2025-04-22 2012, Volume 18 Issue 2

  • Select all
  • Jijian Lian , Hongyan Ding , Puyang Zhang , Rui Yu

    The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket foundation for offshore wind turbines is set up and the structural characteristics of the arc transition structure of the foundation are analyzed for 40–60 channels (20–30 rows) arranged with prestressing steel strand under the same ultimate load and boundary conditions. The mechanical characteristics of the key parts of the foundation structures are illustrated by the peak of the principal tensile stress, the peak of the principal compressive stress and the distribution areas where the principal tensile stress is larger than 2.00 MPa. It can be concluded that the maximum principal tensile stress of the arc transition decreases with the increasing number of channels, and the amplitude does not change significantly; the maximum principal compressive stress increases with the increasing number of channels and the amplitude changes significantly; however, for the distribution areas where the principal tensile stress is larger than 2.00 MPa, with different channel numbers, the phenomenon is not obvious. Furthermore, the principal tensile stress at the top of the foundation beams fluctuantly increases with the increasing number of channels and for the top cover of the bucket, the principal tensile stress decreases with the increasing number of channels.

  • Dong Xu , A. Munjiza , J. J. R. Williams

    A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.

  • Zhengjian Miao , Mingchao Li , Denghua Zhong

    Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredging volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.

  • Chenglin Shan , Wenfang Liu

    To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corrugated steel webs, the calculation formulas of cross-sectional temperature stress along the span in a simply-supported beam bridge with composite section were derived under the conditions of static equilibrium and deformation compatibility of the beam element. The methods of calculating the maximum temperature stress value were discussed when the connectors are assumed rigid or flexible. Theoretical and numerical results indicate that the method proposed shows better precision for the calculation of temperature self-stress in both the top and the bottom surfaces of the box girder. Moreover, the regularity of temperature stress distribution at different locations along the girder span is that the largest axial force of the top or the bottom plate of the box girder is located in the midspan and spreads decreasingly until zero at both supported ends, and that the greatest longitudinal shear density in steel-concrete interface appears at both supported ends and then reduces gradually to zero in the midspan.

  • Jun Wang , Suiliang Huang , Chiu on Ng

    An iterative method was developed for incorporating the well bore boundary into the finite difference model of water flow in variably saturated porous media. Six cases were presented involving groundwater pumping or injection to demonstrate the advantages of the iterative method over the traditional method. For the iterative method, the total flux gradually approached the well discharge and the flux profile was non-uniform. And the iterative method took into account the variation of well bore water table. Compared to the traditional method, the iterative method can simulate the variably saturated flow caused by pumping or injection more realistically.

  • Limin Zhang , Zhijun Li , Qing Jia , Wenfeng Huang

    Uniaxial compression experiments on horizontal and vertical samples of first-year freshwater ice in a reservoir were conducted at different temperatures and strain rates with an electronic universal machine equipped with low temperature cabinet. The results show that there is no difference between the strengths of two horizontal samples with grain sizes ranging from 1 to 4,mm and 4 to 14,mm, while the strength of the 1–4 mm vertical samples is 1.4 times higher than that of the 4–14 mm vertical samples because of the change of crystal structure. For different loading directions, the strengths of the horizontal samples do not differ from those of the vertical samples with the same grain sizes. The relation among the uniaxial compressive strength, strain rate and temperature was established through data analysis in both the ductile and brittle regions.

  • Linhu Yang , Han Zhu , Danglian Tan

    Finite element models were established to analyze the influence of soft filler on stress concentration for a rectangular plate with an elliptic hole in the center. The influence was quantified by means of stress concentration factor (SCF). Seven shape factors of the elliptic hole and three levels of elasticity modulus of the soft filler were considered. The reduction coefficient and sensitivity index of SCF are the two indicators in evaluating the influence of soft filler. It was found that the reduction coefficient of SCF increases significantly as the shape factor and the elasticity modulus of the filler increase, indicating that soft filler can reduce the concentrated stress effectively, especially when the shape factor is great. Analysis for the sensitivity index of SCF indicates that SCF is more sensitive to materials with small elasticity modulus than to materials with large one.

  • Tao Sun , Kejian Ma , Zhihua Chen , Yue Yin , Jie Liu

    A real case of a steel lattice shell suffering a fire was studied. Based on the theory of field modeling, fire dynamic simulator (FDS) was used to identify the temperature field. The damage mechanism of the structure was determined by FEM analysis. After damage assessment, the shell was repaired with the pipe-encasement method. Finally, field test was employed to check the capacity of the structure after repair. The numerical study results indicate that the damage assessment agrees well with field inspection, verifying the accuracy of fire numerical simulation and FEM analysis. The field test results prove that the pipe-encasement method is secure and reasonable, and the repaired shell is safe.

  • Jinlin Fu , Chunping Hou , Ziyang Zhao

    The all-phase fast Fourier transform (apFFT) is proposed as a digital demodulation algorithm in place of the fast Fourier transform (FFT) for orthogonal frequency division multiplexing (OFDM) based multiple-input multiple-output (MIMO) communication systems. The amplitude spectrum of apFFT-demodulated symbols is the square of that of the FFT, which helps reduce the Gaussian noise to a great extent. Moreover, the phases of apFFT symbols are not affected by the frequency shift between the transmitter and receiver oscillators. These properties particularly appeal to MIMO systems over frequency-selective fading channels. The proposed MIMO-OFDM system employing the apFFT is validated using the spatial channel model (SCM) proposed by the third generation partnership project (3GPP). The simulation results demonstrate that the performance of the proposed system after compensating for the rate loss due to zero bits inserted in the space-frequency OFDM (SF-OFDM) coding scheme, still considerably outperforms the conventional system over 3GPP SCM channels, especially under poor channel conditions.

  • Shuxin Wang , Xuezhong Xiao , Yanhui Wang , Zilong Wang , Baokuo Chen

    Shear probe works under a tough environment where the turbulence signals to be measured are very weak. The measured turbulence signals often contain a large amount of noise. Due to wide frequency band, noise signals cannot be effectively removed by traditional methods based on Fourier transform. In this paper, a wavelet thresholding denoising method is proposed for turbulence signal processing in that wavelet analysis can be used for multi-resolution analysis and can extract local characteristics of the signals in both time and frequency domains. Turbulence signal denoising process is modeled based on the wavelet theory and characteristics of the turbulence signal. The threshold and decomposition level, as well as the procedure of the turbulence signal denoising, are determined using the wavelet thresholding method. The proposed wavelet thresholding method was validated by turbulence signal denoising of the Western Pacific Ocean trial data. The results show that the propsed method can reduce the noise in the measured signals by shear probes, and the frequency spectrums of the denoised signal correspond well to the Nasmyth spectrum.

  • Yutao Men , Shibin Wang , Lin’an Li

    To study the mechanical properties of the film/substrate structure, the finite element code ABAQUS v6.9-1 is adopted to simulate the tensile mechanical behavior of the nanoscale thin film bonded to a substrate. The bifurcation phenomenon of the structure under uniaxial tension is found: the single-neck deformation, the multiple-neck deformation and the uniform deformation. The substrate and the film are regarded as power-hardening materials obeying the J 2 deformation theory. Firstly, the influence of material hardening match on tensile bifurcation mode is analyzed under perfectly well-bonded interface condition. Then, the effects of interfacial stiffness and other superficial defects surrounding the imperfection on bifurcation mode are investigated. It is concluded that under the well-bonded interface condition, if the stress of the substrate is larger than the film, the film will uniformly deform with the substrate; if the stress of the substrate is smaller than the film, the film will form a single neck, except the case that a weakly-hardening film is bonded to a steeply-hardening substrate when multiple necks can be formed. With the decrease of interfacial stiffness, the uniform deformation mode can transform into the multiple-neck deformation mode, and further transform into the single-neck deformation mode. And other defects surrounding the imperfection can influence the wavelength of deformation and neck number.

  • Mingmao Hu , Wansheng Tang , Jianxiong Zhang

    The buyer-supplier relationship plays a great role in most economic systems. The buying firm usually tries to find a new supplier who provides products with satisfying quality and lower price. A broad branch of literature deals with the development of buyer-supplier relationships, but limited research is on the circumstances under which a buyer should terminate such a relationship and switch to a new supplier. In this paper, the incentive compatibility constraint (IC) which induces the entrant supplier to report his true cost is considered, and the participation constraint (PC) which ensures the entrant supplier to get at least reservation profit is taken into account. Then the supplier switching model is set up to minimize the buying firm’s total procurement cost which includes the transfer payment to the incumbent supplier, the payment to the entrant supplier and the switching cost, and the buying firm’s switching cost is considered as a function of the switching quantity. With the theoretical analysis of IC, PC and the proposed model, the optimal supplier switching strategy can be obtained. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the switching strategy.