Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (5) : 15     https://doi.org/10.1007/s11783-016-0877-3
REVIEW ARTICLE |
Long-term observation of air pollution-weather/climate interactions at the SORPES station: a review and outlook
Aijun Ding1,2,3(),Wei Nie1,2,3,Xin Huang1,2,3,Xuguang Chi1,2,3,Jianning Sun1,2,3,Veli-Matti Kerminen4,Zheng Xu1,2,3,Weidong Guo1,2,3,Tuukka Petäjä1,4,Xiuqun Yang1,2,3,Markku Kulmala4,Congbin Fu1,2,3
1. Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), Nanjing University, Nanjing 210023, China
2. Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
3. Collaborative Innovation Center of Climate Change, Jiangsu Province, Nanjing 210023, China
4. Department of Physics, University of Helsinki, Helsinki 00014, Finland
Download: PDF(964 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Guide   
Abstract

The concept design and detailed information of the SORPES station are introduced.

Main scientific findings based 5-year measurements at the station are summarized.

The future outlook of the development plan and its implications are discussed.

The results improved understanding of interaction of physical and chemical processes.

More SORPES-type stations are need to in different regions in China and the world.

This work presents an overall introduction to the Station for Observing Regional Processes of the Earth System – SORPES in Nanjing, East China, and gives an overview about main scientific findings in studies of air pollution-weather/climate interactions obtained since 2011. The main results summarized in this paper include overall characteristics of trace gases and aerosols, chemical transformation mechanisms for secondary pollutants like O3, HONO and secondary inorganic aerosols, and the air pollution – weather/climate interactions and feedbacks in mixed air pollution plumes from sources like fossil fuel combustion, biomass burning and dust storms. The future outlook of the development plan on instrumentation, networking and data-sharing for the SORPES station is also discussed.

Keywords Secondary pollution      Ground-based measurement      Planetary boundary layer meteorology      Earth system processes     
This article is part of themed collection: Understanding the processes of air pollution formation (Responsible Editors: Min SHAO, Shuxiao WANG & Armistead G. RUSSELL)
Corresponding Authors: Aijun Ding   
Issue Date: 28 September 2016
 Cite this article:   
Aijun Ding,Wei Nie,Xin Huang, et al. Long-term observation of air pollution-weather/climate interactions at the SORPES station: a review and outlook[J]. Front. Environ. Sci. Eng., 2016, 10(5): 15.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-016-0877-3
http://journal.hep.com.cn/fese/EN/Y2016/V10/I5/15
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Aijun Ding
Wei Nie
Xin Huang
Xuguang Chi
Jianning Sun
Veli-Matti Kerminen
Zheng Xu
Weidong Guo
Tuukka Petäjä
Xiuqun Yang
Markku Kulmala
Congbin Fu
Fig.1  Concept and key scientific themes for the SORPES station.

Note: The yellow and blue arrows show the radiative transfer of shortwave and long-wave radiation in the atmosphere, respectively

Fig.2  Maps showing the location and geographical representatives of the SORPES station from different scales: (a) the East Asian monsoon region; (b) Yangtze River Delta region and surrounding regions, (c) Nanjing downtown and suburban areas
Fig.3  Averaged Lagrangian retroplume of the SORPES station for (a) winter and (b) summer.

Note: “Retroplume” represents the distribution of probability or residence time of a simulated air mass. These results were calculated using HYSPLIT [48] based on the method developed by Ding et al. [49]. (Modified from Ding et al. [16])

