Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 9
Upgrading to urban water system 3.0 through sponge city construction
Nanqi Ren1, Qian Wang1,2, Qiuru Wang1, Hong Huang1, Xiuheng Wang1()
1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
2. Ministry of Environmental Protection of the People’s Republic of China, Beijing 100035, China
Download: PDF(220 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Cities in China confront full-scale and serious water crises due to urbanization.

System 2.0 with fragmented gray engineering measures showed inadaptability.

A novel water-cycling system is developed to systematically solve water crises.

Multi-purpose system 3.0 with integrated strategy shows powerful vitality.

Urban water system 3.0 (Blue, gray, brown and yellow arrows represent water flow, wastewater flow, resource and energy respectively)

Facing the pressure of excessive water consumption, high pollution load and rainstorm waterlogging, linear and centralized urban water system, system 2.0, as well as traditional governance measures gradually exposed characters of water-sensitivity, vulnerability and unsustainability, subsequently resulting in a full-blown crisis of water shortage, water pollution and waterlogging. To systematically relieve such crisis, we established healthy urban water-cycling system 3.0, in which decentralized sewerage systems, spongy infrastructures and ecological rivers play critical roles. Through unconventional water resource recycling, whole process control of pollutions and ecological restoration, system 3.0 with integrated management measures, is expected to fit for multiple purposes which involve environmental, ecological, economic and social benefits. With advantages of flexibility, resilience and sustainability, water system 3.0 will show an increasingly powerful vitality in the near future.

