Porous Electrochromic Structures: A Review

Xueying Fan , Can Zhang , Shen Wang , Siqi Ma , Qianfeng Gu , Yao Li , Zhongqiu Tong , Hongbo Xu , Qichun Zhang

SmartMat ›› 2025, Vol. 6 ›› Issue (5) : e70036

PDF
SmartMat ›› 2025, Vol. 6 ›› Issue (5) : e70036 DOI: 10.1002/smm2.70036
REVIEW

Porous Electrochromic Structures: A Review

Author information +
History +
PDF

Abstract

Electrochromic technology has gained significant attention due to its wide applications in smart windows, adjustable optoelectronic devices, and energy storage systems. The strategic incorporation of porous architectures has emerged as a pivotal approach for enhancing electrochromic material performance. This approach effectively addresses critical challenges, including volume expansion mitigation, stability enhancement, and ion transport efficiency optimization, thereby improving both electrical conductivity and response kinetics. This review systematically examines principal strategies and synthesis methodologies for developing porous electrochromic materials. First, nanoparticle-stacked particulate films demonstrate enhanced electrolyte permeability through their inherent porous configurations, significantly increasing accessible reactive sites. Second, template-assisted approaches utilizing hard templates (e.g., polystyrene [PS] nanospheres, silica nanospheres) and soft templates (e.g., cetyltrimethylammonium bromide [CTAB], polyethylene glycol [PEG]) enable precise pore size regulation while effectively mitigating structural deformation. Third, coordination modulation strategies involving the length adjustment of organic ligands and the functionalization of metal/organic centers facilitate the fabrication of nanocrystalline mesoporous materials with uniform pore distribution, offering tailored electrochromic optimization pathways. Through in-depth analysis of these porous design strategies, this review elucidates the critical structure-performance relationships between porous architectures and electrochromic behaviors. The findings provide valuable guidance for the rational synthesis of high-performance electrochromic materials, thereby advancing the development of next-generation electrochromic technologies.

Keywords

covalent-organic frameworks / electrochromism / ion transition / metal-organic frameworks / porous materials

Cite this article

Download citation ▾
Xueying Fan, Can Zhang, Shen Wang, Siqi Ma, Qianfeng Gu, Yao Li, Zhongqiu Tong, Hongbo Xu, Qichun Zhang. Porous Electrochromic Structures: A Review. SmartMat, 2025, 6(5): e70036 DOI:10.1002/smm2.70036

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Yang, Y.-M. Zhang, Y. Cai, B. Yang, C. Gu, and S. X. Zhang, “Advances in Nanomaterials for Electrochromic Devices,” Chemical Society Reviews 49, no. 23 (2020): 8687–8720.

[2]

S.-D. Han, J.-X. Hu, and G.-M. Wang, “Recent Advances in Crystalline Hybrid Photochromic Materials Driven by Electron Transfer,” Coordination Chemistry Reviews 452 (2022): 214304.

[3]

M. Aburas, V. Soebarto, T. Williamson, R. Liang, H. Ebendorff-Heidepriem, and Y. Wu, “Thermochromic Smart Window Technologies for Building Application: A Review,” Applied Energy 255 (2019): 113522.

[4]

J. R. Platt, “Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field,” Journal of Chemical Physics 34, no. 3 (1961): 862–863.

[5]

H. Ling, J. Wu, F. Su, Y. Tian, and Y. J. Liu, “Automatic Light-Adjusting Electrochromic Device Powered by Perovskite Solar Cell,” Nature Communications 12 (2021): 1010.

[6]

R. Li, K. Li, G. Wang, et al., “Ion-Transport Design for High-Performance Na+-Based Electrochromics,” ACS Nano 12, no. 4 (2018): 3759–3768.

[7]

C. Gu, A. B. Jia, Y. M. Zhang, and S. X. Zhang, “Emerging Electrochromic Materials and Devices for Future Displays,” Chemical Reviews 122, no. 18 (2022): 14679–14721.

[8]

Y. Jia, D. Liu, D. Chen, et al., “Transparent Dynamic Infrared Emissivity Regulators,” Nature Communications 14 (2023): 5087.

[9]

X. Ren, S. Hu, Z. Jia, et al., “A Self-Packageable and Tailorable Electrochromic Device Based on the ‘Blood-Coagulation’ Mechanism,” Advanced Functional Materials 32, no. 39 (2022): 2206127.

[10]

H. Fan, K. Li, X. Liu, et al., “Continuously Processed, Long Electrochromic Fibers With Multi-Environmental Stability,” ACS Applied Materials & Interfaces 12, no. 25 (2020): 28451–28460.

[11]

H. Park, D. S. Kim, S. Y. Hong, et al., “A Skin-Integrated Transparent and Stretchable Strain Sensor With Interactive Color-Changing Electrochromic Displays,” Nanoscale 9, no. 22 (2017): 7631–7640.

[12]

H. Li, C. J. Firby, A. Y. Elezzabi, et al., “Rechargeable Aqueous Hybrid Zn2+/Al3+ Electrochromic Batteries,” Joule 3, no. 9 (2019): 2268–2278.

[13]

D. Capoferri, R. Álvarez-Diduk, M. Del Carlo, D. Compagnone, and A. Merkoçi, “Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections,” Analytical Chemistry 90, no. 9 (2018): 5850–5856.

[14]

G. Cai, J. Wang, and P. S. Lee, “Next-Generation Multifunctional Electrochromic Devices,” Accounts of Chemical Research 49, no. 8 (2016): 1469–1476.

[15]

G. Nuroldayeva and M. P. Balanay, “Flexing the Spectrum: Advancements and Prospects of Flexible Electrochromic Materials,” Polymers 15, no. 13 (2023): 2924.

[16]

E. Ando, K. Kawakami, K. Matsuhiro, and Y. Masuda, “Performance of A-WO3/LiClO4-PC Electrochromic Displays,” Displays 6, no. 1 (1985): 3–10.

[17]

Z. Wang, X. Wang, S. Cong, F. Geng, and Z. Zhao, “Fusing Electrochromic Technology With Other Advanced Technologies: A New Roadmap for Future Development,” Materials Science and Engineering: R: Reports 140 (2020): 100524.

[18]

C. Granqvist, M. Arvizu, L. B. Pehlivan,, et al., “Electrochromic Materials and Devices for Energy Efficiency and Human Comfort in Buildings: A Critical Review,” Electrochimica Acta 259 no.1 (2018): 1170–1182.

[19]

J. Rivnay, S. Inal, B. A. Collins, et al., “Structural Control of Mixed Ionic and Electronic Transport in Conducting Polymers,” Nature Communications 7, no. 1 (2016): 11287.

[20]

Q. Zhou, P. Shao, R. Zhang, et al., “Photo-Electrochemical Synergistically Induced Ion Detrapping for Electrochromic Device Rejuvenation,” Matter 8, no. 1 (2025): 101877.

[21]

B. Tao, M. Ouyang, Q. Hua, et al., “High Electrochromic Performance of Perylene Bisimide/ZnO Hybrid Films: An Efficient, Energy-Saving, and Green Route,” ACS Applied Materials & Interfaces 15, no. 10 (2023): 13730–13739.

[22]

S. Park, H. Cho, A. B. Faheem, et al., “Tailor-Made Anodically Coloring Organic–Inorganic Hybrid Electrochromic Materials Derived From Phenothiazine Cores,” Electrochimica Acta 507, no. 10 (2024): 145156.

[23]

Y. Wu, Y. K. Mishra, and J. Xiong, “Electrochromic Materials: Scope for the Cyclic Decay Mechanisms and Performance Stability Optimisation Strategies,” Coloration Technology 140, no. 2 (2024): 208–229.

[24]

R. Zhang, Q. Zhou, S. Huang, Y. Zhang, and R. T. Wen, “Capturing Ion Trapping and Detrapping Dynamics in Electrochromic Thin Films,” Nature Communications 15, no. 1 (2024): 2294.

[25]

R. T. Wen, M. A. Arvizu, M. Morales-Luna, C. G. Granqvist, and G. A. Niklasson, “Ion Trapping and Detrapping in Amorphous Tungsten Oxide Thin Films Observed by Real-Time Electro-Optical Monitoring,” Chemistry of Materials 28, no. 13 (2016): 4670–4676.

[26]

S. A. Guo, Y. K. Wu, J. Ye, et al., “A Site-Resolved Two-Dimensional Quantum Simulator With Hundreds of Trapped Ions,” Nature 630 (2024): 613–618.

[27]

X. Lv, J. Li, L. Zhang, et al., “High-Performance Electrochromic Supercapacitor Based on Quinacridone Dye With Good Specific Capacitance, Fast Switching Time and Robust Stability,” Chemical Engineering Journal 431, no. 4 (2022): 133733.

[28]

M. Chen, J. Deng, H. Zhang, et al., “Advanced Dual-Band Smart Windows: Inorganic All-Solid-State Electrochromic Devices for Selective Visible and Near-Infrared Modulation,” Advanced Functional Materials 35, no. 3 (2025): 2413659.

[29]

L. Wen, R. Xu, Y. Mi, and Y. Lei, “Multiple Nanostructures Based on Anodized Aluminium Oxide Templates,” Nature Nanotechnology 12 (2017): 244–250.

[30]

K. Tang, Y. Zhang, Y. Shi, et al., “Crystalline WO3 Nanowires Array Sheathed With Sputtered Amorphous Shells for Enhanced Electrochromic Performance,” Applied Surface Science 498, no. 31 (2019): 143796.

[31]

M. Wang, Y. Chen, B. Gao, and H. Lei, “Electrochromic Properties of Nanostructured WO3 Thin Films Deposited by Glancing-Angle Magnetron Sputtering,” Advanced Electronic Materials 5, no. 5 (2019): 1800713.

[32]

A. Kumar, J. Li, A. K. Inge, and S. Ott, “Electrochromism in Isoreticular Metal–Organic Framework Thin Films With Record High Coloration Efficiency,” ACS Nano 17, no. 21 (2023): 21595–21603.

[33]

O. Shekhah, J. Liu, R. A. Fischer, and C. Wöll, “MOF Thin Films: Existing and Future Applications,” Chemical Society Reviews 40, no. 2 (2011): 1081.

[34]

A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, and O. M. Yaghi, “Porous, Crystalline, Covalent Organic Frameworks,” Science 310, no. 5751 (2005): 1166–1170.

[35]

H.-J. Nie and Y.-W. Zhong, “Near-Infrared Electrochromism in Electropolymerized Metallopolymeric Films of a Phen-1,4-Diyl-Bridged Diruthenium Complex,” Inorganic Chemistry 53, no. 20 (2014): 11316–11322.

[36]

Q. Yin, E. V. Alexandrov, D. H. Si, et al., “Metallization-Prompted Robust Porphyrin-Based Hydrogen-Bonded Organic Frameworks for Photocatalytic CO2 Reduction,” Angewandte Chemie International Edition 61, no. 6 (2022): e202115854.

[37]

B. Wang, X. L. Lv, J. Lv, et al., “A Novel Mesoporous Hydrogen-Bonded Organic Framework With High Porosity and Stability,” Chemical Communications 56, no. 1 (2020): 66–69.

[38]

J. K. El-Demellawi, S. Lopatin, J. Yin, O. F. Mohammed, and H. N. Alshareef, “Tunable Multipolar Surface Plasmons in 2D Ti3C2Tx MXene Flakes,” ACS Nano 12, no. 8 (2018): 8485–8493.

[39]

J. Jiang, L. Qin, J. Halim, P. Persson, L. Hou, and J. Rosen, “Colorless-to-Colorful Switching of Electrochromic MXene by Reversible Ion Insertion,” Nano Research 15, no. 4 (2022): 3587–3593.

[40]

W. Wu, H. Fang, H. Ma, L. Wu, W. Zhang, and H. Wang, “Boosting Transport Kinetics of Ions and Electrons Simultaneously by Ti3C2Tx (MXene) Addition for Enhanced Electrochromic Performance,” Nano-Micro Letters 13, no. 1 (2020): 20.

[41]

J. W. Kim and J. M. Myoung, “Flexible and Transparent Electrochromic Displays With Simultaneously Implementable Subpixelated Ion Gel-Based Viologens by Multiple Patterning,” Advanced Functional Materials 29, no. 13 (2019): 1808911.