Fig.4  (a) Scatter plots of CO-NOy color-coded with O3 concentration and (b) PM2.5-O3 color-coded with air temperature; averaged distribution of potential source contribution (c) of CO for O3 episode days and (d) for PM2.5 episode days. (Modified from Ding et al. [16])
main research themes study period main results and key findings references
overall characteristics O3 and PM2.5 2011.8–
2012.7
VOC-limited regime for O3 production; elevated secondary aerosols in summer.
Synoptic weather and human activities play a vital role in pollution episodes.
Ding et al. [16]
new particle formation 2011.11–
2012.3
Ion-induced nucleation plays a marginal role in NPF at SORPES.
A simple empirical criterion was deducted to estimate NPF probability.
Herrmann et al. [60]
NPF and growth 2011–2013 Particle formation rate peaks in spring while growth rate peaks in summer.
Clean air masses favor NPF and polluted YRD air masses facilitate growth.
Qi et al. [56]
identification of primary and secondary PM 2011–2014 The majority of particles are of secondary origin in both Nanjing and Hyytiälä.
Secondary particles dominate particularly in the nucleation and Aitken modes.
Kulmala et al. [61]
chemical formation mechanisms HONO formation 2012.3–2012.6 Biomass burning aerosols enhance the conversion of NO2 to HONO.
Mixed anthropogenic and fire plumes further promote HONO formation.
Nie et al. [62]
sulfate formation enhanced by NO2 2012.5–
2012.6
NO2 promotes sulfate formation through catalytic and photochemical reactions.
Aqueous-phase oxidation by NO2 elevates ambient sulfate and HONO level.
Xie et al. [53]
NPF simulation 2013.6–2013.8 Regional and box model accomplish NPF simulations without VOC observation.
Oxidation products of biogenic VOCs enhance growth of newly formed clusters.
Huang et al. [63]
air pollution –meteorology
interactions
observational evidence for an extreme episode 2012.6 Air pollution modifies radiation transfer, temperature profile and precipitation.
More stable stratification in turn enhances the accumulation of local pollution.
Ding et al. [29]
theoretical analysis based on flux data 2013.5–
2013.11
High PM enhances PBL stability, further increasing surface PM concentration.
Feedback between PM and PBL gets more effective at high PM loadings.
Petäjä et al. [35]
meteorology-chemistry online simulation 2012.6 Aerosol-induced energy reallocation adjusts thermal and humidity stratification.
Modified convective activity and moisture transport redistributed precipitation.
Huang et al. [64]
regional modeling and policy implication 2013.12 BC plays an important role in enhancing haze pollution in megacities.
Reducing BC emission co-benefits mitigation of haze pollution and global warming.
Ding et al. [17]
land-atmosphere interaction 2013.3
-2013.8
Surface type affects radiation balance, land-atmosphere exchanges and local climate.
Urbanization and agricultural cultivation pose warming and cooling effects locally.
Guo et al. [50]
measurement of aerosol optical properties and black carbon 2013.9–2015.1 Compensation parameter is backscatter fraction and SSA dependent.
Backscatter fraction clearly affects aethalometer data and should be considered.
Virkkula et al. [37]
Tab.1  Main results obtained from SORPES station during 2011–2015
Fig.5  A conceptual model for the NO2 promoted sulfate formation via two different mechanisms: dust promoted photochemical heterologous reactions and aqueous-phase reactions in mixed plumes with biomass burning and fossil fuel sources
Fig.6  (a) Time series of solar radiation, sensible heat flux and PM2.5 mass and water soluble ions concentration, and (b) comparison of air temperature vertical profiles from the WRF simulation, FNL data and ECMWF forecast products and radiosonde measurement at Nanjing at 20:00 LT of 10 June, 2012.

Note: Ref SR gives a reference of clear-sky solar radiation based on solar radiation measurement in the afternoon of 13 June with cloud-free sky. (Modified from Ding et al. [29])

Fig.7  Radiative forcing (a) at the surface and (b) in the atmosphere due to anthropogenic and biomass burnings aerosols on 10 June 2012; and aerosol-induced changes in air temperature and wind fields (c) near the surface and (d) at the altitude of 2 km (Figure modified from Huang et al. [64])
Fig.8  A schematic figure for interactions of air pollution–PBL dynamics and aerosol–radiation–cloud for the mixed agriculture burning plumes and fossil fuel combustion pollutants (Modified from Ding et al. [29])
1 He K B, Huo H, Zhang Q. Urban air pollution in China: current status, characterizes and progress. Annual Review of Energy and the Environment, 2002, 27(1): 397–431
https://doi.org/10.1146/annurev.energy.27.122001.083421
2 Chan C K, Yao X. Air pollution in mega cities in China. Atmospheric Environment, 2008, 42(1): 1–42
https://doi.org/10.1016/j.atmosenv.2007.09.003
3 Tie X X, Cao J J. Aerosol pollution in China: present and future impact on environment. Particuology, 2009, 7(6): 426–431
https://doi.org/10.1016/j.partic.2009.09.003
4 Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prévôt A S H. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514(7521): 218–222
pmid: 25231863
5 Guo S, Hu M, Zamora M L, Peng J, Shang D, Zheng J, Du Z, Wu Z, Shao M, Zeng L, Molina M J, Zhang R. Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17373–17378
https://doi.org/10.1073/pnas.1419604111 pmid: 25422462
6 Zhang R, Wang G, Guo S, Zamora M L, Ying Q, Lin Y, Wang W, Hu M, Wang Y. Formation of urban fine particulate matter. Chemical Reviews, 2015, 115(10): 3803–3855
https://doi.org/10.1021/acs.chemrev.5b00067 pmid: 25942499
7 Kelly F J, Zhu T. Transport solutions for cleaner air. Science, 2016, 352(6288): 934–936
https://doi.org/10.1126/science.aaf3420 pmid: 27199415
8 Richter A, Burrows J P, Nüß H, Granier C, Niemeier U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 2005, 437(7055): 129–132
https://doi.org/10.1038/nature04092 pmid: 16136141
9 Ding A J, Wang T, Thouret V, Cammas J P, Nédélec P. Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program. Atmospheric Chemistry and Physics, 2008, 8(1): 1–13
https://doi.org/10.5194/acp-8-1-2008
10 Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, Wang Y. Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmospheric Chemistry and Physics, 2008, 8(10): 2595–2607
https://doi.org/10.5194/acp-8-2595-2008
11 Wang T, Wei X L, Ding A J, Poon C N, Lam K S, Li Y S, Chan L Y, Anson M. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmospheric Chemistry and Physics, 2009, 9(16): 6217–6227
https://doi.org/10.5194/acp-9-6217-2009
12 Itahashi S, Uno I, Irie H, Kurokawa J I, Ohara T. Regional modeling of tropospheric NO2 vertical column density over East Asia during the period 2000–2010: comparison with multisatellite observations. Atmospheric Chemistry and Physics, 2014, 14(7): 3623–3635
https://doi.org/10.5194/acp-14-3623-2014
13 Sun L, Xue L, Wang T, Gao J, Ding A, Cooper O R, Lin M, Xu P, Wang Z, Wang X, Wen L, Zhu Y, Chen T, Yang L, Wang Y, Chen J, Wang W. Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmospheric Chemistry and Physics, 2016, 16(16): 10637–10650
https://doi.org/10.5194/acp-16-10637-2016
14 Wang T, Ding A J, Gao J, Wu W S. Strong ozone production in urban plumes from Beijing, China. Geophysical Research Letters, 2006, 33(21): L21806
https://doi.org/10.1029/2006GL027689
15 Wang T, Nie W, Gao J, Xue L K, Gao X M, Wang X F, Qiu J, Poon C N, Meinardi S, Blake D, Wang S L, Ding A J, Chai F H, Zhang Q Z, Wang W X. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact. Atmospheric Chemistry and Physics, 2010, 10(16): 7603–7615
https://doi.org/10.5194/acp-10-7603-2010
16 Ding A J, Fu C B, Yang X Q, Sun J N, Zheng L F, Xie Y N, Herrmann E, Nie W, Petäjä T, Kerminen V M, Kulmala M. Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013, 13(11): 5813–5830