Keywords Water crisis      Urban water system      Spongy city      Decentralized system      Multi-purpose     
This article is part of themed collection: Low Impact Development and Sponge City (Responsible Editors: Haifeng Jia & Shaw L. Yu)
Corresponding Authors: Xiuheng Wang   
Issue Date: 23 June 2017
 Cite this article:   
Nanqi Ren,Qian Wang,Qiuru Wang, et al. Upgrading to urban water system 3.0 through sponge city construction[J]. Front. Environ. Sci. Eng., 2017, 11(4): 9.
E-mail this article
E-mail Alert
Articles by authors
Nanqi Ren
Qian Wang
Qiuru Wang
Hong Huang
Xiuheng Wang
Fig.1  Urban water system 2.0 (Blue, gray, brown and yellow arrows represent water flow, wastewater flow, resource and energy respectively)
goalselements in system 2.0responsible authorities and their actions to enhance system 2.0endeavors in future
water supply
drinking water quality
river/ground water
water supply plant
Ministry of Water Resource
long-distance water transportation and reservoir construction
Minister of Health of the People’s Republic of China
releasing new drinking water sanitary standard in 2006
develop new water sources
non-potable water supply
water conservation
water environment quality eliminating black and malodorous for water bodiescentralized sewage treatment plant(STP)
sewer system
Ministry of Environmental Protection
releasing action plan for water in 2015
upgrading STP discharge standards in 1996, 2002 and 2015
Ministry of Housing and Urban-Rural Development
STP construction
decentralized system for in situ reuse
balance environmental and economic benefits
flood/waterlogging preventionurban river
stormwater system
Ministry of Water Resource
channelized river for flood discharging
Ministry of Housing and Urban-Rural Development /Local Authorities
spongy city construction, 16 cities started LID in 2015
natural hydrological cycle protection
urban resilience
urban riverlocal authorities
inland rivers replenished by long-distance transported water
revetment in garden/artificial landscape
natural landscape
ecology recovery
Tab.1  Fragmented engineering measures in water system 2.0 and outlook for future water system
Fig.2  Urban water system 3.0 (Blue, gray, brown and yellow arrows represent water flow, wastewater flow, resource and energy respectively). In this system, unconventional water resources gained through rainwater harvesting and wastewater recycling not only meet social demands and ecological supply, but also reduce the pollution load. Microcirculations are formed by linking different sections of wastewater treatment plant, ecological urban river, wetland and spongy city with each other, which ensure healthy and sustainable water system. Additionally, future wastewater treatment plants are expected to realize energy self-reliance and resource recovery such as nutrients returning to farmland
1 Cheng H, Hu Y. Economic transformation, technological innovation, and policy and institutional reforms hold keys to relieving China’s water shortages. Environmental Science & Technology, 2011, 45(2): 360–361 pmid: 21126011
2 Jia H, Yao H, Yu S L. Advances in LID BMPs research and practice for urban runoff control in China. Frontiers of Environmental Science & Engineering, 2013, 7(5): 709–720
3 Qiu B X. Protection and governance of the urban water system. China Construction Daily,  2005–07–21, 001 (in Chinese)
4 Wang W, Chen R Z, Liu Y, Wei W. Why did large cities frequently encounter waterlogging. People’s Daily,  2012–07–24, 004 (in Chinese)
5 Carlson C, Barreteau O, Kirshen P, Foltz K. Storm water management as a public good provision problem: survey to understand perspectives of low-impact development for urban storm water management practices under climate change. Journal of Water Resources Planning and Management, 2015, 141(6): 04014080
6 Angelakis A N, Dialynas M G, Despotakis V. Evolution of water supply technologies in Crete, Greece through the centuries. In: Angelakis A N, Mays L W, Koutsoyiannis D, Mamassis N, eds. Evolution of Water Supply Throughout the Millennia. London: IWA Publishing, 2012, 127–131
7 De Feo G, Antoniou G, Fardin H F, El-Gohary F, Zheng X Y, Reklaityte I, Butler D, Yannopoulos S, Angelakis A N. The historical development of sewers worldwide. Sustainability, 2014, 6(6): 3936–3974
8 Sedlak D. Water 4.0: the Past, Present, and Future of the World’s Most Vital Resource. New haven: Yale University Press, 2014
9 Aldea A, Aldea M. The interrelationships between urban dynamics and water resource and supply based on multitemporal analysis. In: Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), Paphos.Bellingham: Proceedings of SPIE, 2016, 96881B
10 Shi H J. Practice and innovation of discharge standard of water pollutants in North China. Environment and Sustainable Development, 2015, 01: 68–71 (in Chinese)
11 Wang X H, Wang X, Huppes G, Heijungs R, Ren N Q. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: case study of a cool area of China. Journal of Cleaner Production, 2015, 94: 278–283
12 International Water Association Events. Available online at 
13 Lyu S, Chen W, Zhang W, Fan Y, Jiao W. Wastewater reclamation and reuse in China: opportunities and challenges. Journal of Environmental Sciences-China, 2016, 39: 86–96 doi:10.1016/j.jes.2015.11.012
pmid: 26899648
14 Li W W, Yu H Q, Rittmann B E. Chemistry: reuse water pollutants. Nature, 2015, 528(7580): 29–31 pmid: 26632573
15 Steffen J, Jensen M, Pomeroy C A, Burian S J. Water supply and stormwater management benefits of residential rainwater harvesting in U.S. cities. Journal of the American Water Resources Association, 2013, 49(4): 810–824
16 Opher T, Friedler E. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. Journal of Environmental Management, 2016, 182: 464–476 pmid: 27526084
17 Ellis J B, Lundy L. Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales. Journal of Environmental Management, 2016, 183(Pt 3): 630–636 pmid: 27637808
18 Sharma A K, Pezzaniti D, Myers B, Cook S, Tjandraatmadja G, Chacko P, Chavoshi S, Kemp D, Leonard R, Koth B, Walton A. Water sensitive urban design: an investigation of current systems, implementation drivers, community perceptions and potential to supplement urban water services. Water (Basel), 2016, 8(7): 272 doi: 10.3390/w8070272
19 Fletcher T D, Shuster W, Hunt W F, Ashley R, Butler D, Arthur S, Trowsdale S, Barraud S, Semadeni-Davies A, Bertrand-Krajewski J, Mikkelsen P S, Rivard G, Uhl M, Dagenais D, Viklander M. SUDS, LID, BMPs, WSUD and more – the evolution and application of terminology surrounding urban drainage. Urban Water Journal, 2015, 12(7): 525–542
20 Breuste J, Artmann M, Li J X, Xie M M. Special issue on green infrastructure for urban sustainability. Journal of Urban Planning and Development, 2015, 141(3): A2015001 doi:10.1061/(ASCE)UP.1943-5444.0000291
21 Libralato G, Volpi Ghirardini A, Avezzù F. To centralise or to decentralise: an overview of the most recent trends in wastewater treatment management. Journal of Environmental Management, 2012, 94(1): 61–68 pmid: 21937161
22 Fane A G, Fane S A. The role of membrane technology in sustainable decentralized wastewater systems. Water science and technology: a journal of the International Association on Water Pollution Research, 2005, 51(10): 317–325 PMID:16104436
23 Xie M, Nghiem L D, Price W E, Elimelech M. A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations. Environmental Science & Technology, 2013, 47(23): 13486–13493 pmid: 24236858
24 Butler R, MacCormick T. Opportunities for decentralized treatment, sewer mining and effluent re-use. Desalination, 1996, 106(1–3): 273–283
25 Massoud M A, Tarhini A, Nasr J A. Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of Environmental Management, 2009, 90(1): 652–659 pmid: 18701206
26 Wilderer P A, Schreff D. Decentralised and centralised wastewater management: a challenge for developers. Water Science and Technology, 2000, 41(1): 1–8
27 Ho G, Anda M. Centralised versus decentralised wastewater systems in an urban context: the sustainability dimension. In: Beck M B, Speers A, eds. Second IWA Leading-Edge Conference on Sustainability. London: IWA Publishing, 2006, 81–131
28 Bakir H A. Sustainable wastewater management for small communities in the Middle East and North Africa. Journal of Environmental Management, 2001, 61(4): 319–328 pmid: 11383104
29 NRC. Water Reuse: Expanding the Nation’s Water Supply through Reuse of Municipal Wastewater. Washington, DC: National Research Council, 2012
30 Grêt-Regamey A, Weibel B, Vollmer D, Burlando P, Girot C. River rehabilitation as an opportunity for ecological landscape design. Sustainable Cities and Society, 2016, 20: 142–146
31 Hering J G, Waite T D, Luthy R G, Drewes J E, Sedlak D L. A changing framework for urban water systems. Environmental Science & Technology, 2013, 47(19): 10721–10726 pmid: 23650975
32 The 17 IWA Principles for Water Wise Cities. Available online at 
33 Chung W Y, Yoo J H. Remote water quality monitoring in wide area. Sensors and Actuators B: Chemical, 2015, 217: 51–57
34 O’Donovan P, Coburn D, Jones E, Hannon L, Glavin M, Mullins D, Clifford E. A cloud-based distributed data collection system for decentralised wastewater treatment plants. Procedia Engineering, 2015, 119: 464–469
Full text