Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing
Grant Perry, Fernando Cortezon-Tamarit, Sofia I. Pascu
Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing
Prostate cancer has a high incidence in men and remains the second cause of mortality due to cancer worldwide. As the development of the disease is greatly correlated to age, the identification of novel detection methods reliable, efficient, and cost effective is a matter of significant importance in the ageing population of western societies. The detection of the prostate specific antigen (PSA) in blood samples has been the preferred method for the detection and monitoring of prostate cancer over the past decades. Despite the indications against its use in massive population screening, PSA still remains the best studied biomarker for prostate cancer and the detection of its different forms and incorporation in multiplexed designs with other biomarkers still remains a highly valuable indicator in the theranostics of prostate cancer. The latest developments in the use of nanomaterials towards the construction of PSA biosensors are reviewed hereby. The incorporation of gold nanoparticles, silica nanoparticles and graphene nanostructures to biosensing devices has represented a big leap forward in terms of sensitivity, stability and miniaturization. Both electrochemical and optical detection methods for the detection of PSA will be reviewed herein.
biosensing / immunosensor / PSA / prostate cancer / fluorescence
[1] |
Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer, 2018, 103: 356–387 doi:10.1016/j.ejca.2018.07.005
|
[2] |
Luengo-Fernandez R, Leal J, Gray A, Sullivan R. Economic burden of cancer across the European Union: A population-based cost analysis. Lancet. Oncology, 2013, 14(12): 1165–1174 doi:10.1016/S1470-2045(13)70442-X
|
[3] |
Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 2018, 68(1): 7–30 doi:10.3322/caac.21442
|
[4] |
Ge H, Riss P J, Mirabello V, Calatayud D G, Flower S E, Arrowsmith R L, Fryer T D, Hong Y, Sawiak S, Jacobs R M J,
|
[5] |
Kumar C S S R, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 2011, 63(9): 789–808 doi:10.1016/j.addr.2011.03.008
|
[6] |
Heidenreich A, Bastian P J, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, Mottet N. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013. European Urology, 2014, 65(1): 124–137 doi:10.1016/j.eururo.2013.09.046
|
[7] |
Force U S P S T. Screening for prostate cancer: US preventive services task force recommendation statement. Journal of the American Medical Association, 2018, 319(18): 1901–1913 doi:10.1001/jama.2018.3710
|
[8] |
Yao J, Wang Y, Dai Y, Liu C C. Bioconjugated, single-use biosensor for the detection of biomarkers of prostate cancer. ACS Omega, 2018, 3(6): 6411–6418 doi:10.1021/acsomega.8b00634
|
[9] |
Rigau M, Ortega I, Mir M C, Ballesteros C, Garcia M, Llauradó M, Colás E, Pedrola N, Montes M, Sequeiros T,
|
[10] |
Salami S S, Schmidt F, Laxman B, Regan M M, Rickman D S, Scherr D, Bueti G, Siddiqui J, Tomlins S A, Wei J T,
|
[11] |
Lundwall Å, Lilja H. Molecular cloning of human prostate specific antigen cDNA. FEBS Letters, 1987, 214(2): 317–322 doi:10.1016/0014-5793(87)80078-9
|
[12] |
Stura E A, Muller B H, Bossus M, Michel S, Jolivet-Reynaud C, Ducancel F. Crystal structure of human prostate-specific antigen in a sandwich antibody complex. Journal of Molecular Biology, 2011, 414(4): 530–544 doi:10.1016/j.jmb.2011.10.007
|
[13] |
Cheng Z, Choi N, Wang R, Lee S, Moon K C, Yoon S Y, Chen L, Choo J. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano, 2017, 11(5): 4926–4933 doi:10.1021/acsnano.7b01536
|
[14] |
Voller A, Bartlett A, Bidwell D E. Enzyme immunoassays with special reference to ELISA techniques. Journal of Clinical Pathology, 1978, 31(6): 507–520 doi:10.1136/jcp.31.6.507
|
[15] |
Acevedo B, Perera Y, Ruiz M, Rojas G, Benítez J, Ayala M, Gavilondo J. Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clinica Chimica Acta, 2002, 317(1): 55–63 doi:10.1016/S0009-8981(01)00749-5
|
[16] |
Luderer A A, Chen Y T, Soriano T F, Kramp W J, Carlson G, Cuny C, Sharp T, Smith W, Petteway J, Brawer M K,
|
[17] |
Chen Z, Lei Y, Chen X, Wang Z, Liu J. An aptamer based resonance light scattering assay of prostate specific antigen. Biosensors & Bioelectronics, 2012, 36(1): 35–40 doi:10.1016/j.bios.2012.03.041
|
[18] |
Sarkar P, Pal P S, Ghosh D, Setford S J, Tothill I E. Amperometric biosensors for detection of the prostate cancer marker (PSA). International Journal of Pharmaceutics, 2002, 238(1): 1–9 doi:10.1016/S0378-5173(02)00015-7
|
[19] |
Dhenadhayalan N, Yadav K, Sriram M I, Lee H L, Lin K C. Ultra-sensitive DNA sensing of a prostate-specific antigen based on 2D nanosheets in live cells. Nanoscale, 2017, 9(33): 12087–12095 doi:10.1039/C7NR03431H
|
[20] |
Jolly P, Tamboli V, Harniman R L, Estrela P, Allender C J, Bowen J L. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosensors & Bioelectronics, 2016, 75: 188–195 doi:10.1016/j.bios.2015.08.043
|
[21] |
Choi J H, Kim H S, Choi J W, Hong J W, Kim Y K, Oh B K. A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosensors & Bioelectronics, 2013, 49: 415–419 doi:10.1016/j.bios.2013.05.042
|
[22] |
Chikkaveeraiah B V, Bhirde A A, Morgan N Y, Eden H S, Chen X. Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers. ACS Nano, 2012, 6(8): 6546–6561 doi:10.1021/nn3023969
|
[23] |
Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham M C. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosensors & Bioelectronics, 2015, 68: 49–54 doi:10.1016/j.bios.2014.12.033
|
[24] |
Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochimica Acta, 2017, 184(9): 3049–3067 doi:10.1007/s00604-017-2410-1
|
[25] |
Pfister C, Basuyau J P. Current usefulness of free/total PSA ratio in the diagnosis of prostate cancer at an early stage. World Journal of Urology, 2005, 23(4): 236–242 doi:10.1007/s00345-005-0506-4
|
[26] |
Dong Y X, Cao J T, Liu Y M, Ma S H. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres. Biosensors & Bioelectronics, 2017, 91: 246–252 doi:10.1016/j.bios.2016.12.043
|
[27] |
Wang Y, Li Z, Hu D, Lin C T, Li J, Lin Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society, 2010, 132(27): 9274–9276 doi:10.1021/ja103169v
|
[28] |
Cao J T, Yang J J, Zhao L Z, Wang Y L, Wang H, Liu Y M, Ma S H. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosensors & Bioelectronics, 2018, 99: 92–98 doi:10.1016/j.bios.2017.07.050
|
[29] |
Wang X, Xu R, Sun X, Wang Y, Ren X, Du B, Wu D, Wei Q. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosensors & Bioelectronics, 2017, 96: 239–245 doi:10.1016/j.bios.2017.04.052
|
[30] |
Yang Z, Kasprzyk-Hordern B, Goggins S, Frost C G, Estrela P. A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst (London), 2015, 140(8): 2628–2633 doi:10.1039/C4AN02277G
|
[31] |
Wu M S, Chen R N, Xiao Y, Lv Z X. Novel “signal-on” electrochemiluminescence biosensor for the detection of PSA based on resonance energy transfer. Talanta, 2016, 161: 271–277 doi:10.1016/j.talanta.2016.08.060
|
[32] |
Jolly P, Zhurauski P, Hammond J L, Miodek A, Liébana S, Bertok T, Tkáč J, Estrela P. Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sensors and Actuators. B, Chemical, 2017, 251: 637–643 doi:10.1016/j.snb.2017.05.040
|
[33] |
Kavosi B, Salimi A, Hallaj R, Moradi F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosensors & Bioelectronics, 2015, 74: 915–923 doi:10.1016/j.bios.2015.07.064
|
[34] |
Sattarahmady N, Rahi A, Heli H. A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Scientific Reports, 2017, 7(1): 11238 doi:10.1038/s41598-017-11680-5
|
[35] |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191 doi:10.1038/nmat1849
|
[36] |
poor N Z M, Baniasadi L, Omidi M, Amoabediny G, Yazdian F, Attar H, Heydarzadeh A, Zarami A S H, Sheikhha M H. An inhibitory enzyme electrode for hydrogen sulfide detection. Enzyme and Microbial Technology, 2014, 63: 7–12
|
[37] |
Andronescu C, Schuhmann W. Graphene-based field effect transistors as biosensors. Current Opinion in Electrochemistry, 2017, 3(1): 11–17 doi:10.1016/j.coelec.2017.03.002
|
[38] |
Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials, 2008, 18(21): 3506–3514 doi:10.1002/adfm.200800951
|
[39] |
Zhang J J, Gu M M, Zheng T T, Zhu J J. Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/au composites for cytosensing and drug uptake. Analytical Chemistry, 2009, 81(16): 6641–6648 doi:10.1021/ac900628y
|
[40] |
McGrath S E, Michael A, Pandha H, Morgan R. Engrailed homeobox transcription factors as potential markers and targets in cancer. FEBS Letters, 2013, 587(6): 549–554 doi:10.1016/j.febslet.2013.01.054
|
[41] |
Settu K, Liu J T, Chen C J, Tsai J Z. Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Analytical Biochemistry, 2017, 534: 99–107 doi:10.1016/j.ab.2017.07.012
|
[42] |
Tezerjani M D, Benvidi A, Rezaeinasab M, Jahanbani S, Moshtaghioun S M, Youssefi M, Zarrini K. An impedimeric biosensor based on a composite of graphene nanosheets and polyaniline as a suitable platform for prostate cancer sensing. Analytical Methods, 2016, 8(41): 7507–7515 doi:10.1039/C6AY01524G
|
[43] |
Gao X Z, Liu H J, Cheng F, Chen Y. Thermoresponsive polyaniline nanoparticles: Preparation, characterization, and their potential application in waterborne anticorrosion coatings. Chemical Engineering Journal, 2016, 283: 682–691 doi:10.1016/j.cej.2015.08.015
|
[44] |
Pan L H, Kuo S H, Lin T Y, Lin C W, Fang P Y, Yang H W. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosensors & Bioelectronics, 2017, 89: 598–605 doi:10.1016/j.bios.2016.01.077
|
[45] |
Zhou Q, Lin Y, Shu J, Zhang K, Yu Z, Tang D. Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system. Biosensors & Bioelectronics, 2017, 98: 15–21 doi:10.1016/j.bios.2017.06.033
|
[46] |
Padhi D K, Parida K. Facile fabrication of a-FeOOH nanorod/RGO composite: A robust photocatalyst for reduction of Cr(vi) under visible light irradiation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(26): 10300–10312 doi:10.1039/C4TA00931B
|
[47] |
Do T T N, Van Phi T, Nguy T P, Wagner P, Eersels K, Vestergaard M C, Truong L T N. Anisotropic in situ-coated AuNPs on screen-printed carbon surface for enhanced prostate-specific antigen impedimetric aptasensor. Journal of Electronic Materials, 2017, 46(6): 3542–3552 doi:10.1007/s11664-016-5187-9
|
[48] |
Liu B, Lu L S, Hua E, Jiang S T, Xie G M. Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Mikrochimica Acta, 2012, 178(1-2): 163–170 doi:10.1007/s00604-012-0822-5
|
[49] |
Barman S C, Hossain M F, Park J Y. Gold nanoparticles assembled chemically functionalized reduced graphene oxide supported electrochemical immunosensor for ultra-sensitive prostate cancer detection. Journal of the Electrochemical Society, 2017, 164(6): B234–B239 doi:10.1149/2.1461706jes
|
[50] |
Jang H D, Kim S K, Chang H, Choi J W. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites. Biosensors & Bioelectronics, 2015, 63: 546–551 doi:10.1016/j.bios.2014.08.008
|
[51] |
Liu L, Li Y, Tian L, Wei Q, Cao W. Ultrasensitive sandwich-type prostate specific antigen immunosensor based on Ag overgrowth in Pd nano-octahedrons heterodimers decorated on amino functionalized multiwalled carbon nanotubes. Sensors and Actuators. B, Chemical, 2016, 237: 733–739 doi:10.1016/j.snb.2016.06.160
|
[52] |
Han L, Liu C M, Dong S L, Du C X, Zhang X Y, Li L H, Wei Y. Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. Biosensors & Bioelectronics, 2017, 87: 466–472 doi:10.1016/j.bios.2016.08.004
|
[53] |
Sharafeldin M, Bishop G W, Bhakta S, El-Sawy A, Suib S L, Rusling J F. Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosensors & Bioelectronics, 2017, 91: 359–366 doi:10.1016/j.bios.2016.12.052
|
[54] |
Feng J, Li Y, Li M, Li F, Han J, Dong Y, Chen Z, Wang P, Liu H, Wei Q. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosensors & Bioelectronics, 2017, 91: 441–448 doi:10.1016/j.bios.2016.12.070
|
[55] |
Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays in Biochemistry, 2016, 60(1): 91–100 doi:10.1042/EBC20150010
|
[56] |
Jiang Z, Qin Y, Peng Z, Chen S, Chen S, Deng C, Xiang J. The simultaneous detection of free and total prostate antigen in serum samples with high sensitivity and specificity by using the dual-channel surface plasmon resonance. Biosensors & Bioelectronics, 2014, 62: 268–273 doi:10.1016/j.bios.2014.06.060
|
[57] |
Zhang B, Liu B, Chen G, Tang D. Competitive-type displacement reaction for direct potentiometric detection of low-abundance protein. Biosensors & Bioelectronics, 2014, 53: 465–471 doi:10.1016/j.bios.2013.10.027
|
[58] |
Liang J, Yao C, Li X, Wu Z, Huang C, Fu Q, Lan C, Cao D, Tang Y. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosensors & Bioelectronics, 2015, 69: 128–134 doi:10.1016/j.bios.2015.02.026
|
[59] |
Duan F, Zhang S, Yang L, Zhang Z, He L, Wang M. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Analytica Chimica Acta, 2018, 1036: 121–132 doi:10.1016/j.aca.2018.06.070
|
[60] |
Parveen S, Aslam M S, Hu L, Xu G. Electrogenerated Chemiluminescence: Protocols and Applications. Dordrecht: Springer, 2013, 1–152
|
[61] |
Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chemical Reviews, 2008, 108(7): 2506–2553 doi:10.1021/cr068083a
|
[62] |
Deng W, Chu C, Ge S, Yu J, Yan M, Song X. Electrochemiluminescence PSA assay using an ITO electrode modified with gold and palladium, and flower-like titanium dioxide microparticles as ECL labels. Mikrochimica Acta, 2015, 182(5): 1009–1016 doi:10.1007/s00604-014-1423-2
|
[63] |
Ma H, Li X, Yan T, Li Y, Zhang Y, Wu D, Wei Q, Du B. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework. Biosensors & Bioelectronics, 2016, 79: 379–385 doi:10.1016/j.bios.2015.12.080
|
[64] |
Shao K, Wang B, Nie A, Ye S, Ma J, Li Z, Lv Z, Han H. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosensors & Bioelectronics, 2018, 118: 160–166 doi:10.1016/j.bios.2018.07.029
|
[65] |
Zhu W, Saddam Khan M, Cao W, Sun X, Ma H, Zhang Y, Wei Q. Ni(OH)2/NGQDs-based electrochemiluminescence immunosensor for prostate specific antigen detection by coupling resonance energy transfer with Fe3O4@MnO2 composites. Biosensors & Bioelectronics, 2018, 99: 346–352 doi:10.1016/j.bios.2017.08.005
|
[66] |
Yang J J, Cao J T, Wang H, Liu Y M, Ren S W. Ferrocene-graphene sheets for high-efficiency quenching of electrochemiluminescence from Au nanoparticles functionalized cadmium sulfide flower-like three dimensional assemblies and sensitive detection of prostate specific antigen. Talanta, 2017, 167: 325–332 doi:10.1016/j.talanta.2017.01.077
|
[67] |
Tian C, Wang L, Luan F, Zhuang X. An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta, 2019, 191: 103–108 doi:10.1016/j.talanta.2018.08.050
|
[68] |