https://doi.org/10.5194/acp-13-5813-2013
17 Ding A, Huang X, Nie W, Sun J, Kerminen V M, Petäjä T, Su H, Cheng Y, Yang X, Wang M, Chi X, Wang J, Virkkula A, Guo W, Yuan J, Wang S, Zhang R, Wu Y, Song Y, Zhu T, Zilitinkevich S, Kulmala M, Fu C. Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 2016, 43(6): 2873–2879
https://doi.org/10.1002/2016GL067745
18 Nie W, Wang T, Wang W, Wei X, Liu Q. Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995–2008: Impact of local emission and super-regional transport. Atmospheric Environment, 2013, 76(1): 43–51
https://doi.org/10.1016/j.atmosenv.2012.07.001
19 Nie W, Wang T, Ding A, Zhou X, Wang W. A 14-year measurement of toxic elements in atmospheric particulates in Hong Kong from 1995 to 2008. Frontiers of Environmental Science & Engineering, 2014, 8(4): 553–560
https://doi.org/10.1007/s11783-013-0523-2
20 Ma Z, Hu X, Sayer A M, Levy R, Zhang Q, Xue Y, Tong S, Bi J, Huang L, Liu Y. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environmental Health Perspectives, 2016, 124(2): 184–192
pmid: 26220256
21 Chameides W L, Yu H, Liu S C, Bergin M, Zhou X, Mearns L, Wang G, Kiang C S, Saylor R D, Luo C, Huang Y, Steiner A, Giorgi F. Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls? Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13626–13633
https://doi.org/10.1073/pnas.96.24.13626 pmid: 10570123
22 Chameides W L, Li X, Tang X, Zhou X, Luo C, Kiang C S, St John J, Saylor R D, Liu S C, Lam K S, Wang T, Giorgi F. Is ozone pollution affecting crop yields in China? Geophysical Research Letters, 1999, 26(7): 867–870
https://doi.org/10.1029/1999GL900068
23 Feng Z W, Jin M H, Zhang F Z, Huang Y Z. Effects of ground-level ozone (O3) pollution on the yields of rice and winter wheat in the Yangtze River Delta. Journal of Environmental Sciences-China, 2003, 15(3): 360–362
pmid: 12945536
24 Kulmala M. China’s choking corktail. Nature, 2015, 526: 497–499
https://doi.org/10.1038/526497a pmid: 26490602
25 Yi F, Jiang F, Zhong F, Zhou X, Ding A. The impacts of surface ozone pollution on winter wheat productivity in China—An econometric approach. Environmental Pollution, 2016, 208(Pt B): 326–335
https://doi.org/10.1016/j.envpol.2015.09.052 pmid: 26552518
26 Wang Z, Li J, Wang Z, Yang W Y, Tang X, Ge B Z, Yan P Z, Zhu L L, Cheng X S, Wang W, Li J J, Liu B, Wang X Y, Zhao Y L, Lu N, Su D B. Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control. Science China. Earth Science, 2013, 57: 3–13
27 Kulmala M, Petaja T, Kerminen V M, Kujansuu J, Ruuskanen T, Ding A, Nie W, Hu M, Wang Z, Wu Z, Wang L, Worsnop D R. On secondary new particle formation in China. Frontiers of Environmental Science & Engineering, 2016, 10(5): 08,
https://doi.org/10.1007/s11783-016-0850-1
28 Wang J, Wang S, Jiang J, Ding A, Zheng M, Zhao B, Wong D C, Zhou W, Zheng G, Wang L, Pleim J E, Hao J. Impact of aerosol-meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013. Environmental Research Letters, 2014, 9(9): 094002
https://doi.org/10.1088/1748-9326/9/9/094002
29 Ding A J, Fu C B, Yang X Q, Sun J N, Petäjä T, Kerminen V M, Wang T, Xie Y, Herrmann E, Zheng L F, Nie W, Wei X L, Kulmala M. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in the eastern China. Atmospheric Chemistry and Physics, 2013, 20(20): 10545–10554
https://doi.org/10.5194/acp-13-10545-2013
30 He H, Wang Y, Ma Q, Ma J, Chu B, Ji D, Tang G, Liu C, Zhang H, Hao J. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4: 4172
https://doi.org/10.1038/srep04172 pmid: 24566871
31 George C,Ammann M, D’Anna B, Donaldson D J, Nizkorodov S A. Heterogeneous photochemistry in the atmosphere. Chemical Reviews, 2015, 115(10): 4218–4258
https://doi.org/10.1021/cr500648z
32 Ding A J, Wang T, Xue L K, Gao J, Stohl A, Lei H C, Jin D Z, Ren Y, Wang Z F, Wei X L, Qi Y B, Liu J, Zhang X Q. Transport of north China air pollution by midlatitude cyclones: case study of aircraft measurements in summer 2007. Journal of Geophysical Research, 2009, 114(D8): D08304
https://doi.org/10.1029/2008JD011023
33 Zhang Y, Ding A, Mao H, Nie W, Zhou D, Liu L, Huang X, Fu C. Impacts of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013. Atmospheric Environment, 2016, 124(Part B): 119–128
https://doi.org/10.1016/j.atmosenv.2015.05.063
34 Yu H, Liu S C, Dickinson R E. Radiative effects of aerosols on the evolution of the atmospheric boundary layer. Journal of Geophysical Research, 2002, 107(D12): 4142
https://doi.org/10.1029/2001JD000754
35 Petäjä T, Järvi L, Kerminen V M, Ding A J, Sun J N, Nie W, Kujansuu J, Virkkula A, Yang X Q, Fu C B, Zilitinkevich S, Kulmala M. Enhanced air pollution via aerosol-boundary layer feedback in China. Scientific Reports, 2016, 6: 18998
https://doi.org/10.1038/srep18998 pmid: 26753788
36 Andersson A, Deng J, Du K, Zheng M, Yan C, Sköld M, Gustafsson Ö. Regionally-varying combustion sources of the January 2013 severe haze events over eastern China. Environmental Science & Technology, 2015, 49(4): 2038–2043
https://doi.org/10.1021/es503855e pmid: 25569822
37 Virkkula A, Chi X, Ding A, Shen Y, Nie W, Qi X, Zheng L, Huang X, Xie Y, Wang J, Petäjä T, Kulmala M. On the interpretation of the loading correction of the aethalometer. Atmospheric Measurement Techniques, 2015, 8(10): 4415–4427
https://doi.org/10.5194/amt-8-4415-2015
38 Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research, 1997, 102(D23): 28,041–28,047
https://doi.org/10.1029/97JD02300
39 Nie W, Ding A, Wang T, Kerminen V M, George C, Xue L, Wang W, Zhang Q, Petäjä T, Qi X, Gao X, Wang X, Yang X, Fu C, Kulmala M. Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4: 6634
https://doi.org/10.1038/srep06634 pmid: 25319109
40 Qian Y, Leung L R, Ghan S J, Giorgi F. Regional climate effects of aerosols over China: modeling and observation. Tellus. Series B, Chemical and Physical Meteorology, 2003, 55(4): 914–934
https://doi.org/10.1046/j.1435-6935.2003.00070.x
41 Qian Y, Gong D Y, Fan J W, Leung L R, Bennartz R, Chen D L, Wang W G. Heavy pollution suppresses light rain in China: observations and modeling. Journal of Geophysical Research, 2009, 114(D7): D00K02
https://doi.org/10.1029/2008JD011575
42 Liu L, Huang X, Ding A, Fu C. Dust-induced radiative feedbacks in north China: adust storm episode modeling study using WRF-Chem. Atmospheric Environment, 2016, 129: 43–54
43 Hari P, Petäjä T, Bäck J, Kerminen V M, Lappalainen H K, Vihma T, Laurila T, Viisanen Y, Vesala T, Kulmala M. Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16(2): 1017–1028
https://doi.org/10.5194/acp-16-1017-2016
44 Hari P, Andreae M O, Kabat P, Kulmala M. A comprehensive network of measuring stations to monitor climate change. Boreal Environment Research, 2009, 14: 442–446
45 Hari P, Kulmala M. Station for measuring ecosystem – Atmosphere relations (SMEAR II). Boreal Environment Research, 2005, 10: 315–322
46 Fu C. Potential impacts of human-induced land cover change on East Asia monsoon. Global and Planetary Change, 2003, 37(3): 219–229
47 Kulmala M, Lappalainen H, Petäjä T, Kurten T, Kerminen V M, Viisanen Y, Hari P, Sorvari S, Bäck J, Bondur V, Kasimov N, Kotlyakov V, Matvienko G, Baklanov A, Guo H, Ding A, Hansson H C, Zilitinkevich S. Introduction: the Pan-Eurasian Experiment (PEEX)–multidisciplinary, multiscale and multicomponent research and capacity-building initiative. Atmospheric Chemistry and Physics, 2015, 15(22): 13085–13096
https://doi.org/10.5194/acp-15-13085-2015
48 Stein A F, Draler R R, Rolph G D, Stunder B J B, Cohen M D, Ngan F.NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 2015, 96(12): 2059–2077
https://doi.org/10.1175/BAMS-D-14-00110.1.
49 Ding A J, Wang T, Fu C B. Transport characteristics and origins of C transported to Hong Kong, South China. Journal of Geophysical Research: Atmosphere, 2013,118 (16): 9475–9488
50 Guo W D, Wang X Q, Sun J N, Ding A J, Zou J. Comparison of land-atmosphere interaction at different surface types in the mid- to lower reaches of Yangzi River valley. Atmospheric Chemistry and Physics, 2016, 16(15): 9875–9890
https://doi.org/10.5194/acp-16-9875-2016
51 Heland J, Kleffmann J, Kurtenbach R, Wiesen P. A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environmental Science & Technology, 2001, 35(15): 3207–3212
https://doi.org/10.1021/es000303t pmid: 11506004
52 Munksgaard N C, Wurster C M, Bird M I. Continuous analysis of d¹⁸O and dD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters. Rapid Communications in Mass Spectrometry, 2011, 25(24): 3706–3712
https://doi.org/10.1002/rcm.5282 pmid: 22468325
53 Xie Y, Ding A, Nie W, Mao H, Qi X, Huang X, Xu Z, Kerminen V M, Petäjä T, Chi X, Virkkula A, Boy M, Xue L, Guo J, Sun J, Yang X, Kulmala M, Fu C. Enhanced sulfate formation by nitrogen dioxide: implications from in situ observations at the SORPES station. Journal of Geophysical Research: Atmospheres, 2015, 120(24): 12679–12694
https://doi.org/10.1002/2015JD023607
54 Aalto P P, Hämeri K, Becker E, Weber R, Salm J, Mäkelä J M, Hoell C, O’Dowd C D, Karlsson H, Hansson H C, Väkevä M, Koponen I K, Buzorius G, Kulmala M. Physical characterization of aerosol particles during nucleation events. Tellus. Series B, Chemical and Physical Meteorology, 2001, 53(4): 344–358
https://doi.org/10.1034/j.1600-0889.2001.530403.x
55 Vanhanen J, Mikkilä J, Lehtipalo K, Sipilä M, Manninen H E, Siivola E, Petäjä T, Kulmala M. Particle size magnifier for nano-CN Detection. Aerosol Science and Technology, 2011, 45(4): 533–542
https://doi.org/10.1080/02786826.2010.547889
56 Qi X M, Ding A J, Nie W, Petäjä T, Kerminen V M, Herrmann E, Xie Y N, Zheng L F, Manninen H, Aalto P, Sun J N, Xu Z N, Chi X G, Huang X, Boy M, Virkkula A, Yang X Q, Fu C B, Kulmala M. Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmospheric Chemistry and Physics, 2015, 15(21): 12445–12464
https://doi.org/10.5194/acp-15-12445-2015
57 Mirme A, Tamm E, Mordas G, Vana M, Uin J, Mirme S, Bernotas T, Laakso L, Hirsikko A, Kulmala M. A wide-range multi-channel Air Ion Spectrometer. Boreal Environment Research, 2007, 12: 247–264
58 Manninen H E, Nieminen T, Asmi E, Gagné S, Häkkinen S, Lehtipalo K, Aalto P, Vana M, Mirme A, Mirme S, Hõrrak U, Plass-Dülmer C, Stange G, Kiss G, Hoffer A, Tärö N, Moerman M, Henzing B, de Leeuw G, Brinkenberg M, Kouvarakis G N, Bougiatioti A, Mihalopoulos N, O’Dowd C, Ceburnis D, Arneth A, Svenningsson B, Swietlicki E, Tarozzi L, Decesari S, Facchini M C, Birmili W, Sonntag A, Wiedensohler A, Boulon J, Sellegri K, Laj P, Gysel M, Bukowiecki N, Weingartner E, Wehrle G, Laaksonen A, Hamed A, Joutsensaari J, Petäjä T, Kerminen V M, Kulmala M. EUCAARI ion spectrometer measurements at 12 European sites – analysis of new-particle formation events. Atmospheric Chemistry and Physics, 2010, 10(16): 7907–7927
https://doi.org/10.5194/acp-10-7907-2010
59 Foken T, Meixner F X, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer J C, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z. Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmospheric Chemistry and Physics, 2012, 12(4): 1923–1950
https://doi.org/10.5194/acp-12-1923-2012
60 Herrmann E, Ding A J, Kerminen V M, Petäjä T, Yang X Q, Sun J N, Qi X M, Manninen H, Hakala J, Nieminen T, Aalto P P, Kulmala M, Fu C B. Aerosols and nucleation in eastern China: first insights from the new SORPES-NJU station. Atmospheric Chemistry and Physics, 2014, 14(4): 2169–2183
