. In contrast, the CH4 emission factor calculated herein was rather high compared to the laboratory measurements. There was great variation in daily GHG emission factors measured in the actual wastewater treatment facilities. In particular, the N2O emission rate was affected by several environmental conditions at each facility location, as well as by the management of the wastewater treatment.

Graphical abstract

Keywords

Manure / Greenhouse gas / Denitrification / BOD/N / Nitrous oxide / Methane

Cite this article

Download citation ▾
Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities. Front. Environ. Sci. Eng., 2017, 11(3): 10 https://doi.org/10.1007/s11783-017-0933-7

References

[1]
Tsuiki M. and Harada Y. A computer program for estimating the amount of livestock wastes. The Journal of the Japanese Agricultural Systems Society, 1997, 13(1): 17–23
[2]
Haga K. Animal waste problems and their solution from the technological point of view in Japan. Jpn Agric Res Q, 1998, 32(3): 203–210
[3]
Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671–677
CrossRef Google scholar
[4]
Kampschreur M J, Temmink H, Kleerebezem R, Jetten M S M, van Loosdrecht M C M. Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43(17): 4093–4103
CrossRef Google scholar
[5]
Greenhouse Gas Inventory Office of Japan, National Greenhouse Gas Inventory Report of Japan. Ministry of the Environment, Japan, 2015URL: http://www-gio.nies.go.jp/.
[6]
Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis. 2007 (Intergovernmental Panel on Climate Change: Stockholm). URL: https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm. (Accessed March 7, 2017)
[7]
Crutzen P J. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In: Delwiche C C, ed. Denitrification, Nitrification and Atmospheric Nitrous Oxide. New York: John Wiley and Sons, 1981, 17–44
[8]
Osada T, Kuroda K, Yonaga M. Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process. Water Research, 1995, 29(6): 1607–1608
CrossRef Google scholar
[9]
Kampschreura M J, Temmink H, Kleerebezema R, Jettena M S M, van Loosdrecht M C M. Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43(17): 4093–4103 
CrossRef Google scholar
[10]
Osada T. Nitrous oxide emission from purification of liquid portion of swine wastewater. In: Greenhouse Gas Control Technologies, Sixth International Conference. Gale J, Kaya Y, eds. Oxford, 2003, 1299–1304
[11]
Sherman M H. Tracer-gas techniques for measuring ventilation in a single zone. Building and Environment, 1990, 25(4): 365–374
CrossRef Google scholar
[12]
American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 22nd edition. Rice E W, Baird R B, Eaton A D, Clesceri L S, eds. Washington D C: American Public Health Association, 2012
[13]
Minato K, Kouda Y, Yamakawa M, Hara S, Tamura T, Osada T. Determination of GHG and ammonia emissions from stored dairy cattle slurry by using a floating dynamic chamber. Animal Science Journal, 2013, 84(2): 165–177
CrossRef Google scholar
[14]
Vanderzaag A C, Flesch T K, Desjardins R L, Balde H, Wright T. Measuring methane emissions from two dairy farms: seasonal and manure-management effects. Agricultural Meteorology, 2014, 194: 259–267
CrossRef Google scholar
[15]
Intergovernmental Panel on Climate Change (IPCC). The Revised Guidelines for National Greenhouse Gas Inventories. Reference manual, Vol. III. United Nations, New York, 1996, URL: http://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html. (Accessed March 6, 2017)
[16]
IPCC (Intergovernmental Panel on Climate Change). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston H S, Buendia L, Miwa K, Ngara T, Tanabe K, eds. Published: IGES, Japan. Chapter 10: Emissions from Livestock and Manure Management. In: Volume 4 Agriculture, Forestry and Other Land Use, 2006, URL: http://www.ipcc-nggip.iges.or.jp/public/2006gl/. (Accessed March 6, 2017)
[17]
Osada T, Kuroda K, Yonaga M. Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process. Water Research, 1995, 29(6): 1607–1608
CrossRef Google scholar
[18]
Yamashita T, Shiraishi M, Yamamoto-Ikemoto R, Yokoyama H, Ogino A, Osada T. Swine wastewater treatment technology to reduce nitrous oxide emission by using an aerobic bioreactor packed with carbon fibres. Animal Production Science, 2016, 56(3): 330–336
CrossRef Google scholar
[19]
Guisasola A, de Haas D, Keller J, Yuan Z. Methane formation in sewer systems. Water Research, 2008, 42(6-7): 1421–1430
CrossRef Google scholar
[20]
Hwang K L, Bang C H, Zoh K D. Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresource Technology, 2016, 214: 881–884
CrossRef Google scholar
[21]
Vanderzaag A C, Gordon R J, Burton D L, Jamieson R C, Stratton G W. Greenhouse gas emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater. Journal of Environmental Quality, 2010, 39(2): 460–471
CrossRef Google scholar
[22]
Wang J, Zhang J, Xie H, Qi P, Ren Y, Hu Z. Methane emissions from a full-scale A/A/O wastewater treatment plant. Bioresource Technology, 2011, 102(9): 5479–5485
CrossRef Google scholar
[23]
Ogink N W M, Mosquera J, Calvet S, Zhang G. Methods for measuring gas emissions from naturally ventilated livestock buildings: developments over the last decade and perspectives for improvement. Biosystems Engineering, 2013, 116(3): 297–308 
CrossRef Google scholar
[24]
Hu Z, Zhang J, Xie H, Li S, Wang J, Zhang T. Effect of anoxic/aerobic phase fraction on N2O emission in a sequencing batch reactor under low temperature. Bioresource Technology, 2011, 102(9): 5486–5491
CrossRef Google scholar
[25]
Paudel S R, Choi O, Khanal S K, Chandran K, Kim S, Lee J W. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system. Science of the Total Environment, 2015, 518: 16–23 
CrossRef Google scholar
[26]
Holtan-Hartwig L, Dösch P, Bakken L R. Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biology and Biochemistry, 2002, 34(11): 1797–1806
CrossRef Google scholar
[27]
Hanaki K, Hong Z, Matsuo T. Production of nitrous oxide gas during denitrification of wastewater. Water Science and Technology, 1992, 26: 1027–1036
[28]
Daelman M R J, van Voorthuizen E M, van Dongen U G J M, Volcke E I P, van Loosdrecht M C M. Seasonal and diurnal variability of N2O emissions from a full-scale municipal wastewater treatment plant. Science of the Total Environment, 2015, 536: 1–11
CrossRef Google scholar

Acknowledgements

We express our appreciation for the financial support from the Minister’s Secretariat, Ministry of Agriculture, Forestry and Fisheries Japan. This study was supported by Japanese Ministry of Agriculture, Forestry and Fisheries, via the Commissioned project study.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(218 KB)

Accesses

Citations

Detail

Sections
Recommended

/