Kong R M, Zhang X, Ding L, Yang D, Qu F. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission-silica nanospheres. Analytical and Bioanalytical Chemistry, 2017, 409(24): 5757–5765 doi:10.1007/s00216-017-0519-z
|
[69] |
Hao T, Wu X, Xu L, Liu L, Ma W, Kuang H, Xu C. Ultrasensitive detection of prostate-specific antigen and thrombin based on gold-upconversion nanoparticle assembled pyramids. Small, 2017, 13(19): 1603944 doi:10.1002/smll.201603944
|
[70] |
Yang L, Li N, Wang K, Hai X, Liu J, Dang F. A novel peptide/Fe3O4@SiO2-Au nanocomposite-based fluorescence biosensor for the highly selective and sensitive detection of prostate-specific antigen. Talanta, 2018, 179: 531–537 doi:10.1016/j.talanta.2017.11.033
|
[71] |
Xu D D, Deng Y L, Li C Y, Lin Y, Tang H W. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosensors & Bioelectronics, 2017, 87: 881–887 doi:10.1016/j.bios.2016.09.034
|
[72] |
Li X, Wei L, Pan L, Yi Z, Wang X, Ye Z, Xiao L, Li H W, Wang J. Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers. Analytical Chemistry, 2018, 90(7): 4807–4814 doi:10.1021/acs.analchem.8b00251
|
[73] |
Wegner K D, Jin Z, Lindén S, Jennings T L, Hildebrandt N. Quantum-dot-based Förster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano, 2013, 7(8): 7411–7419 doi:10.1021/nn403253y
|
[74] |
Tagit O, Hildebrandt N. Fluorescence sensing of circulating diagnostic biomarkers using molecular probes and nanoparticles. ACS Sensors, 2017, 2(1): 31–45 doi:10.1021/acssensors.6b00625
|
[75] |
Garcia-Cortes M, Encinar J R, Costa-Fernandez J M, Sanz-Medel A. Highly sensitive nanoparticle-based immunoassays with elemental detection: Application to Prostate-Specific Antigen quantification. Biosensors & Bioelectronics, 2016, 85: 128–134 doi:10.1016/j.bios.2016.04.090
|
[76] |
Zhang K, Lv S, Lin Z, Tang D. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosensors & Bioelectronics, 2017, 95: 34–40 doi:10.1016/j.bios.2017.04.005
|
[77] |
Annio G, Jennings T L, Tagit O, Hildebrandt N. Sensitivity enhancement of förster resonance energy transfer immunoassays by multiple antibody conjugation on quantum dots. Bioconjugate Chemistry, 2018, 29(6): 2082–2089 doi:10.1021/acs.bioconjchem.8b00296
|
[78] |
Mattera L, Bhuckory S, Wegner K D, Qiu X, Agnese F, Lincheneau C, Senden T, Djurado D, Charbonnière L J, Hildebrandt N, Reiss P. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits. Nanoscale, 2016, 8(21): 11275–11283 doi:10.1039/C6NR03261C
|
[79] |
Kavosi B, Navaee A, Salimi A. Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decorated of AuNPs-PAMAM dendrimer. Journal of Luminescence, 2018, 204: 368–374 doi:10.1016/j.jlumin.2018.08.012
|
[80] |
Yang T, Hou P, Zheng L L, Zhan L, Gao P F, Li Y F, Huang C Z. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. Nanoscale, 2017, 9(43): 17020–17028 doi:10.1039/C7NR04817C
|
[81] |
Li X, Li W, Yang Q, Gong X, Guo W, Dong C, Liu J, Xuan L, Chang J. Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Applied Materials & Interfaces, 2014, 6(9): 6406–6414 doi:10.1021/am5012782
|
[82] |
Kong R M, Ding L, Wang Z, You J, Qu F. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Analytical and Bioanalytical Chemistry, 2015, 407(2): 369–377 doi:10.1007/s00216-014-8267-9
|
[83] |
Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F. Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosensors & Bioelectronics, 2015, 74: 909–914 doi:10.1016/j.bios.2015.07.056
|
[84] |
Fang B Y, Wang C Y, Li C, Wang H B, Zhao Y D. Amplified using DNase I and aptamer/graphene oxide for sensing prostate specific antigen in human serum. Sensors and Actuators. B, Chemical, 2017, 244: 928–933 doi:10.1016/j.snb.2017.01.045
|
/
〈 | 〉 |