Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess

Daniel T. Payne, Mandeep K. Chahal, Václav Březina, Whitney A. Webre, Katsuhiko Ariga, Francis D’Souza, Jan Labuta, Jonathan P. Hill

PDF(1908 KB)
PDF(1908 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (1) : 28-40. DOI: 10.1007/s11705-019-1869-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess

Author information +
History +

Abstract

Chiral 1,1’-binaphthyl-linked diporphyrin ‘tweezers’ (R)-1/(S)-1 and the corresponding zinc(II) complexes (R)-2/(S)-2 were prepared as chiral host molecules, and their utility for chiral analyses (especially enantiomeric excess (ee) determinations) were evaluated. Tris(1-n-dodecyl)porphyrins were used for the first time as the interacting units. Host capabilities of the diporphyrin tweezers were investigated by titrations with (R,R)- and (S,S)-cyclohexane-1,2-diamine (CHDA). The host molecules could be used as multichannel probes of ee by using UV-vis, circular dichroism (CD), fluorescence emission and 1H nuclear magnetic resonance (1H-NMR) methods. Chiral configurations could also be differentiated using CD or 1H-NMR spectroscopy. All three optical techniques give good resolution of ee with reasonable sensitivity considering the low concentrations used (ca. 10−6 mol·L−1). The ee determination of CHDA enantiomers using NMR spectroscopy is also possible because of the reasonably well separated resonances in the case of (R,R)- and (S,S)-CHDA. Non-metallated (R)-1/(S)-1 hosts could not be used to detect chiral information in a strongly acidic chiral guest. This work demonstrates the utility of 1,1’-binapthyl-linked chiral hosts for chiral analysis of ditopically interacting enantiomers.

Graphical abstract

Keywords

porphyrin dimer / chirality / enantiomeric excess / CD / fluorescence

Cite this article

Download citation ▾
Daniel T. Payne, Mandeep K. Chahal, Václav Březina, Whitney A. Webre, Katsuhiko Ariga, Francis D’Souza, Jan Labuta, Jonathan P. Hill. Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess. Front. Chem. Sci. Eng., 2020, 14(1): 28‒40 https://doi.org/10.1007/s11705-019-1869-1

