Upgrading to urban water system 3.0 through sponge city construction

Nanqi Ren , Qian Wang , Qiuru Wang , Hong Huang , Xiuheng Wang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 9

PDF (220KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 9 DOI: 10.1007/s11783-017-0960-4
FEATURE ARTICLE
FEATURE ARTICLE

Upgrading to urban water system 3.0 through sponge city construction

Author information +
History +
PDF (220KB)

Abstract

Cities in China confront full-scale and serious water crises due to urbanization.

System 2.0 with fragmented gray engineering measures showed inadaptability.

A novel water-cycling system is developed to systematically solve water crises.

Multi-purpose system 3.0 with integrated strategy shows powerful vitality.

Urban water system 3.0 (Blue, gray, brown and yellow arrows represent water flow, wastewater flow, resource and energy respectively)

Facing the pressure of excessive water consumption, high pollution load and rainstorm waterlogging, linear and centralized urban water system, system 2.0, as well as traditional governance measures gradually exposed characters of water-sensitivity, vulnerability and unsustainability, subsequently resulting in a full-blown crisis of water shortage, water pollution and waterlogging. To systematically relieve such crisis, we established healthy urban water-cycling system 3.0, in which decentralized sewerage systems, spongy infrastructures and ecological rivers play critical roles. Through unconventional water resource recycling, whole process control of pollutions and ecological restoration, system 3.0 with integrated management measures, is expected to fit for multiple purposes which involve environmental, ecological, economic and social benefits. With advantages of flexibility, resilience and sustainability, water system 3.0 will show an increasingly powerful vitality in the near future.

Keywords

Water crisis / Urban water system / Spongy city / Decentralized system / Multi-purpose

Cite this article

Download citation ▾
Nanqi Ren, Qian Wang, Qiuru Wang, Hong Huang, Xiuheng Wang. Upgrading to urban water system 3.0 through sponge city construction. Front. Environ. Sci. Eng., 2017, 11(4): 9 DOI:10.1007/s11783-017-0960-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng HHu Y. Economic transformation, technological innovation, and policy and institutional reforms hold keys to relieving China’s water shortages. Environmental Science & Technology201145(2): 360–361

[2]

Jia HYao HYu S L. Advances in LID BMPs research and practice for urban runoff control in China. Frontiers of Environmental Science & Engineering20137(5): 709–720

[3]

Qiu B X. Protection and governance of the urban water system. China Construction Daily, 2005–07–21, 001 (in Chinese)

[4]

Wang WChen R ZLiu YWei W. Why did large cities frequently encounter waterlogging. People’s Daily, 2012–07–24, 004 (in Chinese)

[5]

Carlson CBarreteau OKirshen PFoltz K. Storm water management as a public good provision problem: survey to understand perspectives of low-impact development for urban storm water management practices under climate change. Journal of Water Resources Planning and Management2015141(6): 04014080

[6]

Angelakis A NDialynas M GDespotakis V. Evolution of water supply technologies in Crete, Greece through the centuries. In: Angelakis A N, Mays L W, Koutsoyiannis D, Mamassis N, eds. Evolution of Water Supply Throughout the Millennia. London: IWA Publishing, 2012, 127–131

[7]

De Feo GAntoniou GFardin H FEl-Gohary FZheng X YReklaityte IButler DYannopoulos SAngelakis A N. The historical development of sewers worldwide. Sustainability20146(6): 3936–3974

[8]

Sedlak D. Water 4.0: the Past, Present, and Future of the World’s Most Vital Resource. New haven: Yale University Press, 2014

[9]

Aldea AAldea M. The interrelationships between urban dynamics and water resource and supply based on multitemporal analysis. In: Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), Paphos.Bellingham: Proceedings of SPIE, 2016, 96881B

[10]

Shi H J. Practice and innovation of discharge standard of water pollutants in North China. Environment and Sustainable Development201501: 68–71 (in Chinese)

[11]

Wang X HWang XHuppes GHeijungs RRen N Q. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: case study of a cool area of China. Journal of Cleaner Production201594: 278–283

[12]

International Water Association Events. Available online at 

[13]

Lyu SChen WZhang WFan YJiao W. Wastewater reclamation and reuse in China: opportunities and challenges. Journal of Environmental Sciences-China201639: 86–96160;doi:10.1016/j.jes.2015.11.012

[14]

Li W WYu H QRittmann B E. Chemistry: reuse water pollutants. Nature2015528(7580): 29–31

[15]

Steffen JJensen MPomeroy C ABurian S J. Water supply and stormwater management benefits of residential rainwater harvesting in U.S. cities. Journal of the American Water Resources Association201349(4): 810–824

[16]

Opher TFriedler E. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. Journal of Environmental Management2016182: 464–476

[17]

Ellis J BLundy L. Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales. Journal of Environmental Management2016183(Pt 3): 630–636

[18]

Sharma A KPezzaniti DMyers BCook STjandraatmadja GChacko PChavoshi SKemp DLeonard RKoth BWalton A. Water sensitive urban design: an investigation of current systems, implementation drivers, community perceptions and potential to supplement urban water services. Water (Basel)20168(7): 272 doi: 10.3390/w8070272

[19]

Fletcher T DShuster WHunt W FAshley RButler DArthur STrowsdale SBarraud SSemadeni-Davies ABertrand-Krajewski JMikkelsen P SRivard GUhl MDagenais DViklander M. SUDS, LID, BMPs, WSUD and more – the evolution and application of terminology surrounding urban drainage. Urban Water Journal201512(7): 525–542

[20]

Breuste JArtmann MLi J XXie M M. Special issue on green infrastructure for urban sustainability. Journal of Urban Planning and Development2015141(3): A2015001 doi:10.1061/(ASCE)UP.1943-5444.0000291

[21]

Libralato GVolpi Ghirardini AAvezzù F. To centralise or to decentralise: an overview of the most recent trends in wastewater treatment management. Journal of Environmental Management201294(1): 61–68

[22]

Fane A GFane S A. The role of membrane technology in sustainable decentralized wastewater systems. Water science and technology: a journal of the International Association on Water Pollution Research200551(10): 317–325 PMID:16104436

[23]

Xie MNghiem L DPrice W EElimelech M. A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations. Environmental Science & Technology201347(23): 13486–13493

[24]

Butler RMacCormick T. Opportunities for decentralized treatment, sewer mining and effluent re-use. Desalination1996106(1–3): 273–283

[25]

Massoud M ATarhini ANasr J A. Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of Environmental Management200990(1): 652–659

[26]

Wilderer P ASchreff D. Decentralised and centralised wastewater management: a challenge for developers. Water Science and Technology200041(1): 1–8

[27]

Ho GAnda M. Centralised versus decentralised wastewater systems in an urban context: the sustainability dimension. In: Beck M B, Speers A, eds. Second IWA Leading-Edge Conference on Sustainability. London: IWA Publishing, 2006, 81–131

[28]

Bakir H A. Sustainable wastewater management for small communities in the Middle East and North Africa. Journal of Environmental Management200161(4): 319–328

[29]

NRC. Water Reuse: Expanding the Nation’s Water Supply through Reuse of Municipal Wastewater. Washington, DC: National Research Council, 2012

[30]

Grêt-Regamey AWeibel BVollmer DBurlando PGirot C. River rehabilitation as an opportunity for ecological landscape design. Sustainable Cities and Society201620: 142–146

[31]

Hering J GWaite T DLuthy R GDrewes J ESedlak D L. A changing framework for urban water systems. Environmental Science & Technology201347(19): 10721–10726

[32]

The 17 IWA Principles for Water Wise Cities. Available online at 

[33]

Chung W YYoo J H. Remote water quality monitoring in wide area. Sensors and Actuators B: Chemical2015217: 51–57

[34]

O’Donovan PCoburn DJones EHannon LGlavin MMullins DClifford E. A cloud-based distributed data collection system for decentralised wastewater treatment plants. Procedia Engineering2015119: 464–469 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (220KB)

4036

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/