In-Situ Constructed Multifunctional Interfacial Layer Enable Long-Life and Enhanced Kinetic Anode for High-Performance Aqueous Aluminum Batteries

Mingming Xie , Jinshu Wang , Jinhua Luo , Mingshan Han , Hongruo Ma , Chunhao Sun , Changzhan Li , Wenpeng Cao , Pengcheng Liu , Yuxiang Hu

SmartMat ›› 2025, Vol. 6 ›› Issue (5) : e70039

PDF
SmartMat ›› 2025, Vol. 6 ›› Issue (5) : e70039 DOI: 10.1002/smm2.70039
RESEARCH ARTICLE

In-Situ Constructed Multifunctional Interfacial Layer Enable Long-Life and Enhanced Kinetic Anode for High-Performance Aqueous Aluminum Batteries

Author information +
History +
PDF

Abstract

Rechargeable aqueous aluminum batteries (AABs) with high energy-to-price ratios, abundant element reserves, and intrinsic safety are promising candidates for large-scale energy storage. However, the inherent hydrogen evolution reaction (HER) of aluminum (Al) metal anode with inferior kinetics irreversibly hinders their practical implementation. Herein, we propose, for the first time, a double interfacial layer on the Al anode with drastically reduced HER and accelerated kinetics for AABs. Benefiting from the large band gap of the dual-interfacial layer (integration of Sn and SnS (SS-Al)), the stable voltage window of the electrolyte is remarkably expanded with the potential negatively shifting from −2.34 to −2.98 V at −5.0 mA/cm2. Furthermore, the synergistic effect from both the SnS outer layer (lower desolvation energy barrier) and the Sn interlayer with improved aluminumophilic properties contributes to accelerated kinetics. Consequently, the optimized SS-Al electrode maintains one of the best long-term stability among interface-modified Al anodes (more than 700 h at 0.05 mA/cm2 with a low initial overpotential of 50.0 mV) in symmetric batteries. Practically, the large-size full-cell prototypes deliver high performance over 1,000 cycles at 1.0 A/g. Overall, this novel interface modification strategy provides a promising pathway for the anode development in AABs.

Keywords

Al metal anode / aqueous Al-ion batteries / double interfacial layers / in-situ construction

Cite this article

Download citation ▾
Mingming Xie, Jinshu Wang, Jinhua Luo, Mingshan Han, Hongruo Ma, Chunhao Sun, Changzhan Li, Wenpeng Cao, Pengcheng Liu, Yuxiang Hu. In-Situ Constructed Multifunctional Interfacial Layer Enable Long-Life and Enhanced Kinetic Anode for High-Performance Aqueous Aluminum Batteries. SmartMat, 2025, 6(5): e70039 DOI:10.1002/smm2.70039

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Zhu, T. U. Schülli, X. Yang, et al., “Epitaxial Growth of an Atom-Thin Layer on a LiNi0.5Mn1.5O4 Cathode for Stable Li-Ion Battery Cycling,” Nature Communications 13 (2022): 1565–1574.

[2]

H. Zhao, H. D. Deng, A. E. Cohen, et al., “Learning Heterogeneous Reaction Kinetics From X-Ray Videos Pixel by Pixel,” Nature 621 (2023): 289–294.

[3]

M. Li, C. Wang, K. Davey, et al., “Recent Progress in Electrolyte Design for Advanced Lithium Metal Batteries,” SmartMat 4, no. 5 (2023): e1185.

[4]

J. Pan, Z. Sun, X. Wu, et al., “Mechanically Robust Bismuth-Embedded Carbon Microspheres for Ultrafast Charging and Ultrastable Sodium-Ion Batteries,” Journal of the American Chemical Society 147, no. 4 (2025): 3047–3061.

[5]

E. Faegh, B. Ng, D. Hayman, and W. E. Mustain, “Practical Assessment of the Performance of Aluminium Battery Technologies,” Nature Energy 6 (2021): 21–29.

[6]

L. Yuan, J. Hao, B. Johannessen, et al., “Hybrid Working Mechanism Enables Highly Reversible Zn Electrodes,” eScience 3, no. 2 (2023): 100096.

[7]

S. Zhou, Z. Sun, Z. Zhuang, et al., “Facile and Scalable Synthesis of Bismuth Oxyhalide Nanosheets Anodes for Fast and Durable Sodium-Ion Storage,” Science China Materials 68 (2025): 868–878.

[8]

Y. Liang, H. Dong, D. Aurbach, and Y. Yao, “Current Status and Future Directions of Multivalent Metal-Ion Batteries,” Nature Energy 5 (2020): 646–656.

[9]

C. Lv, C. Lin, X. S. Zhao, et al., “Enhancing Low-Temperature Electrochemical Kinetics and High-Temperature Cycling Stability by Decreasing Ionic Packing Factor,” eScience 3, no. 6 (2023): 100179.

[10]

Y. Wu, F. Ma, Z. Zhang, et al., “Amorphous Lithiophilic Cobalt-Boride@rGO Interlayer for Dendrite-Free and Highly Stable Lithium Metal Batteries,” EcoEnergy 2, no. 2 (2024): 299–310.

[11]

X. Zhang, C. Li, G. Qu, et al., “Highly Robust Zinc Metal Anode Directed by Organic-Inorganic Synergistic Interfaces for Wearable Aqueous Zinc Battery,” SmartMat 5, no. 1 (2024): e1212.

[12]

X. Cai, X. Wang, Z. Bie, et al., “A Layer-By-Layer Self-Assembled Bio-Macromolecule Film for Stable Zinc Anode,” Advanced Materials 36, no. 3 (2024): 2306734.

[13]

Z. Chen, X. Wu, Z. Sun, et al., “Enhanced Fast-Charging and Longevity in Sodium-Ion Batteries Through Nitrogen-Doped Carbon Frameworks Encasing Flower-Like Bismuth Microspheres,” Advanced Energy Materials 14, no. 22 (2024): 2400132.

[14]

S. Wu, Z. Hu, P. He, L. Ren, J. Huang, and J. Luo, “Crystallographic Engineering of Zn Anodes for Aqueous Batteries,” eScience 3, no. 3 (2023): 100120.

[15]

Q. Zhao, M. J. Zachman, W. I. Al Sadat, J. Zheng, L. F. Kourkoutis, and L. Archer, “Solid Electrolyte Interphases for High-Energy Aqueous Aluminum Electrochemical Cells,” Science Advances 4, no. 11 (2018): eaau8131.

[16]

J. Ge, L. Fan, A. M. Rao, J. Zhou, and B. Lu, “Surface-Substituted Prussian Blue Analogue Cathode for Sustainable Potassium-Ion Batteries,” Nature Sustainability 5 (2022): 225–234.

[17]

M. Pan, M. Shao, and Z. Jin, “Development of Organic Redox-Active Materials in Aqueous Flow Batteries: Current Strategies and Future Perspectives,” SmartMat 4, no. 4 (2023): e1198.

[18]

R. Tao, H. Fu, C. Gao, et al., “Tailoring Interface to Boost the High-Performance Aqueous Al Ion Batteries,” Advanced Functional Materials 33, no. 48 (2023): 2303072.

[19]

H. Zhang, X. Liu, H. Li, I. Hasa, and S. Passerini, “Challenges and Strategies for High-Energy Aqueous Electrolyte Rechargeable Batteries,” Angewandte Chemie International Edition 60, no. 2 (2021): 598–616.

[20]

H. Wu, W. Yan, Y. Xing, et al., “Tailoring the Interfacial Electric Field Using Silicon Nanoparticles for Stable Zinc-Ion Batteries,” Advanced Functional Materials 34, no. 5 (2023; 34(5)): 2213882.

[21]

Y. Wang, J. Song, and W. Y. Wong, “Constructing 2D Sandwich-Like MOF/MXene Heterostructures for Durable and Fast Aqueous Zinc-Ion Batteries,” Angewandte Chemie 135, no. 8 (2023): e202218343.

[22]

C. Yan, C. Lv, L. Wang, et al., “Architecting a Stable High-Energy Aqueous Al-Ion Battery,” Journal of the American Chemical Society 142, no. 36 (2020): 15295–15304.

[23]

R. Bai, J. Yang, G. Li, J. Luo, and W. Tang, “Rechargeable Aqueous Aluminum-FeFe(CN)6 Battery With Artificial Interphase Through Deep Eutectic Solution,” Energy Storage Materials 41 (2021): 41–50.

[24]

C. Yan, C. Lv, B. E. Jia, et al., “Reversible Al Metal Anodes Enabled by Amorphization for Aqueous Aluminum Batteries,” Journal of the American Chemical Society 144, no. 25 (2022): 11444–11455.

[25]

J. Su, M. Zhang, H. Tian, et al., “Synergistic π-Conjugation Organic Cathode for Ultra-Stable Aqueous Aluminum Batteries,” Small 20, no. 29 (2024): 2312086.

[26]

X. Yang, H. Gu, L. Chai, et al., “Construction of V2O5@MXene Cathodes Toward a High Specific Capacity Aqueous Aluminum-Ion Battery,” Nano Letters 24, no. 28 (2024): 8542–8549.

[27]

K. Du, Y. Liu, Y. Zhao, et al., “High-Entropy Prussian Blue Analogues Enable Lattice Respiration for Ultrastable Aqueous Aluminum-Ion Batteries,” Advanced Materials 36, no. 30 (2024): 2404172.

[28]

H. Bi, X. Wang, H. Liu, et al., “A Universal Approach to Aqueous Energy Storage via Ultralow-Cost Electrolyte With Super-Concentrated Sugar as Hydrogen-Bond-Regulated Solute,” Advanced Materials 32, no. 16 (2020): 2000074.

[29]

Q. Ran, H. Shi, H. Meng, et al., “Aluminum-Copper Alloy Anode Materials for High-Energy Aqueous Aluminum Batteries,” Nature Communications 13 (2022): 576–584.

[30]

H. Wang, H. Li, Y. Tang, et al., “Stabilizing Zn Anode Interface by Simultaneously Manipulating the Thermodynamics of Zn Nucleation and Overpotential of Hydrogen Evolution,” Advanced Functional Materials 32 (2022): 2207898.

[31]

M. Liu, W. Yuan, G. Ma, et al., “In-Situ Integration of a Hydrophobic and Fast-Zn2+-Conductive Inorganic Interphase to Stabilize Zn Metal Anodes,” Angewandte Chemie 135, no. 27 (2023): e202304444.

[32]

Q. Ran, S. Zeng, M. Zhu, et al., “Uniformly MXene-Grafted Eutectic Aluminum-Aerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum-Ion Battery,” Advanced Functional Materials 33, no. 1 (2023): 2211271.

[33]

Q. Hao, F. Chen, X. Chen, Q. Meng, Y. Qi, and N. Li, “Bi-Functional Poly(Vinylidene Difluoride) Coated Al Anodes for Highly Rechargeable Aqueous Al-Ion Batteries,” Electrochimica Acta 421, no. 20 (2022): 140495.

[34]

S. Wang, Z. Yang, B. Chen, et al., “A Highly Reversible, Dendrite-Free Zinc Metal Anodes Enabled by a Dual-Layered Interface,” Energy Storage Materials 47 (2022): 491–499.

[35]

G. Liang, J. Zhu, B. Yan, et al., “Gradient Fluorinated Alloy to Enable Highly Reversible Zn-Metal Anode Chemistry,” Energy & Environmental Science 15 (2022): 1086–1096.

[36]

C. Xie, F. Wu, Z. Lv, et al., “A Mixed Ionic/Electronic Conductor Interphase Enhances Interfacial Stability for Aluminium-Metal Anode,” Advanced Functional Materials 34, no. 48 (2024): 2408296.

[37]

T. Xiao, L. Liu, H. Liu, et al., “Highly Rechargeable Aqueous Sn-Metal-Based Hybrid-Ion Batteries,” Joule 9, no. 3 (2025): 101820.

[38]

M. Chen, P. Xiao, K. Yang, et al., “Sn Anodes Protected by Intermetallic FeSn2 Layers for Long-Lifespan Sodium-Ion Batteries With High Initial Coulombic Efficiency of 93.8%,” Angewandte Chemie International Edition 62, no. 16 (2023): e202219177.

[39]

X. Xiong, C. Yang, G. Wang, et al., “SnS Nanoparticles Electrostatically Anchored on Three-Dimensional N-Doped Graphene as an Active and Durable Anode for Sodium-Ion Batteries,” Energy & Environmental Science 10 (2017): 1757–1763.

[40]

Q. Cao, Y. Gao, J. Pu, et al., “Gradient Design of Imprinted Anode for Stable Zn-Ion Batteries,” Nature Communications 14 (2023): 641–651.

[41]

M. Zhou, Y. Chen, G. Fang, and S. Liang, “Electrolyte/Electrode Interfacial Electrochemical Behaviors and Optimization Strategies in Aqueous Zinc-Ion Batteries,” Energy Storage Materials 45 (2022): 618–646.

[42]

Y. Zhong, M. Liu, Y. Lu, et al., “An In-Depth Study of Heterometallic Interface Chemistry: Bi-Component Layer Enables Highly Reversible and Stable Zn Metal Anodes,” Energy Storage Materials 55 (2023): 575–586.

[43]

J. Duan, J. Dong, R. Cao, et al., “Regulated Zn Plating and Stripping by a Multifunctional Polymer-Alloy Interphase Layer for Stable Zn Metal Anode,” Advanced Science 10, no. 59 (2023): 2303343.

[44]

H. Dong, X. Hu, R. Liu, et al., “Bio-Inspired Polyanionic Electrolytes for Highly Stable Zinc-Ion Batteries,” Angewandte Chemie 135, no. 41 (2023): e202311268.

[45]

Y. Wang, W. Chen, F. Wang, et al., “Covalent Anchoring of Mechanical Polymer for Highly Stable Zinc Metal Batteries,” Advanced Materials 37, no. 15 (2025): 2500596.

[46]

C. Zhao, Y. Du, Z. Guo, et al., “Missing-Linker Bifunctional MIL-125(Ti)-Zn Interface Modulation Layer to Simultaneously Suppress Hydrogen Evolution Reaction and Dendrites for Zn Metal Anodes,” Energy Storage Materials 53 (2022): 322–330.

[47]

F. Tao, K. Feng, Y. Liu, et al., “Suppressing Interfacial Side Reactions of Zinc Metal Anode via Isolation Effect Toward High-Performance Aqueous Zinc-Ion Batteries,” Nano Research 16 (2023): 6789–6797.

[48]

R. Wang, S. Xin, D. Chao, et al., “Fast and Regulated Zinc Deposition in a Semiconductor Substrate Toward High-Performance Aqueous Rechargeable Batteries,” Advanced Functional Materials 32, no. 51 (2022): 2207751.

RIGHTS & PERMISSIONS

2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/