References

[1]
Nunez M D C, Gallo M A, Espinosa A, Campos J M. Rapid development of chiral drugs in the pharmaceutical industry. In: New Developments in Medicinal Chemistry. United Arab Emirates: Bentham Science Publishers, 2010, 95–113
[2]
Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim, Germany: Wiley-VCH Verlagsgesellschaft, 1995, 1–271
[3]
Halpern J, Trost B. Asymmetric catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(15): 5347
CrossRef Google scholar
[4]
Okamoto Y, Ikai T. Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 2008, 37(12): 2593–2608
CrossRef Google scholar
[5]
Parker D. NMR determination of enantiomeric purity. Chemical Reviews, 1991, 91(7): 1441–1457
CrossRef Google scholar
[6]
Shcherbakova E G, Brega V, Lynch V M, James T D, Anzenbacher P Jr. High-throughput assay for enantiomeric excess determination in 1,2- and 1,3-diols and direct asymmetric reaction screening. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(42): 10222–10229
CrossRef Google scholar
[7]
Jo H H, Lin C Y, Anslyn E V. Rapid optical methods for enantiomeric excess analysis: From enantioselective indicator displacement assays to exciton-coupled circular dichroism. Accounts of Chemical Research, 2014, 47(7): 2212–2221
CrossRef Google scholar
[8]
Yang L, Wenzel T, Williamson R T, Christensen M, Schafer W, Welch C J. Expedited selection of NMR chiral solvating agents for determination of enantiopurity. ACS Central Science, 2016, 2(5): 332–340
CrossRef Google scholar
[9]
Pirkle W H, Sikkenka D L. The use of chiral solvating agent for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones: Consequences of three-point interactions. Journal of Organic Chemistry, 1977, 42(8): 1370–1374
CrossRef Google scholar
[10]
Labuta J, Ishihara S, Šikorský T, Futera Z, Shundo A, Hanyková L, Burda J V, Ariga K, Hill J P. NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nature Communications, 2013, 4(1): 2188
CrossRef Google scholar
[11]
Labuta J, Hill J P, Ishihara S, Hanyková L, Ariga K. Chiral sensing by nonchiral tetrapyrroles. Accounts of Chemical Research, 2015, 48(3): 521–529
CrossRef Google scholar
[12]
Kadish K M, Smith K M, Guilard R, eds. The Porphyrin Handbook. San Diego: Academic Press, 2003, 1–20
[13]
Sreenilayam G, Moore E J, Steck V, Fasan R. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor. ACS Catalysis, 2017, 7(11): 7629–7633
CrossRef Google scholar
[14]
Nandipati V, Akinapelli K, Koya L, Starnes S D. Recognition of mandelate stereoisomers by chiral porphyrin hosts: Prediction of stereopreference in guest binding a priori using a simple binding model. Tetrahedron Letters, 2014, 55(5): 985–991
CrossRef Google scholar
[15]
Ema Y, Nemugaki S, Tsuboi S, Utaka M. Synthesis and CD spectrum of chiral porphyrin dimer. Tetrahedron Letters, 1995, 36(33): 5905–5908
CrossRef Google scholar
[16]
Hayashi T, Nonoguchi M, Aya T, Ogoshi H. Molecular recognition of α,ω-diamines by metalloporphyrin dimer. Tetrahedron Letters, 1997, 38(9): 1603–1606
CrossRef Google scholar
[17]
Kurtán T, Nesnas N, Li Y Q, Huang X, Nakanishi K, Berova N. Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 1. Chiroptical protocol for absolute configurational assignments of monoalcohols and primary monoamines. Journal of the American Chemical Society, 2001, 123(25): 5962–5973
CrossRef Google scholar
[18]
Borovkov V V, Fujii I, Muranaka A, Hembury G A, Tanaka T, Ceulemans A, Kobayashi N, Inoue Y. Rationalization of supramolecular chirality in a bisporphyrin system. Angewandte Chemie International Edition, 2004, 43(41): 5481–5485
CrossRef Google scholar
[19]
Saha B, Ikbal S A, Petrovic A G, Berova N, Rath S P. Complexation of chiral zinc-porphyrin tweezer with achiral diamines: Induction and two-step inversion of interporphyrin helicity monitored by ECD. Inorganic Chemistry, 2017, 56(7): 3849–3860
CrossRef Google scholar
[20]
Liu G, Yasumitsu T, Zhao L, Peng X, Wang F, Bauri A K, Aonuma S, Kimura T, Komatsu N. Preferential extraction of left- and right-handed single-walled carbon nanotubes by use of chiral diporphyrin nanotweezers. Organic & Biomolecular Chemistry, 2012, 10(30): 5830–5836
CrossRef Google scholar
[21]
Labuta J, Ishihara S, Shundo A, Arai S, Takeoka S, Ariga K, Hill J P. Chirality sensing by non-chiral porphines. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(13): 3558–3561
CrossRef Google scholar
[22]
Ishihara S, Labuta J, Futera Z, Mori S, Sato H, Ariga K, Hill J P. NMR spectroscopic determination of enantiomeric excess using small prochiral molecules: Intermolecular transfer of magnetic anisotropy in isotropic media. Journal of Physical Chemistry B, 2018, 122(19): 5114–5120
CrossRef Google scholar
[23]
Shinoda T, Onaka M, Izumi Y. The reason why K10 is an effective promoter for meso-tetraalkylporphyrin synthesis. Chemistry Letters, 1995, 24(7): 493–494
CrossRef Google scholar
[24]
Plamont R, Kikkawa Y, Takahashi M, Kanesato M, Giorgi M, Shun A C K, Roussel C, Balaban T S. Nanoscopic imaging of meso-tetraalkylporphyrins prepared in high yields enabled by Montmorillonite K10 and 3 Å molecular sieves. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(34): 11293–11300
CrossRef Google scholar
[25]
Rostami M, Rafiee L, Hassanzadeh F, Dadrass A R, Khodarahmi G A. Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photo-dynamic therapy. Research in Pharmaceutical Sciences, 2015, 10(6): 504–513
[26]
Connors K A. Binding Constants: The Measurement of Molecular Complex Stability. New York: Wiley-Interscience, 1987, 1–432
[27]
Hirose K. A practical guide for the determination of binding constants. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39(3-4): 193–209
CrossRef Google scholar
[28]
Henry E R, Hofrichter J. Methods in Enzymology. London: Academic Press, 1992, 210: 29–192
[29]
Malinowski E R. Factor Analysis in Chemistry. New York: Wiley-Interscience, 2002, 1–432
[30]
Březina V, Ishihara S, Lang J, Hanyková L, Ariga K, Hill J P, Labuta J. Structural modulation of chromic response: Effects of binding-site blocking in a conjugated calix[4]pyrrole chromophore. ChemistryOpen, 2018, 7(5): 323–335
CrossRef Google scholar
[31]
Hanuš J, Chmelová K, Štěpánek J, Turpin P Y, Bok J, Rosenberg I, Točík Z. Raman spectroscopic study of triplex-like complexes of polyuridylic acid with the isopolar, non–isosteric phosphonate analogues of diadenosine monophosphate. Journal of Raman Spectroscopy, 1999, 30(8): 667–676
CrossRef Google scholar
[32]
Zimányi L. Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: A critical evaluation using realistic simulated data. Journal of Physical Chemistry B, 2004, 108(13): 4199–4209
CrossRef Google scholar
[33]
Zimányi L, Kulcsár Á, Lanyi J K, Sears D F, Saltiel J. Singular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra: Analysis of simulated data. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4408–4413
CrossRef Google scholar
[34]
Brahma S, Ikbal S A, Dhamija A, Rath S P. Highly enhanced bisignate circular dichroism of ferrocene-bridged Zn(II) bisporphyrin tweezer with extended chiral substrates due to well-matched host-guest system. Inorganic Chemistry, 2014, 53(5): 2381–2395
CrossRef Google scholar
[35]
Brahma S, Ikbal S A, Rath S P. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: Induction and rationalization of supramolecular chirality. Inorganic Chemistry, 2014, 53(1): 49–62
CrossRef Google scholar
[36]
Zhang P, Wolf C. Sensing of the concentration and enantiomeric excess of chiral compounds with tropos ligand derived metal complexes. Chemical Communications, 2013, 49(62): 7010–7012
CrossRef Google scholar
[37]
Jung S H, Kim K Y, Ahn A, Lee S S, Choi M Y, Jaworski J, Jung J W. NMR detection of chirality and enantiopurity of amines by using benzene tricarboxamide-based hydrogelators as chiral solvating agents. New Journal of Chemistry, 2016, 40(9): 7917–7922
CrossRef Google scholar
[38]
Wang C, Wu X, Pu L. A highly fluorescent chiral aldehyde for enantioselective fluorescent recognition in a biphasic system. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(45): 10749–10752
CrossRef Google scholar
[39]
Zardi P, Wurst K, Licini G, Zonta C. Concentration-independent stereodynamic g-Probe for chiroptical enantiomeric excess determination. Journal of the American Chemical Society, 2017, 139(44): 15616–15619
CrossRef Google scholar
[40]
Ema T, Ouchi N, Doi T, Korenaga T, Sakai T. Highly sensitive chiral shift reagent bearing two zinc porphyrins. Organic Letters, 2005, 7(18): 3985–3988
CrossRef Google scholar
[41]
Ema T, Misawa S, Nemugaki S, Sakai T, Utaka M. New optically active diporphyrin having a chiral cyclophane as a spacer. Chemistry Letters, 1997, 26(6): 487–488
CrossRef Google scholar
[42]
Borovkov V V, Lintuluoto J M, Hembury G A, Sugiura M, Arakawa R, Inoue Y. Supramolecular chirogenesis in zinc porphyrins: Interaction with bidentate ligands, formation of tweezer structures, and the origin of enhanced optical activity. Journal of Organic Chemistry, 2003, 68(19): 7176–7192
CrossRef Google scholar
[43]
Chen Q, Hirsch R E. A direct and simultaneous detection of zinc protoporphyrin IX, free protoporphyrin IX, and fluorescent heme degradation product in red blood cell hemosylates. Free Radical Research, 2006, 40(3): 285–294
CrossRef Google scholar
[44]
Fossey J S, Anslyn E V, Brittain W D G, Bull S D, Chapin B M, Le Duff C L, James T D, Lees G, Lim S, Lloyd J A C, et al. Rapid determination of enantiomeric excess via NMR spectroscopy: A research-informed experiment. Journal of Chemical Education, 2017, 94(1): 79–84
CrossRef Google scholar
[45]
Berova N, Pescitelli G, Petrovic A G, Proni G. Probing molecular chirality by CD-sensitive dimeric metalloporphyrin hosts. Chemical Communications, 2009, 40(40): 5958–5980
CrossRef Google scholar
[46]
Tanasova M, Anyika M, Borhan B. Sensing remote chirality: Stereochemical determination of β, γ, and δ-chiral carboxylic acids. Angewandte Chemie International Edition, 2015, 54(14): 4274–4278
CrossRef Google scholar
[47]
Lu W, Yang H, Li X, Wang C, Zhan X, Qi D, Bian Y, Jiang J. Chiral discrimination of diamines by a binaphthylene-bridged porphyrin dimer. Inorganic Chemistry, 2017, 56(14): 8223–8231
CrossRef Google scholar
[48]
Payne D T, Fossey J S, Elmes R B P. Catalysis and sensing for our environment (CASE2015) and the supramolecular chemistry Ireland meeting (SCI 2015): Dublin and Maynooth, Ireland. 8th–11th July. Supramolecular Chemistry, 2016, 28(11-12): 921–931
CrossRef Google scholar

Acknowledgements

This work was partly supported by World Premier International Research Center Initiative, MEXT, Japan. The authors are grateful to Japan Society for the Promotion of Science (JSPS) for a JSPS Fellowship (to D.T.P.). This work was also partially supported by JSPS KAKENHI (Coordination Asymmetry) Grant No. JP16H06518, JSPS KAKENHI Grant No. 19K05229 and CREST, JST Grant No. JPMJCR1665. This work was partly financially supported by the National Science Foundation (Grant No. 1401188 to FD). The authors thank the Catalysis and Sensing for our Environment network for essential networking opportunities [48].

Electronic Supplementary Material

ƒSupplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-019-1869-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1908 KB)

Accesses

Citations

Detail

Sections
Recommended

/