https://doi.org/10.5194/acp-14-2169-2014
61 Kulmala M, Luoma K, Virkkula A, Petäjä T, Paasonen P, Kerminen V M, Nie W, Qi X, Shen Y, Chi X, Ding A. On the mode-segregated aerosol particle number concentration load: contributions of primary and secondary particles in Hyytiälä and Nanjing. Boreal Environment Research, 2016, 21: 319–331
62 Nie W, Ding A J, Xie Y N, Xu Z, Mao H, Kerminen V M, Zheng L F, Qi X M, Huang X, Yang X Q, Sun J N, Herrmann E, Petäjä T, Kulmala M, Fu C B. Influence of biomass burning plumes on HONO chemistry in eastern China. Atmospheric Chemistry and Physics, 2015, 15(3): 1147–1159
https://doi.org/10.5194/acp-15-1147-2015
63 Huang X, Zhou L, Ding A, Qi X, Nie W, Wang M, Chi X, Petäjä T, Kerminen V M, Roldin P, Rusanen A, Kulmala M, Boy M. Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmospheric Chemistry and Physics, 2016, 16(4): 2477–2492
https://doi.org/10.5194/acp-16-2477-2016
64 Huang X, Ding A, Liu L, Liu Q, Ding K, Niu X, Nie W, Xu Z, Chi X, Wang M, Sun J, Guo W, Fu C. Effects of aerosol-radiation interaction on precipitation during biomass-burning season in East China. Atmospheric Chemistry and Physics, 2016, 16(15): 10063–10082
https://doi.org/10.5194/acp-16-10063-2016
65 Su H, Cheng Y F, Cheng P, Zhang Y H, Dong S F, Zeng L M, Wang X S, Slanina J, Shao M, Wiedensohler A. Observation of nighttime nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in China. Atmospheric Environment, 2008, 42(25): 6219–6232
https://doi.org/10.1016/j.atmosenv.2008.04.006
66 Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner F X, Andreae M O, Cheng P, Zhang Y, Pöschl U. Soil nitrite as a source of atmospheric HONO and OH radicals. Science, 2011, 333(6049): 1616–1618
https://doi.org/10.1126/science.1207687 pmid: 21852453
67 Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L 3rd, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E J, Laaksonen A, Kerminen V M, Worsnop D R. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946
https://doi.org/10.1126/science.1227385 pmid: 23430652
68 Boy M, Hellmuth O, Korhonen H, Nilsson E D, ReVelle D, Turnipseed A, Arnold F, Kulmala M. MALTE – model to predict new aerosol formation in the lower troposphere. Atmospheric Chemistry and Physics, 2006, 6(12): 4499–4517
https://doi.org/10.5194/acp-6-4499-2006
69 Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nature Geoscience, 2008, 1(4): 221–227
https://doi.org/10.1038/ngeo156
70 Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, DeAngelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G, Zender C S. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5380–5552
https://doi.org/10.1002/jgrd.50171
71 Huang X, Song Y, Li M, Li J, Zhu T. Harvest season, high polluted season in East China. Environmental Research Letters, 2012, 7(4): 044033
https://doi.org/10.1088/1748-9326/7/4/044033
72 Huang X, Li M, Li J, Song Y. A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal Anomalies/Fire products. Atmospheric Environment, 2012, 50: 9–15
https://doi.org/10.1016/j.atmosenv.2012.01.017
73 Jokinen T, Sipilä M, Junninen H, Ehn M, Lönn G, Hakala J, Petäjä T, Mauldin R L III, Kulmala M, Worsnop D R. Atmospheric sulfuric acid and neutral cluster measurements using CI-APi-TOF. Atmospheric Chemistry and Physics, 2012, 12(9): 4117–4125
https://doi.org/10.5194/acp-12-4117-2012
74 Wei W, Wang S, Hao J, Cheng S. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020. Frontiers of Environmental Science & Engineering, 2014, 8(1): 27–41
75 Wang S , Zhang L, Wang L, Wu Q, Wang F, Hao J. A review of atmospheric mercury emissions, pollution and control in China. Frontiers of Environmental Science & Engineering, 2014, 8(5): 631–649
[1] FSE-16040-OF-DAJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed