To evaluate the operation comfortability in the master-slave robotic minimally invasive surgery (MIS), an optimal function was built with two operation comfortability decided indices, i.e., the center distance and volume contact ratio. Two verifying experiments on Phantom Desktop and MicroHand S were conducted. Experimental results show that the operation effect at the optimal relative location is better than that at the random location, which means that the optimal function constructed in this paper is effective in optimizing the operation comfortability.
It is difficult to collect the prior information for small-sample machinery products when their reliability is assessed by using Bayes method. In this study, an improved Bayes method with gradient reliability (GR) results as prior information was proposed to solve the problem. A certain type of heavy NC boring and milling machine was considered as the research subject, and its reliability model was established on the basis of its functional and structural characteristics and working principle. According to the stress-intensity interference theory and the reliability model theory, the GR results of the host machine and its key components were obtained. Then the GR results were deemed as prior information to estimate the probabilistic reliability (PR) of the spindle box, the column and the host machine in the present method. The comparative studies demonstrated that the improved Bayes method was applicable in the reliability assessment of heavy NC machine tools.
The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario (floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity (100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.
Recently, the mode approximation method (MAM) has been adopted to analyze beam elements against blast load. However, in real cases, the main structural element of an underground structure is slab and side wall since they not only support the structure itself but also may sustain external loads from blast, earthquake, and other kinds of impact. In the present study, the MAM is extended from beam to plate elements and the soil-structure interaction is considered and simplified when calculating structural response under blast load. Pressure-impulse diagrams are generated accordingly for further quick damage assessment.
Ultrasound has been widely used in clinics. Cellular responses to low-intensity ultrasound are parameter-dependent. Proper parameter setting is vital to its exact use. To get guidelines for parameter setting, lowintensity ultrasound stimulation on the proliferation and reproductivity of HepG2 and 3T3 cells in vitro was examined with a 1.06 MHz-generator by changing the parameters(including intensity, pulse repetition frequency and duty cycle)in a wide range. Cell viability and reproductivity at different time after sonication were measured by 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)and colony formation assay to indicate timerelated proliferation. The results illustrate that ultrasound irradiation at 0.4–0.8 W/cm2 and high pulse repetition frequency(100 Hz)can facilitate cell proliferation, while above 0.8 W/cm2 would resist it. The extent of resistance closely correlated with duty cycle and pulse repetition frequency. Resistance effect at low pulse repetition frequency(1 Hz)is greater than that at high pulse repetition frequency(100 Hz)and not time-related. The influence of high pulse repetition frequency is time-accumulated, indicating cellular process involved. These findings would provide valuable guidelines for the application of low-intensity ultrasound in stem cell transformation and tissue engineering.
Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on the basis of characteristics of penetration resistance and penetration depth curves, and the deterioration depth of cement soil with the cement ratio of 7%, reached 31.8 mm after 720 d. Results of research indicated that deterioration extended quickly under seawater environment and the deterioration depth increased with the prolonging curing time. In addition, the water pressure could speed up deterioration. With the increase of cement content, the strength of cement soil increased obviously. At the same time, the deterioration depth decreased significantly. The concentration of calcium ion in the cement stabilized soil increased with the increase of depth, while that of magnesium ion gradually decreased. The variations were consistent with energy dispersive spectrometer(EDS)analysis results, and the calcium concentration with depth was in a good consistency with strength distribution at long term. The results showed that the deterioration became more serious with the curing time, and it was related to calcium leaching.
The relation of boron trifluoride concentration with conductivity in boron trifluoride methanol solution (BF3-CH3OH)was power exponent fitted in low concentration range. The kinetics of the reaction between boron trifluoride methanol complex and sodium methoxide to produce enriched 10B methylborate was proposed based on a detailed mechanism study, and was verified by acid-base titration method and conductivity method. It was found that this reaction is first order reaction and the rate constant is 0.022 min−1 at 338 K(65 °C), the activity energy is 65 kJ/mol. In addition, it was found that the conductivity method is more feasible to measure the kinetic curve than acid-base titration method.
Based on the characteristic curve analysis, the method using Δ(K 2) square difference of meter factor at different flow rates was developed to evaluate the performance of turbine flow sensor in this study. Then according to the distribution of entrance velocity, it was supposed that reducing the blade area near the tip could decrease the linearity error of a sensor. Therefore, the influence of different blade shape parameters on the performance of the sensor was investigated by combining computational fluid dynamics(CFD)simulation with experimental test. The experimental results showed that, for the liquid turbine flow sensor with a diameter of 10 mm, the linearity error was smallest, and the performance of sensor was optimal when blade shape parameter equaled 0.25.
Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost, they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat.
In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary’s discriminative power, the reconstruction error, classification error and inhomogeneous representation error are integrated into the objective function. The proposed approach learns a single structured dictionary and a linear classifier jointly. The learned dictionary encourages the samples from the same class to have similar sparse codes, and the samples from different classes to have dissimilar sparse codes. The solution to the objective function is achieved by employing a feature-sign search algorithm and Lagrange dual method. Experimental results on three public databases demonstrate that the proposed approach outperforms several recently proposed dictionary learning techniques for classification.
In this paper, a full-order observer which can be fully decoupled from the unknown inputs as the conventional full-order observer does is designed by using auxiliary outputs, but the requirement of the matching condition is removed. The procedure of calculating the parameter matrices of the full-order observer is also presented. Compared with the existing auxiliary outputs based sliding-mode observers, the designed observer has a simpler design procedure, which is systematic and does not involve solving linear matrix inequalities. The simulation results show that the proposed method is effective.
By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyrolysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51–3.51 times of the characteristic pellet diameter.
Public hospitals are the most important components of health systems and account for a large proportion of health resources in China. However, few researches on the efficiency assessment of public hospitals have been conducted in Tianjin, China. On the basis of the data of annual health service report in 2013 from the Ministry of Health, we measured the relative efficiency of the tertiary general public hospitals in Tianjin and estimated the magnitudes of output increase and/or input reduction by using data envelopment analysis to improve hospital efficiency. The main findings of this study indicate that more than half of the sample hospitals operate at a technical and scale efficiency, and the prevalent scale inefficiency is increasing returns to scale. Moreover, it is a prominent issue that health resource constraint and resource waste coexist. Health policy-makers and hospital administrators would need to address these problems by taking comprehensive measures such as optimizing the allocation of health resources, implementing hierarchical diagnosis and treatment, as well as innovating medical-service operating mechanism of public hospital to improve the people’s wellbeing.