Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2018, Vol. 12 Issue (5) : 1032-1034     https://doi.org/10.1007/s11704-018-7186-x
LETTER |
Center-based clustering of categorical data using kernel smoothing methods
Xuanhui YAN, Lifei CHEN(), Gongde GUO
School of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China
Download: PDF(210 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Authors: Lifei CHEN   
Online First Date: 04 September 2018    Issue Date: 21 September 2018
 Cite this article:   
Xuanhui YAN,Lifei CHEN,Gongde GUO. Center-based clustering of categorical data using kernel smoothing methods[J]. Front. Comput. Sci., 2018, 12(5): 1032-1034.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-018-7186-x
http://journal.hep.com.cn/fcs/EN/Y2018/V12/I5/1032
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuanhui YAN
Lifei CHEN
Gongde GUO
1 Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Computing Survey, 1999, 31(3): 264–323
https://doi.org/10.1145/331499.331504
2 Jing L, Ng M K, Huang J Z. An entropy weighting K-means algorithm for subspace clustering of high-dimensinoal sparse data. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8): 1–16
https://doi.org/10.1109/TKDE.2007.1048
3 Sun H, Wang S, Jiang Q. FCM-based model selection algorithms for determining the number of clusters. Pattern Recognition, 2004, 37(10): 2027–2037
https://doi.org/10.1016/j.patcog.2004.03.012
4 Ouyang D, Li Q, Racine J. Cross-validation and the estimation of probability distributions with categorical data. Nonparametric Statistics, 2006, 18(1): 69–100
https://doi.org/10.1080/10485250600569002
5 Bai L, Liang J, Dang C, Cao F. A novel attribute weighting algorithm for clustering high-dimensional categorical data. Pattern Recognition, 2011, 44(12): 2843–2861
https://doi.org/10.1016/j.patcog.2011.04.024
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed