Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2017, Vol. 11 Issue (4) : 632-648     DOI: 10.1007/s11704-016-5530-6
RESEARCH ARTICLE |
Local structured representation for generic object detection
Junge ZHANG1,3(), Kaiqi HUANG1,2,3(), Tieniu TAN1,2,3(), Zhaoxiang ZHANG2,3()
1. Center for Research on Intelligent Perception and Computing, Chinese Academy of Sciences, Beijing 100190, China
2. Research Center for Brain-inspired Intelligence, Chinese Academy of Sciences, Beijing 100190, China
3. National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Download: PDF(659 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object’s local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.

Keywords Local Structured Descriptor      Local Structured Model      Object Representation      Object Structure      Object Detection      PASCAL VOC     
Corresponding Authors: Junge ZHANG,Kaiqi HUANG,Tieniu TAN,Zhaoxiang ZHANG   
Just Accepted Date: 12 April 2016   Online First Date: 17 March 2017    Issue Date: 26 July 2017
 Cite this article:   
Junge ZHANG,Kaiqi HUANG,Tieniu TAN, et al. Local structured representation for generic object detection[J]. Front. Comput. Sci., 2017, 11(4): 632-648.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-016-5530-6
http://journal.hep.com.cn/fcs/EN/Y2017/V11/I4/632
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junge ZHANG
Kaiqi HUANG
Tieniu TAN
Zhaoxiang ZHANG
1 AlexeB, Deselaers T, FerrariV . Measuring the objectness of image windows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2189–2202
doi: 10.1109/TPAMI.2012.28
2 ChengM M, ZhangZ, LinW Y, Torr P. Bing: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2014, 3286–3293
doi: 10.1109/cvpr.2014.414
3 ZitnickC, Dollár P. Edge boxes: locating object proposals from edges. In: Proceedings of European Conference on Computer Vision. 2014, 391–405
doi: 10.1007/978-3-319-10602-1_26
4 YaoC, BaiX, LiuW. A unified framework for multioriented text detection and recognition. IEEE Transactions on Image Processing, 2014, 23(11): 4737–4749
doi: 10.1109/TIP.2014.2353813
5 ZhuY, YaoC, BaiX. Scene text detection and recognition: recent advances and future trends. Frontiers of Computer Science, 2016, 10(1): 19–36
doi: 10.1007/s11704-015-4488-0
6 DalalN, TriggsB. Histograms of oriented gradients for human detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2005, 886–893
doi: 10.1109/cvpr.2005.177
7 VedaldiA, Gulshan V, VarmaM , ZissermanA. Multiple kernels for object detection. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 606–613
doi: 10.1109/iccv.2009.5459183
8 WangX, HanT X, YanS. An HOG-LBP human detector with partial occlusion handling. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 32–39
doi: 10.1109/iccv.2009.5459207
9 FelzenszwalbP, Girshick R, McAllesterD , RamananD. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645
doi: 10.1109/TPAMI.2009.167
10 FergusR, PeronaP, ZissermanA. Object class recognition by unsupervised scale-invariant learning. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2003, 264–271
doi: 10.1109/cvpr.2003.1211479
11 SchnitzspanP, RothS, SchieleB. Automatic discovery of meaningful object parts with latent CRFs. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2010, 121–128
doi: 10.1109/cvpr.2010.5540220
12 YangY, Ramanan D. Articulated pose estimation with flexible mixtures-of-parts. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1385–1392
doi: 10.1109/cvpr.2011.5995741
13 ZhuL, ChenY, YuilleA L, Freeman W T. Latent hierarchical structural learning for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2010, 1062–1069
14 FischlerM, Elschlager R. The representation and matching of pictorial structures. IEEE Transactions on Computers, 1973, 22(1): 67–92
doi: 10.1109/T-C.1973.223602
15 OjalaT, Pietikäinen M, HarwoodD . A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1): 51–59
doi: 10.1016/0031-3203(95)00067-4
16 LoweD G.Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110
doi: 10.1023/B:VISI.0000029664.99615.94
17 MarkE, GoolL, WilliamsC K , WinnJ, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303–338
doi: 10.1007/s11263-009-0275-4
18 ZhangJ, HuangK, YuY, TanT. Boosted local structured HOG-LBP for object localization. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1393–1400
doi: 10.1109/cvpr.2011.5995678
19 Papageorgiou, C, Poggio T. A trainable system for object detection.International Journal of Computer Vision, 2000, 38(1): 15–33
doi: 10.1023/A:1008162616689
20 ViolaP, JonesM J. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137–154
doi: 10.1023/B:VISI.0000013087.49260.fb
21 LeeT S. Image representation using 2D gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959–971
doi: 10.1109/34.541406
22 ShechtmanE, IraniM. Matching local self-similarities across images and videos. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2007, 1–8
doi: 10.1109/cvpr.2007.383198
23 FerrariV, Fevrier L, JurieF , SchmidC. Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1): 36–51
doi: 10.1109/TPAMI.2007.1144
24 BaiX, BaiS, ZhuZ, Latecki L J. 3D shape matching via two layer coding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(12): 2361–2373
doi: 10.1109/TPAMI.2015.2424863
25 LazebnikS, SchmidC, PonceJ. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2006, 2169–2178
doi: 10.1109/cvpr.2006.68
26 SivicJ, Russell B, EfrosA , ZissermanA, Freeman W. Discovering objects and their location in images. In: Proceedings of IEEE International Conference on Computer Vision. 2005, 370–377
doi: 10.1109/iccv.2005.77
27 FelzenszwalbP F, Huttenlocher D P. Distance transforms of sampled functions. Theory of Computing, 2012, 8(1): 415–428
doi: 10.4086/toc.2012.v008a019
28 EsteparR S J. Local Structure tensor for multidimensional signal processing: applications to medical image analysis. Dissertation for the Doctoral Degree. Valladolid:University of Valladolid, 2005
29 MorroneC, BurrD. Feature detection in human vision: a phasedependent energy model. In: Proceedings of the Royal Society of London B: Biological Sciences. 1988, 221–245
30 VenkateshS, OwensR. On the classification of image features. Pattern Recognition Letters, 1990, 11(5): 339–349
doi: 10.1016/0167-8655(90)90043-2
31 GranlundG H, Knutsson H. Signal Processing for Computer Vision. Dordrecht: Kluwer Academic Publishers, 1995
doi: 10.1007/978-1-4757-2377-9
32 OlivaA, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 2001, 42(3): 145–175
doi: 10.1023/A:1011139631724
33 OjalaT, Pietikainen M, MaenpaaT . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971–987
doi: 10.1109/TPAMI.2002.1017623
34 VarmaM, BabuB R. More generality in efficient multiple kernel learning. In: Proceedings of International Conference onMachine Learning. 2009, 1065–1072
doi: 10.1145/1553374.1553510
35 FriedmanJ, HastieT, TibshiraniR . Additive logistic regression: a statistical view of boosting. Annuals of Statistics, 2000, 28(2): 374–376
doi: 10.1214/aos/1016218223
36 HussainS, TriggsB. Feature sets and dimensionality reduction for visual object detection. In: Proceedings of British Machine Vision Conference. 2010
doi: 10.5244/c.24.112
37 FelzenszwalbP F, Girshick R B, McAllesterD . Discriminatively Trained Deformable Part Models, Release 3
38 Felzenszwalb, P F, Girshick R B, McAllesterD . Discriminatively Trained Deformable Part Models, Release 4, 2010
39 GehlerP, Nowozin S. On feature combination for multiclass object classification. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 221–228
doi: 10.1109/iccv.2009.5459169
40 TorralbaA, MurphyK, FreemanW. Sharing features: efficient boosting procedures for multiclass object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2004, 762–769
doi: 10.1109/cvpr.2004.1315241
41 EveringhamM, GoolV L, WilliamsC K I , WinnJ, Zisserman A. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. Lecture Notes in Computer Science, 2003, 2781: 297–304
doi: 10.1007/978-3-540-45243-0_39
42 EveringhamM, GoolV L, WilliamsC K I , WinnJ, Zisserman A. The PASCAL visual object classes challenge 2007 (VOC2007) results. International Journal of Computer Vision, 2010, 88(2): 303–338
doi: 10.1007/s11263-009-0275-4
43 DesaiC, Ramanan D, FowlkesC . Discriminative models for multiclass object layout. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 229–236
44 PedersoliM, Vedaldi A, GonzalezJ . A coarse-to-fine approach for fast deformable object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1353–1360
doi: 10.1109/cvpr.2011.5995668
45 RazaviN, GallJ, GoolV L. Scalable multi-class object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1505–1512
doi: 10.1109/cvpr.2011.5995441
46 DivvalaS K, Zitnick C, KapoorA , BakerS. Detecting objects using unsupervised parts-based attributes. Technical Report CMU-RI-TR-11- 10, Robotics Institute. 2010
47 SchnitzspanP, FritzM, RothS, Schiele B. Discriminative structure learning of hierarchical representations for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2009, 2238–2245
doi: 10.1109/cvpr.2009.5206544
48 MalisiewiczT, GuptaA, EfrosA A. Ensemble of exemplar-svms for object detection and beyond. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 89–96
doi: 10.1109/iccv.2011.6126229
49 DuboutC, Fleuret F. Deformable part models with individual part scaling. In: Proceedings of the British Machine Vision Conference. 2013
doi: 10.5244/c.27.28
50 GidarisS, Komodakis N. Object detection via a multi-region and semantic segmentation-aware cnn model. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 1134–1142
doi: 10.1109/iccv.2015.135
51 GirshickR. Fast r-cnn. 2015, arXiv:1504.08083
52 GirshickR, Donahue J, DarrellT , MalikJ. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2014, 580–587
doi: 10.1109/cvpr.2014.81
53 HeK, ZhangX, RenS, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of European Conference on Computer Vision. 2014, 346–361
doi: 10.1007/978-3-319-10578-9_23
54 LiangX, LiuS, WeiY, Liu L, LinL , YanS. Computational baby learning. 2014, arXiv:1411.2861
55 RenS, HeK, GirshickR, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. 2015, arXiv:1506.01497
56 RenS, HeK, GirshickR, Zhang X, SunJ . Object detection networks on convolutional feature maps. 2015, arXiv:1504.06066
57 RenW, HuangK, Tao D, Tan T. Weakly supervised large scale object localization with multiple instance learning and bag splitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 32(2): 405–416
doi: 10.1109/TPAMI.2015.2456908
58 WanL, EigenD, FergusR. End-to-end integration of a convolutional network, deformable parts model and non-maximum suppression. 2014, arXiv:1411.5309
59 WangC, HuangK, RenW, Zhang J, MaybankS . Large-scale weakly supervised object localization via latent category learning. IEEE Transactions on Image Processing, 2015, 24(4): 1371–1385
doi: 10.1109/TIP.2015.2396361
60 ZhangY, SohnK, VillegasR, Pan G, LeeH . Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. 2015, arXiv:1504.03293
61 ZhuY, Urtasun R, SalakhutdinovR , FidlerS. segDeepM: exploiting segmentation and context in deep neural networks for object detection. 2015, arXiv:1502.04275
62 SongX, WuT, JiaY, Zhu S C. Discriminatively trained and-or tree models for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2013, 23–28
doi: 10.1109/cvpr.2013.421
63 WangX, LinL, HuangL, Yan S. Incorporating structural alternatives and sharing into hierarchy for multiclass object recognition and detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2013, 3334–3341
doi: 10.1109/cvpr.2013.428
64 MarkE, GoolV L, WilliamsC K I , WinnJ, Zisserman A. The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results. Technical Report. 2008
65 ChenY, ZhuL, YuilleA. Active mask hierarchies for object detection. In: Proceedings of European Conference on Computer Vision. 2010, 43–56
doi: 10.1007/978-3-642-15555-0_4
66 OttP, Everingham M. Shared parts for deformable part-based models. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1513–1520
doi: 10.1109/cvpr.2011.5995357
[1] FCS-0632-15530-JGZ_suppl_1 Download
Related articles from Frontiers Journals
[1] Jiuyue HAO, Chao LI, Zhang XIONG, Ejaz HUSSAIN. A temporal-spatial background modeling of dynamic scenes[J]. Front Comput Sci Chin, 2011, 5(3): 290-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed