Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions

Viviana Maffeis, Lisa Moni, Daniele Di Stefano, Silvia Giordani, Renata Riva

PDF(1184 KB)
PDF(1184 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (1) : 76-89. DOI: 10.1007/s11705-019-1833-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions

Author information +
History +

Abstract

The search for new fluorescent molecules for possible applications as functional p-electron systems and their conjugation with different nanomaterials is nowadays of paramount importance to broaden the availability of materials with different properties. Herein we present a diversity-oriented approach to heterocyclic luminophores based on a multicomponent Ugi reaction followed by a Pd-mediated cascade sequence. The new molecules are coupled to carbon nano-onions, and hybrid systems represent the first example of blue emitters conjugated with these carbon nanoparticles.

Graphical abstract

Keywords

carbon nano-onions / multicomponent reactions / blue emitters / fluorescence / isoquinolines

Cite this article

Download citation ▾
Viviana Maffeis, Lisa Moni, Daniele Di Stefano, Silvia Giordani, Renata Riva. Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions. Front. Chem. Sci. Eng., 2020, 14(1): 76‒89 https://doi.org/10.1007/s11705-019-1833-0

References

[1]
Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162–163
CrossRef Google scholar
[2]
Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation. Nature, 1992, 359(6397): 707–709
CrossRef Google scholar
[3]
Ugarte D. Onion-like graphitic particles. Carbon, 1995, 33(7): 989–993
CrossRef Google scholar
[4]
Mykhailiv O, Zubyk H, Plonska-Brzezinska M E. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chimica Acta, 2017, 468: 49–66
CrossRef Google scholar
[5]
Palkar A, Melin F, Cardona C M, Elliott B, Naskar A K, Edie D D, Kumbhar A, Echegoyen L. Reactivity differences between carbon nano onions (cnos) prepared by different methods. Chemistry, an Asian Journal, 2007, 2(5): 625–633
CrossRef Google scholar
[6]
Kuznetsov V L, Zilberberg I L, Butenko Y V, Chuvilin A L, Segall B. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. Journal of Applied Physics, 1999, 86(2): 863–870
CrossRef Google scholar
[7]
Sano N, Wang H, Alexandrou I, Chhowalla M, Teo K B K, Amaratunga G A J, Iimura K. Properties of carbon onions produced by an arc discharge in water. Journal of Applied Physics, 2002, 92(5): 2783–2788
CrossRef Google scholar
[8]
Alexandrou I, Wang H, Sano N, Amaratunga G A J. Structure of carbon onions and nanotubes formed by arc in liquids. Journal of Chemical Physics, 2004, 120(2): 1055–1058
CrossRef Google scholar
[9]
Dorobantu D, Bota P M, Boerasu I, Bojin D, Enachescu M. Pulse laser ablation system for carbon nano-onions fabrication. Surface Engineering and Applied Electrochemistry, 2014, 50(5): 390–394
CrossRef Google scholar
[10]
Chen X H, Deng F M, Wang J X, Yang H S, Wu G T, Zhang X B, Peng J C, Li W Z. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chemical Physics Letters, 2001, 336(3): 201–204
CrossRef Google scholar
[11]
Bartelmess J, Giordani S. Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein Journal of Nanotechnology, 2014, 5: 1980–1998
CrossRef Google scholar
[12]
Georgakilas V, Guldi D M, Signorini R, Bozio R, Prato M. Organic functionalization and optical properties of carbon onions. Journal of the American Chemical Society, 2003, 125(47): 14268–14269
CrossRef Google scholar
[13]
Liu Y, Vander Wal R L, Khabashesku V N. Functionalization of carbon nano-onions by direct fluorination. Chemistry of Materials, 2007, 19(4): 778–786
CrossRef Google scholar
[14]
Rettenbacher A S, Perpall M W, Echegoyen L, Hudson J, Smith D W. Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions). Chemistry of Materials, 2007, 19(6): 1411–1417
CrossRef Google scholar
[15]
Cioffi C T, Palkar A, Melin F, Kumbhar A, Echegoyen L, Melle-Franco M, Zerbetto F, Rahman G M A, Ehli C, Sgobba V, Guldi D M, Prato M. A carbon nano-onion–ferrocene donor–acceptor system: Synthesis, characterization and properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(17): 4419–4427
CrossRef Google scholar
[16]
Zhou L, Gao C, Zhu D, Xu W, Chen F F, Palkar A, Echegoyen L, Kong E S W. Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and “grafting from” strategy. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(6): 1389–1396
CrossRef Google scholar
[17]
Flavin K, Chaur M N, Echegoyen L, Giordani S. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and “click” chemistry. Organic Letters, 2010, 12(4): 840–843
CrossRef Google scholar
[18]
Tomita S, Fujii M, Hayashi S, Yamamoto K. Electron energy-loss spectroscopy of carbon onions. Chemical Physics Letters, 1999, 305(3): 225–229
CrossRef Google scholar
[19]
Chhowalla M, Wang H, Sano N, Teo K B K, Lee S B, Amaratunga G A J. Carbon onions: Carriers of the 217.5 nm interstellar absorption feature. Physical Review Letters, 2003, 90(15): 155504
CrossRef Google scholar
[20]
Sek S, Breczko J, Plonska-Brzezinska M E, Wilczewska A Z, Echegoyen L. STM-based molecular junction of carbon nano-onion. ChemPhysChem, 2013, 14(1): 96–100
CrossRef Google scholar
[21]
Zeiger M, Jäckel N, Aslan M, Weingarth D, Presser V. Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon, 2015, 84: 584–598
CrossRef Google scholar
[22]
Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S. Nanodiamond and onion-like carbon polymer nanocomposites. Diamond and Related Materials, 2007, 16(4): 1213–1217
CrossRef Google scholar
[23]
Macutkevic J, Adomavicius R, Krotkus A, Seliuta D, Valusis G, Maksimenko S, Kuzhir P, Batrakov K, Kuznetsov V, Moseenkov S, Shenderova O, Okotrub A V, Langlet R, Lambin P. Terahertz probing of onion-like carbon-PMMA composite films. Diamond and Related Materials, 2008, 17(7): 1608–1612
CrossRef Google scholar
[24]
Bartolome J P, Echegoyen L, Fragoso A. Reactive carbon nano-onion modified glassy carbon surfaces as DNA sensors for human papillomavirus oncogene detection with enhanced sensitivity. Analytical Chemistry, 2015, 87(13): 6744–6751
CrossRef Google scholar
[25]
Maffeis V, McCourt R O, Petracca R, Laethem O, Camisasca A, Colavita P E, Giordani S, Scanlan E M. Photocatalytic initiation of radical thiol-ene reactions using carbon-B2O3 nanocomposites. ACS Applied Nano Materials, 2018, 1(8): 4120–4126
CrossRef Google scholar
[26]
Zeiger M, Jäckel N, Mochalin V N, Presser V. Review: Carbon onions for electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(9): 3172–3196
CrossRef Google scholar
[27]
Zheng D, Yang G, Zheng Y, Fan P, Ji R, Huang J, Zhang W, Yu J. Carbon nano-onions as a functional dopant to modify hole transporting layers for improving stability and performance of planar perovskite solar cells. Electrochimica Acta, 2017, 247: 548–557
CrossRef Google scholar
[28]
D’Amora M, Rodio M, Bartelmess J, Sancataldo G, Brescia R, Cella Zanacchi F, Diaspro A, Giordani S. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Scientific Reports, 2016, 6(1): 33923
CrossRef Google scholar
[29]
D’Amora M, Camisasca A, Lettieri S, Giordani S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials (Basel, Switzerland), 2017, 7(12): 414
CrossRef Google scholar
[30]
Trusel M, Baldrighi M, Marotta R, Gatto F, Pesce M, Frasconi M, Catelani T, Papaleo F, Pompa P P, Tonini R, Giordani S. Internalization of carbon nano-onions by hippocampal cells preserves neuronal circuit function and recognition memory. ACS Applied Materials & Interfaces, 2018, 10(20): 16952–16963
CrossRef Google scholar
[31]
Lettieri S, d’Amora M, Camisasca A, Diaspro A, Giordani S. Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics. Beilstein Journal of Nanotechnology, 2017, 8: 1878–1888
CrossRef Google scholar
[32]
Müller T J J, Bunz U H F. Functional Organic Materials. Syntheses, Strategies, and Applications. Weinheim: Wiley-VCH, 2007
[33]
Arcudi F, Đorđević L, Prato M. Rationally designed carbon nanodots towards pure white-light rmission. Angewandte Chemie International Edition, 2017, 56(15): 4170–4173
CrossRef Google scholar
[34]
Frasconi M, Marotta R, Markey L, Flavin K, Spampinato V, Ceccone G, Echegoyen L, Scanlan E M, Giordani S. Multi-functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(52): 19071–19080
CrossRef Google scholar
[35]
Bartelmess J, Baldrighi M, Nardone V, Parisini E, Buck D, Echegoyen L, Giordani S. Synthesis and characterization of far-red/NIR-fluorescent BODIPY dyes, solid-state fluorescence, and application as fluorescent tags attached to carbon nano-onions. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(27): 9727–9732
CrossRef Google scholar
[36]
Lettieri S, Camisasca A, d’Amora M, Diaspro A, Uchida T, Nakajima Y, Yanagisawa K, Maekawa T, Giordani S. Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging. RSC Advances, 2017, 7(72): 45676–45681
CrossRef Google scholar
[37]
Liu Y, Kim D Y. Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing. Chemical Communications, 2015, 51(20): 4176–4179
CrossRef Google scholar
[38]
Müllen K, Scherf U. Organic light-emitting diodes—synthesis, properties, and applications. Weinheim: Wiley-VCH, 2006
[39]
Zhu M, Yang C. Blue fluorescent emitters: Design tactics and applications in organic light-emitting diodes. Chemical Society Reviews, 2013, 42(12): 4963–4976
CrossRef Google scholar
[40]
Kuma H, Hosokawa C. Blue fluorescent OLED materials and their application for high-performance devices. Science and Technology of Advanced Materials, 2014, 15(3): 34201
CrossRef Google scholar
[41]
Yang X, Xu X, Zhou G. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(5): 913–944
CrossRef Google scholar
[42]
Bui T T, Goubard F, Ibrahim-Ouali M, Gigmes D, Dumur F. Thermally activated delayed fluorescence emitters for deep blue organic light emitting diodes: A review of recent advances. Applied Sciences (Basel, Switzerland), 2018, 8(4): 494
CrossRef Google scholar
[43]
Froehlich J D, Young R, Nakamura T, Ohmori Y, Li S, Mochizuki A, Lauters M, Jabbour G E. Synthesis of Multi-Functional POSS Emitters for OLED Applications. Chemistry of Materials, 2007, 19(20): 4991–4997
CrossRef Google scholar
[44]
Krujatz F, Hild O R, Fehse K, Jahnel M, Werner A, Bley T. Exploiting the potential of oled-based photo-organic sensors for biotechnological applications. Chemical Sciences Journal, 2016, 7(3): 134
[45]
Cairo C W, Key J A, Sadek C M. Fluorescent small-molecule probes of biochemistry at the plasma membrane. Current Opinion in Chemical Biology, 2010, 14(1): 57–63
CrossRef Google scholar
[46]
Hong Y, Häußler M, Lam J W Y, Li Z, Sin K K, Dong Y, Tong H, Liu J, Qin A, Renneberg R, Tang B Z. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of dna folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(21): 6428–6437
CrossRef Google scholar
[47]
Kuznetsov V L, Chuvilin A L, Butenko Y V, Mal’kov I Y, Titov V M. Onion-like carbon from ultra-disperse diamond. Chemical Physics Letters, 1994, 222(4): 343–348
CrossRef Google scholar
[48]
Frasconi M, Maffeis V, Bartelmess J, Giordani S. Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods and Applications in Fluorescence, 2015, 3(4): 0044005
CrossRef Google scholar
[49]
Moni L, Gers-Panther C F, Anselmo M, Müller T J J, Riva R. Highly convergent synthesis of intensively blue emissive furo[2,3-c]isoquinolines by a palladium-catalyzed cyclization cascade of unsaturated Ugi products. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(6): 2020–2031
CrossRef Google scholar
[50]
Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 2006, 106(1): 17–89
CrossRef Google scholar
[51]
Hu R, Leung N L C, Tang B Z. AIE macromolecules: Syntheses, structures and functionalities. Chemical Society Reviews, 2014, 43(13): 4494–4562
CrossRef Google scholar
[52]
Banfi L, Basso A, Giardini L, Riva R, Rocca V, Guanti G. Tandem Ugi MCR/Mitsunobu cyclization as a short, protecting-group-free route to benzoxazinones with four diversity points. European Journal of Organic Chemistry, 2010, 2011(1): 100–109
CrossRef Google scholar
[53]
Söveges B, Imre T, Póti Á L, Sok P, Kele Z, Alexa A, Kele P, Németh K. Tracking down protein–protein interactions via a FRET-system using site-specific thiol-labeling. Organic & Biomolecular Chemistry, 2018, 16(32): 5756–5763
CrossRef Google scholar
[54]
Bartelmess J, De Luca E, Signorelli A, Baldrighi M, Becce M, Brescia R, Nardone V, Parisini E, Echegoyen L, Pompa P P, Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging. Nanoscale, 2014, 6(22): 13761–13769
CrossRef Google scholar
[55]
Giordani S, Bartelmess J, Frasconi M, Biondi I, Cheung S, Grossi M, Wu D, Echegoyen L, O’Shea D F. NIR fluorescence labelled carbon nano-onions: Synthesis, analysis and cellular imaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(42): 7459–7463
CrossRef Google scholar

Acknowledgements

Istituto Italiano di Tecnologia and the University of Genova are gratefully acknowledged for financial support. S.G. acknowledges the COST Action CA 15107 “Multi-Functional Nano-Carbon Composite Materials Network (MultiComp)”. The authors wish to thank Prof. Luis Echegoyen (UTEP) for supervising V.M. in the synthesis of pristine CNOs.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1184 KB)

Accesses

Citations

Detail

Sections
Recommended

/