[42]

Y. Huang, S. Wu, S. Zhao, et al., “A Novel Liquid Flow Electrochromic Smart Window for All-Year-Round Dynamic Photothermal Regulation,” Energy & Environmental Science no 4 (2025): 1824–1834.

[43]

J. Zhong, B. Huang, J. Song, et al., “Stable WO3 Electrochromic System Based on NH4+ Hydrogen Bond Chemistry,” Chemical Engineering Journal 480 (2024): 148098.

[44]

C. W. Kung, T. C. Wang, J. E. Mondloch, et al., “Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism,” Chemistry of Materials 25, no. 24 (2013): 5012–5017.

[45]

X. Fan, S. Wang, M. Pan, H. Pang, and H. Xu, “Biphenyl Dicarboxylic-Based Ni-IRMOF-74 Film for Fast-Switching and High-Stability Electrochromism,” ACS Energy Letters 9, no. 6 (2024): 2840–2847.

[46]

R. T. Wen, C. G. Granqvist, and G. A. Niklasson, “Eliminating Degradation and Uncovering Ion-Trapping Dynamics in Electrochromic WO3 Thin Films,” Nature Materials 14, no. 10 (2015): 996–1001.

[47]

W. Wu, L. Wu, H. Ma, L. Wu, H. Wang, and H. Fang, “Electrochromic Devices Constructed With Water-in-Salt Electrolyte Enabling Energy-Saving and Prolonged Optical Memory Effect,” Chemical Engineering Journal 446 (2022): 137122.

[48]

Q. Wang, H. Li, R. Zhang, et al., “Oxygen Vacancies Boosted Fast Mg2+ Migration in Solids at Room Temperature,” Energy Storage Materials 51 (2022): 630–637.

[49]

X. Chen, C. Zhao, K. Yang, et al., “Conducting Polymers Meet Lithium–Sulfur Batteries: Progress, Challenges, and Perspectives,” Energy & Environmental Materials 6, no. 5 (2023): e12483.

[50]

M. Mao, S. Wang, Z. Lin, et al., “Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries,” Advanced Materials 33, no. 8 (2021): 2005781.

[51]

J. Rao, L. Yang, X. Li, et al., “Sterically-Locked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence,” Angewandte Chemie International Edition 60, no. 17 (2021): 9635–9641.

[52]

Y. Chang, L. Wang, R. Li, et al., “First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins,” Advanced Materials 33, no. 7 (2021): 2003464.

[53]

Z. Li, J. Fu, X. Zhou, et al., “Ionic Conduction in Polymer-Based Solid Electrolytes,” Advanced Science 10, no. 10 (2023): 2201718.

[54]

J. Zheng, R. Garcia-Mendez, and L. A. Archer, “Engineering Multiscale Coupled Electron/Ion Transport in Battery Electrodes,” ACS Nano 15, no. 12 (2021): 19014–19025.

[55]

J. Ma, Z. Wang, B. Niu, W. Wang, and H. Wang, “Optically Decoupling Electrochromic Dynamics and In Situ Morphological Evolution of a Single Soft Polyaniline Nanoentity,” Nano Letters 25, no. 3 (2025): 951–956.

[56]

Z. Shao, A. Huang, C. Ming, et al., “All-Solid-State Proton-Based Tandem Structures for Fast-Switching Electrochromic Devices,” Nature Electronics 5, no. 1 (2022): 45–52.

[57]

C. Zhu, R. E. Usiskin, Y. Yu, and J. Maier, “The Nanoscale Circuitry of Battery Electrodes,” Science 358, no. 6369 (2017): eaao2808.

[58]

P. Zuo, C. Ye, Z. Jiao, et al., “Near-Frictionless Ion Transport Within Triazine Framework Membranes,” Nature 617, no. 7960 (2023): 299–305.

[59]

Y. Yu, X. Zhu, S. Jiang, et al., “Cephalopods' Skin-Inspired Design of Nanoscale Electronic Transport Layers for Adaptive Electrochromic Tuning,” Advanced Science 11, no. 39 (2024): 2405444.

[60]

S. Wang, H. Xu, T. Hao, et al., “3D Conifer-Like WO3 Branched Nanowire Arrays Electrode for Boosting Electrochromic-Supercapacitor Performance,” Applied Surface Science 577 (2022): 151889.

[61]

C. Bian, J. Wang, H. Liu, et al., “Complementary Multicolor Electrochromic Devices With Excellent Stability Based on Porous Tin Oxide Nanosheet Scaffold,” Nano Research 17, no. 4 (2024): 3035–3042.

[62]

D. Gao, S. Zhao, Y. Huang, et al., “A Facile Electrochemical Strategy for Achieving a High-Conductivity Polypyrrole Derivative With Intrinsic Metallic Transport as a High-Performance Electrochromic Conducting Polymer Film,” Nano Letters 24, no. 46 (2024): 14854–14861.

[63]

H. Zhao, X. Yu, S. Yu, et al., “Review on Amorphous WO3 for Electrochromic Devices: Structure, Optimization Strategies and Applications,” Materials Today Chemistry 43 (2025): 102513.

[64]

C. Tan, X. Cao, X.-J. Wu, et al., “Recent Advances in Ultrathin Two-Dimensional Nanomaterials,” Chemical Reviews 117, no. 9 (2017): 6225–6331.

[65]

B. W. Faughnan, R. S. Crandall, and M. A. Lampert, “Model for the Bleaching of WO3 Electrochromic Films by an Electric Field,” Applied Physics Letters 27, no. 5 (1975): 275–277.

[66]

O. F. Schirmer, V. Wittwer, G. Baur, and G. Brandt, “Dependence of WO3 Electrochromic Absorption on Crystallinity,” Journal of the Electrochemical Society 124, no. 5 (1977): 749–753.

[67]

S. K. Deb, “Optical and Photoelectric Properties and Colour Centres in Thin Films of Tungsten Oxide,” Philosophical Magazine 27, no. 4 (1973): 801–822.

[68]

K. Naveen Kumar, G. Nithya, H. Shaik, et al., “Simulation and Fabrication of Tungsten Oxide Thin Films for Electrochromic Applications,” Physica B: Condensed Matter 640 (2022): 413932.

[69]

X. Wang, B. Liu, J. Tang, et al., “Preparation of Ni(OH)2/TiO2 Porous Film With Novel Structure and Electrochromic Property,” Solar Energy Materials and Solar Cells 191 (2019): 108–116.

[70]

J. He, L. You, D. T. Tran, and J. Mei, “Low-Temperature Thermally Annealed Niobium Oxide Thin Films as a Minimally Color Changing Ion Storage Layer in Solution-Processed Polymer Electrochromic Devices,” ACS Applied Materials & Interfaces 11, no. 4 (2019): 4169–4177.

[71]

Q. Han, R. Wang, H. Zhu, M. Wan, and Y. Mai, “The Preparation and Investigation of All Thin Film Electrochromic Devices Based on Reactively Sputtered MoO3 Thin Films,” Materials Science in Semiconductor Processing 126 (2021): 105686.

[72]

G. Gao, X. Tao, Y. He, et al., “Electrochromic Composites Films Composed of MoO3 Doped by Tungsten Atoms With Remarkable Response Speed and Color Rendering Efficiency via Electrochemical Deposition,” Applied Surface Science 640 (2023): 158346.

[73]

Z. Li, Z. Liu, L. Zhao, Y. Chen, J. Li, and W. Yan, “Efficient Electrochromic Efficiency and Stability of Amorphous/Crystalline Tungsten Oxide Film,” Journal of Alloys and Compounds 930 (2023): 167405.

[74]

D. Qiu, H. Ji, X. Zhang, et al., “Electrochromism of Nanocrystal-in-Glass Tungsten Oxide Thin Films under Various Conduction Cations,” Inorganic Chemistry 58, no. 3 (2019): 2089–2098.

[75]

Y. Shi, M. Sun, Y. Zhang, et al., “Structure Modulated Amorphous/Crystalline WO3 Nanoporous Arrays With Superior Electrochromic Energy Storage Performance,” Solar Energy Materials and Solar Cells 212 (2020): 110579.

[76]

J. Wang, Y. Zhou, Y. Lv, J. Feng, Z. Wang, and G. Cai, “A Reversible MnO2 Deposition-Enabled Multicolor Electrochromic Device With Efficient Tunability of Ultraviolet–Visible Light,” Small 20, no. 21 (2024): 2310229.

[77]

H. Zhao, Y. Meng, H. Yu, Z. Li, and Z. Liu, “1D/2D Co3O4/NiO Composite Film for High Electrochromic Performance,” Ceramics International 48, no. 21 (2022): 32205–32212.

[78]

S. Bai, M. Cao, Y. Jin, et al., “Low-Temperature Combustion-Synthesized Nickel Oxide Thin Films as Hole-Transport Interlayers for Solution-Processed Optoelectronic Devices,” Advanced Energy Materials 4, no. 6 (2014): 1301460.

[79]

Q. Liu, Q. Chen, Q. Zhang, et al., “In Situ Electrochromic Efficiency of a Nickel Oxide Thin Film: Origin of Electrochemical Process and Electrochromic Degradation,” Journal of Materials Chemistry C 6, no. 3 (2018): 646–653.

[80]

X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, “Morphology Effect on the Electrochromic and Electrochemical Performances of NiO Thin Films,” Electrochimica Acta 53, no. 18 (2008): 5721–5724.

[81]

W. Sun, N. Govindarajan, A. Prajapati, et al., “Insights Into the Electrochemical Oxidation and Reduction of Nickel Oxide Surfaces,” ACS Applied Materials & Interfaces 17, no. 1 (2025): 2365–2375.

[82]

Z. Xie, Q. Liu, Q. Zhang, B. Lu, J. Zhai, and X. Diao, “Fast-Switching Quasi-Solid State Electrochromic Full Device Based on Mesoporous WO3 and NiO Thin Films,” Solar Energy Materials and Solar Cells 200 (2019): 110017.

[83]

Y. H. Zhu, Q. Zhang, X. Yang, et al., “Reconstructed Orthorhombic V2O5 Polyhedra for Fast Ion Diffusion In K-Ion Batteries,” Chem 5, no. 1 (2019): 168–179.

[84]

I. Mjejri, M. Duttine, S. Buffière, C. Labrugère-Sarroste, and A. Rougier, “From the Irreversible Transformation of VO2 to V2O5 Electrochromic Films,” Inorganic Chemistry 61, no. 46 (2022): 18496–18503.

[85]

H. C. Chen, Y. H. Yen, Y. X. Zhuang, and T. F. Liu, “Electrochromic Performance and Potential Stability of Sputtered V2O5 Film for a Complementary Inorganic All-Solid-State Electrochromic Device,” Journal of Electroanalytical Chemistry 944 (2023): 117628.

[86]

H. Sun, W. Wang, Y. Xiong, Z. Jian, and W. Chen, “Boosting the Electrochromic Properties by Large V2O5 Nanobelts Interlayer Spacing Tuned via PEDOT,” Chinese Chemical Letters 35, no. 9 (2024): 109213.

[87]

D. Yu, W. Wei, M. Wei, et al., “Research on the Electrochromic Properties of MXene Intercalated Vanadium Pentoxide Xerogel Films,” Journal of Solid State Electrochemistry 26, no. 6–7 (2022): 1399–1407.

[88]

H. Li, H. Liang, R. Li, et al., “Ultrafast, Stable Electrochromics Enabled by Hierarchical Assembly of V2O5@C Microrod Network,” ACS Applied Materials & Interfaces 14, no. 42 (2022): 48037–48044.

[89]

M. Qiu, F. Zhou, P. Sun, X. Chen, C. Zhao, and W. Mai, “Unveiling the Electrochromic Mechanism of Prussian Blue by Electronic Transition Analysis,” Nano Energy 78 (2020): 105148.

[90]

X. Sun, Q. Li, N. Liu, et al., “Interface Engineering of SnO2 to Enhance the Cycle Stability of WO3 and Prussian Blue for Complementary Electrochromic Smart Windows and Energy Storage,” Ceramics International 50, no. 18, Part B (2024): 33630–33637.

[91]

J. Yin, J. Wang, M. Sun, et al., “Unconventional Hexagonal Open Prussian Blue Analog Structures,” Nature Communications 16 (2025): 370.

[92]

S. Zhao, X. Wu, Z. Guo, et al., “An Electro-Driven Dynamic and Multicolored Radiative Thermal Regulation Material for All-Year-Round Building Energy Saving,” Advanced Functional Materials 35, no. 15 (2024): 2419378.

[93]

I. Song, W. J. Lee, Z. Ke, et al., “An n-Doped Capacitive Transparent Conductor for All-Polymer Electrochromic Displays,” Nature Electronics 7, no. 12 (2024): 1158–1169.

[94]

Y. Zhang, M. Guo, G. Li, et al., “Ultrastable Viologen Ionic Liquids-Based Ionogels for Visible Strain Sensor Integrated With Electrochromism, Electrofluorochromism, and Strain Sensing,” CCS Chemistry 5, no. 8 (2023): 1917–1930.

[95]

G. H. Shim, M. G. Han, J. C. Sharp-Norton, S. E. Creager, and S. H. Foulger, “Inkjet-Printed Electrochromic Devices Utilizing Polyaniline–Silica and Poly(3,4-ethylenedioxythiophene)–Silica Colloidal Composite Particles,” Journal of Materials Chemistry 18, no. 5 (2008): 594–601.

[96]

Y. Zhang, D. Liu, Z. Ren, et al., “Rapid-Response Electrochromic Devices With Self-Wrinkling Polyaniline for Enhanced Infrared Emissivity Modulation,” Chemical Engineering Journal 499 (2024): 155960.

[97]

P. Somani, A. B. Mandale, and S. Radhakrishnan, “Study and Development of Conducting Polymer-Based Electrochromic Display Devices,” Acta Materialia 48, no. 11 (2000): 2859–2871.

[98]

V. H. R. Souza, A. Schmidt, and A. J. G. Zarbin, “A Tunable Color Palette of Electrochromic Materials Achieved Through an Ingenious Stacking of Ordinary Conducting Polymers,” Journal of Materials Chemistry A 11, no. 35 (2023): 18853–18861.

[99]

L. Zhang, B. Wang, X. Li, et al., “Further Understanding of the Mechanisms of Electrochromic Devices With Variable Infrared Emissivity Based on Polyaniline Conducting Polymers,” Journal of Materials Chemistry C 7, no. 32 (2019): 9878–9891.

[100]

H. Xie, S. Peng, X. Huang, S. Fan, and Y. Zhang, “Electrochromic Fabric Device Based on Lamellar Polyaniline Through Inkjet Printing,” Macromolecular Rapid Communications 46, no. 6 (2025): 2400945.

[101]

A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, “Electrochemical Polymerization of Pyrrole,” Journal of the Chemical Society, Chemical Communications 8, no. 14 (1979): 635–636.

[102]

X. Gao, Y. Wang, M. Wu, C. Zhi, J. Meng, and L. Zhang, “Multicolor Electrochromic Fabric With a Simple Structure of PEDOT:PSS/DMSO,” Dyes and Pigments 219, no. 15 (2023): 111642.

[103]

X. Lv, W. Li, M. Ouyang, Y. Zhang, D. S. Wright, and C. Zhang, “Polymeric Electrochromic Materials With Donor–Acceptor Structures,” Journal of Materials Chemistry C 5, no. 1 (2017): 12–28.

[104]

L. V. Kayser and D. J. Lipomi, “Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS,” Advanced Materials 31, no. 10 (2019): 1806133.

[105]

S. Tu, T. Tian, J. Zhang, et al., “Electrostatic Tailoring of Freestanding Polymeric Films for Multifunctional Thermoelectrics, Hydrogels, and Actuators,” ACS Nano 18, no. 51 (2024): 34829–34841.

[106]

Z. Yao, Y. Yu, Q. Wu, et al., “Maximizing Magnesiation Capacity of Nanowire Cluster Oxides by Conductive Macromolecule Pillaring and Multication Intercalation,” Small 17, no. 30 (2021): 2102168.

[107]

S.-L. Li, M. Han, Y. Zhang, et al., “X-Ray and UV Dual Photochromism, Thermochromism, Electrochromism, and Amine-Selective Chemochromism in an Anderson-Like Zn7 Cluster-Based 7-Fold Interpenetrated Framework,” Journal of the American Chemical Society 141, no. 32 (2019): 12663–12672.

[108]

P. Wang, C. Qian, X. Guo, C. Jiang, and P. Liu, “Flexible Composite Electrochromic Device With Long-Term Bistability Based on a Viologen Derivative and Prussian Blue,” ACS Applied Materials & Interfaces 16, no. 2 (2024): 2522–2529.

[109]

M. Ojha, M. Pal, and M. Deepa, “Variable-Tint Electrochromic Supercapacitor With a Benzyl Hexenyl Viologen-Prussian Blue Architecture and Ultralong Cycling Life,” ACS Applied Electronic Materials 5, no. 4 (2023): 2401–2413.

[110]

Z. Bai, X. Wu, R. Fang, et al., “Divalent Viologen Cation-Based Ionogels Facilitate Reversible Intercalation of Anions in PProDOT-Me2 for Flexible Electrochromic Displays,” Advanced Functional Materials 34, no. 12 (2024): 2312587.

[111]

W. Ma, L. Xu, S. Zhang, et al., “Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling,” Journal of the American Chemical Society 143, no. 3 (2021): 1590–1597.

[112]

Z. Fang, V. Chellappan, R. D. Webster, et al., “Bridged-Triarylamine Starburst Oligomers as Hole Transporting Materials for Electroluminescent Devices,” Journal of Materials Chemistry 22, no. 30 (2012): 15397–15404.

[113]

R. Boguzaite, V. Ratautaite, L. Mikoliunaite, V. Pudzaitis, A. Ramanaviciene, and A. Ramanavicius, “Towards Analytical Application of Electrochromic Polypyrrole Layers Modified by Phenothiazine Derivatives,” Journal of Electroanalytical Chemistry 886, no. 3 (2021): 115132.

[114]

H. E. Elkhidr, Z. Ertekin, Y. A. Udum, and K. Pekmez, “Electrosynthesis and Characterizations of Electrochromic and Soluble Polymer Films Based on N-Substituted Carbazole Derivates,” Synthetic Metals 260, no. 3 (2020): 116253.

[115]

S. Xie, W. Monnens, K. Wan, et al., “Cathodic Electrodeposition of MOF Films Using Hydrogen Peroxide,” Angewandte Chemie International Edition 60, no. 47 (2021): 24950–24957.

[116]

Z. Jiang, X. Xu, Y. Ma, et al., “Filling Metal–Organic Framework Mesopores With TiO2 for CO2 Photoreduction,” Nature 586 (2020): 549–554.

[117]

J. Yang, J. Wang, B. Hou, et al., “Porous Hydrogen-Bonded Organic Frameworks (HOFs): From Design to Potential Applications,” Chemical Engineering Journal 399 (2020): 125873.

[118]

C. Zhang, Y. Li, F. Yu, et al., “Visual Growth of Nano-HOFs for Low-Power Memristive Spiking Neuromorphic System,” Nano Energy 109 (2023): 108274.

[119]

H. Cheng, H. Lv, J. Cheng, L. Wang, X. Wu, and H. Xu, “Rational Design of Covalent Heptazine Frameworks With Spatially Separated Redox Centers for High-Efficiency Photocatalytic Hydrogen Peroxide Production,” Advanced Materials 34, no. 7 (2022): 2107480.

[120]

S. Xu and Q. Zhang, “Recent Progress in Covalent Organic Frameworks as Light-Emitting Materials,” Materials Today Energy 20 (2021): 100635.

[121]

J. Wu, S. Zhang, Q. Gu, and Q. Zhang, “Recent Progress in Covalent Organic Frameworks for Flexible Electronic Devices,” FlexMat 1, no. 2024 (2024): 160–172.

[122]

S. Zhang, X. Wang, F. Kang, et al., “BF3-Induced Reversible Covalent Organic Framework Radicals,” SmartMat 5 (2024): e1265.

[123]

Q. Gu, J. Zha, C. Chen, et al., “Constructing Chiral Covalent-Organic Frameworks for Circular Polarized Light Detection,” Advanced Materials 36 (2024): 2306414.

[124]

Q. Gu, X. Lu, C. Chen, et al., “High-Performance Piezoelectric Two-Dimensional Covalent Organic Frameworks,” Angewandte Chemie International Edition 63 (2024): e202409708.

[125]

F. Kang, X. Wang, C. Chen, L. Chun-Sing, Y. Han, and Q. Zhang, “Construction of Crystalline Nitrone-Linked Covalent Organic Frameworks via Kröhnke Oxidation,” Journal of the American Chemical Society 145 (2023): 15465–15472.

[126]

S. Xu, J. Wu, X. Wang, and Q. Zhang, “Recent Advances in the Utilization of Covalent Organic Frameworks (COFs) as Electrode Materials for Supercapacitors,” Chemical Science 14, no. 2023 (2023): 13601–13628.

[127]

J. Yang, F. Kang, X. Wang, and Q. Zhang, “Design Strategies for Improving the Crystallinity of Covalent Organic Frameworks and Conjugated Polymers: A Review,” Materials Horizons 9, no. 2022 (2022): 121–146.

[128]

C. Li, J. Liu, K. Zhang, S. Zhang, Y. Lee, and T. Li, “Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method,” Angewandte Chemie 133, no. 25 (2021): 14257–14264.

[129]

Z. Mu, Y. Zhu, B. Li, A. Dong, B. Wang, and X. Feng, “Covalent Organic Frameworks With Record Pore Apertures,” Journal of the American Chemical Society 144, no. 11 (2022): 5145–5154.

[130]

Q. Hao, Z. J. Li, B. Bai, et al., “A Covalent Organic Framework Film for Three-State Near-Infrared Electrochromism and a Molecular Logic Gate,” Angewandte Chemie 133, no. 22 (2021): 12606–12611.

[131]

O. K. Farha, I. Eryazici, N. C. Jeong, et al., “Metal–Organic Framework Materials With Ultrahigh Surface Areas: Is the Sky the Limit?,” Journal of the American Chemical Society 134, no. 36 (2012): 15016–15021.

[132]

H. Liu, H. Pan, M. Yan, X. Zhang, and Y. Jiang, “Extraordinary Ionic Conductivity Excited by Hierarchical Ion-Transport Pathways in MOF-Based Quasi-Solid Electrolytes,” Advanced Materials 35, no. 26 (2023): 2300888.

[133]

A. E. Guerraf, W. Zeng, A. Mantel, E. Benhsina, J. M. Chin, and H. Shiozawa, “Synchronous Electrochromism and Electrofluorochromism in a Zirconium Pyrenetetrabenzoate Metal–Organic Framework,” Advanced Electronic Materials 10, no. 7 (2024): 2300854.

[134]

J. Liu, X. Y. Daphne Ma, Z. Wang, et al., “Highly Stable and Rapid Switching Electrochromic Thin Films Based on Metal–Organic Frameworks With Redox-Active Triphenylamine Ligands,” ACS Applied Materials & Interfaces 12, no. 6 (2020): 7442–7450.

[135]

L. Pan, R. Li, C. Zhang, et al., “Redox-Active Ni(II) Nodes Induced Electrochromism in a Two-Dimensional Conductive Metal–Organic Framework,” ACS Applied Electronic Materials 4, no. 6 (2022): 2915–2922.

[136]

D. Bessinger, K. Muggli, M. Beetz, F. Auras, and T. Bein, “Fast-Switching Vis–IR Electrochromic Covalent Organic Frameworks,” Journal of the American Chemical Society 143, no. 19 (2021): 7351–7357.

[137]

Y. P. He, Y. X. Tan, and J. Zhang, “Functional Metal–Organic Frameworks Constructed From Triphenylamine-Based Polycarboxylate Ligands,” Coordination Chemistry Reviews 420 (2020): 213354.

[138]

A. K. Chaudhari, B. E. Souza, and J.-C. Tan, “Electrochromic Thin Films of Zn-Based MOF-74 Nanocrystals Facilely Grown on Flexible Conducting Substrates at Room Temperature,” APL Materials 7, no. 8 (2019): 081101.

[139]

G. Kumar Silori, S. C. Chien, L. C. Lin, and K. Ho, “Back Cover: Four-State Electrochromism in Tris(4-aminophenyl)amine- Terephthalaldehyde-Based Covalent Organic Framework,” Angewandte Chemie International Edition 64, no. 4 (2025): e202416046.

[140]

Y. Hao, B. Bao, R. Li, et al., “Facilitating Charge Transfer via Ti–Knot Pathway in Electrochromic Three-Dimensional Metalated Covalent Organic Frameworks,” ACS Applied Materials & Interfaces 16, no. 42 (2024): 57571–57579.

[141]

J. Feng, T. F. Liu, and R. Cao, “An Electrochromic Hydrogen-Bonded Organic Framework Film,” Angewandte Chemie International Edition 59, no. 50 (2020): 22392–22396.

[142]

C. Zhang, Y. Ma, X. Zhang, et al., “Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications,” Energy & Environmental Materials 3, no. 1 (2020): 29–55.

[143]

J. Zhang, N. Kong, S. Uzun, et al., “Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films With Outstanding Conductivity,” Advanced Materials 32, no. 23 (2020): 2001093.

[144]

R. Li, X. Ma, J. Li, et al., “Flexible and High-Performance Electrochromic Devices Enabled by Self-Assembled 2D TiO2/MXene Heterostructures,” Nature Communications 12, no. 1 (2021): 1587.

[145]

J. Halim, J. Palisaitis, J. Lu, et al., “Synthesis of Two-Dimensional Nb1.33C (MXene) With Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb2/3Sc1/3)2AlC MAX Phase,” ACS Applied Nano Materials 1, no. 6 (2018): 2455–2460.

[146]

T. Xu, Y. Wang, Y. Xue, J. Li, and Y. Wang, “MXenes@Metal-Organic Framework Hybrids for Energy Storage and Electrocatalytic Application: Insights Into Recent Advances,” Chemical Engineering Journal 470 (2023): 144247.

[147]

J. Wang, X. Guo, C. Li, et al., “Tunable MXene/WO3 Fabry−Pérot Microcavity Architecture for Bioinspired Soft Electrochromic Actuators With Vivid Colors,” Advanced Functional Materials 35 (2025): 2416812.

[148]

T. Han, C. B. Dzakpasu, D. Kim, et al., “Thin and Porous Polymer Membrane-Based Electrochromic Devices,” Journal of Materials Chemistry C 7, no. 4 (2019): 1042–1047.

[149]

G. Xu, B. Wang, S. Song, et al., “High-Performance and Robust Dual-Function Electrochromic Device for Dynamic Thermal Regulation and Electromagnetic Interference Shielding,” Chemical Engineering Journal 422 (2021): 130064.

[150]

K. R. Reyes-Gil, Z. D. Stephens, V. Stavila, and D. B. Robinson, “Composite WO3/TiO2 Nanostructures for High Electrochromic Activity,” ACS Applied Materials & Interfaces 7, no. 4 (2015): 2202–2213.

[151]

R. Solarska, B. D. Alexander, A. Braun, et al., “Tailoring the Morphology of WO3 Films With Substitutional Cation Doping: Effect on The Photoelectrochemical Properties,” Electrochimica Acta 55, no. 26 (2010): 7780–7787.

[152]

P. H. Sung, H. K. Yen, S. M. Yang, and K. C. Lu, “Synthesis and Physical Characteristics of Undoped and Potassium-Doped Cubic Tungsten Trioxide Nanowires Through Thermal Evaporation,” Nanomaterials 13, no. 7 (2023): 1197–1206.

[153]

X. Sun, Z. Wu, X. Tan, et al., “High-Efficiency Tunable Microwave Absorption in N–CNF@MXene@MoS2 Aerogel With Island-Chain Structured MXene and Multiple Heterogeneous Interfaces,” Carbon 233, no. 1 (2025): 119909.

[154]

Y. Xiao, G. Tian, W. Li, et al., “Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis,” Journal of the American Chemical Society 141, no. 6 (2019): 2508–2515.

[155]

B. R. Cruz-Ortiz, M. A. Garcia-Lobato, E. R. Larios-Durán, E. M. Múzquiz-Ramos, and J. C. Ballesteros-Pacheco, “Potentiostatic Electrodeposition of Nanostructured NiO Thin Films for Their Application as Electrocatalyst,” Journal of Electroanalytical Chemistry 772, no. 1 (2016): 38–45.

[156]

M. Rajamathi and R. Seshadri, “Oxide and Chalcogenide Nanoparticles From Hydrothermal/Solvothermal Reactions,” Current Opinion in Solid State and Materials Science 6, no. 4 (2002): 337–345.

[157]

H. Du, S. He, B. Li, et al., “Cascade Reaction Enables Heterointerfaces-Enriched Nanoarrays for Ampere-Level Hydrogen Production,” Angewandte Chemie International Edition 64, no. 12 (2024): e202422393.

[158]

Y. Xia, P. Yang, Y. Sun, et al., “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Advanced Materials 15, no. 5 (2003): 353–389.

[159]

M. Li, Z. Wu, Y. Tian, F. Pan, T. Gould, and S. Zhang, “Nanoarchitectonics of Two-Dimensional Electrochromic Materials: Achievements and Future Challenges,” Advanced Materials Technologies 8, no. 4 (2023): 2200917.

[160]

X. Yu and W. Ren, “Ion and Water Transport in 2D Nanofluidic Channels,” Advanced Functional Materials 34, no. 30 (2024): 2313968.

[161]

R. Freund, A. Schulz, P. Lunkenheimer, et al., “Exploring Dipolar Dynamics and Ionic Transport in Metal-Organic Frameworks: Experimental and Theoretical Insights,” Advanced Functional Materials (2024): 2415376, https://doi.org/10.1002/adfm.202415376.

[162]

Z. Zhu, D. Wang, Y. Tian, and L. Jiang, “Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions,” Journal of the American Chemical Society 141, no. 22 (2019): 8658–8669.

[163]

J. Gutpa, H. Shaik, K. Naveen Kumar, and S. A. Sattar, “PVD Techniques Proffering Avenues for Fabrication of Porous Tungsten Oxide (WO3) Thin Films: A Review,” Materials Science in Semiconductor Processing 143 (2022): 106534.

[164]

M. Z. Sialvi, R. J. Mortimer, G. D. Wilcox, et al., “Elecetrochromic and Colorimetric Properties of Nickel(II) Oxide Thin Films Prepared by Aerosol-Assisted Chemical Vapor Deposition,” ACS Applied Materials & Interfaces 5, no. 12 (2013): 5675–5682.

[165]

P. R. T. Avila, E. P. da Silva, A. M. Rodrigues, et al., “On Manufacturing Multilayer-Like Nanostructures Using Misorientation Gradients in PVD Films,” Scientific Reports 9, no. 1 (2019): 15898.

[166]

M. E. Alf, A. Asatekin, M. C. Barr, et al., “Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films,” Advanced Materials 22, no. 18 (2010): 1993–2027.

[167]

K. Hong, M. Xie, R. Hu, and H. Wu, “Diameter Control of Tungsten Oxide Nanowires as Grown by Thermal Evaporation,” Nanotechnology 19, no. 8 (2008): 085604.

[168]

X. Wu, F. Lai, L. Lin, et al., “Optical Inhomogeneity of ZnS Films Deposited by Thermal Evaporation,” Applied Surface Science 254, no. 20 (2008): 6455–6460.

[169]

S. R. Bae, D. Y. Heo, and S. Y. Kim, “Recent Progress of Perovskite Devices Fabricated Using Thermal Evaporation Method: Perspective and Outlook,” Materials Today Advances 14 (2022): 100232.

[170]

C. H. Wang, H. K. Yen, S. M. Yang, and K. C. Lu, “Catalyst-Free Synthesis of Tungsten Oxide Nanowires via Thermal Evaporation for Fast-Response Electrochromic Devices,” CrystEngComm 24, no. 47 (2022): 8213–8218.

[171]

P. V. Ashrit, “Dry Lithiation Study of Nanocrystalline, Polycrystalline and Amorphous Tungsten Trioxide Thin-Films,” Thin Solid Films 385, no. 1–2 (2001): 81–88.

[172]

H. Kim, K. Senthil, and K. Yong, “Synthesis of Novel Double-Layer Nanostructures of SiC–WOx by a Two Step Thermal Evaporation Process,” Nanoscale Research Letters 4, no. 8 (2009): 802.

[173]

H. Li, J. Zhou, L. Tan, et al., “Sequential Vacuum-Evaporated Perovskite Solar Cells With More Than 24% Efficiency,” Science Advances 8, no. 28 (2022): eabo7422.

[174]

A. Perrone, F. Gontad, A. Lorusso, M. Di Giulio, E. Broitman, and M. Ferrario, “Comparison of the Properties of Pb Thin Films Deposited on Nb Substrate Using Thermal Evaporation and Pulsed Laser Deposition Techniques,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 729 (2013): 451–455.

[175]

D. R. Sahu, Y. H. Lee, T. J. Wu, S. C. Wang, and J. L. Huang, “Synthesis and Electrochromic Property Improvement of NiO Films for Device Applications,” Thin Solid Films 707, no. 1 (2020): 138097.

[176]

R. A. Patil, R. S. Devan, J. H. Lin, Y. R. Ma, P. S. Patil, and Y. Liou, “Efficient Electrochromic Properties of High-Density and Large-Area Arrays of One-Dimensional NiO Nanorods,” Solar Energy Materials and Solar Cells 112 (2013): 91–96.

[177]

C. Yang, H. Fan, Y. Xi, J. Chen, and Z. Li, “Effects of Depositing Temperatures on Structure and Optical Properties of TiO2 Film Deposited by Ion Beam Assisted Electron Beam Evaporation,” Applied Surface Science 254, no. 9 (2008): 2685–2689.

[178]

Z. Li, Y. Cui, L. Wang, et al., “An Investigation Into Ti-22Al-25Nb In-Situ Fabricated by Electron Beam Freeform Fabrication With an Innovative Twin-Wire Parallel Feeding Method,” Additive Manufacturing 50 (2022): 102552.

[179]

X. Chen, Y. Zhao, W. Li, et al., “NiO Films Prepared by E-Beam Evaporation for Mg2+ Based Electrochromic Devices,” Optical Materials 124 (2022): 111959.

[180]

M. M. Hawkeye and M. J. Brett, “Glancing Angle Deposition: Fabrication, Properties, and Applications of Micro- and Nanostructured Thin Films,” Journal of Vacuum Science & Technology. A 25, no. 5 (2007): 1317–1335.

[181]

D. Louloudakis, K. Mouratis, J. Gil-Rostra, et al., “Electrochromic Response and Porous Structure of WO3 Cathode Layers,” Electrochimica Acta 376 (2021): 138049.

[182]

L. Xiao, Y. Lv, W. Dong, N. Zhang, and X. Liu, “Dual-Functional WO3 Nanocolumns With Broadband Antireflective and High-Performance Flexible Electrochromic Properties,” ACS Applied Materials & Interfaces 8, no. 40 (2016): 27107–27114.

[183]

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered Sculptured Nematic Thin Films,” Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films 15 (1997): 2148–2152.

[184]

J. T. Gudmundsson, “Physics and Technology of Magnetron Sputtering Discharges,” Plasma Sources Science and Technology 29, no. 11 (2020): 113001.

[185]

K. S. Usha, R. Sivakumar, C. Sanjeeviraja, V. Sathe, V. Ganesan, and T. Y. Wang, “Improved Electrochromic Performance of a Radio Frequency Magnetron Sputtered NiO Thin Film With High Optical Switching Speed,” RSC Advances 6, no. 83 (2016): 79668–79680.

[186]

Y. Zhao, X. Zhang, X. Chen, et al., “Preparation of Sn-NiO Films and All-Solid-State Devices With Enhanced Electrochromic Properties by Magnetron Sputtering Method,” Electrochimica Acta 367 (2021): 137457.

[187]

D. Dong, W. Wang, G. Dong, et al., “Electrochromic Properties and Performance of NiOx Films and Their Corresponding All-Thin-Film Flexible Devices Preparedby Reactive DC Magnetron Sputtering,” Applied Surface Science 383 (2016): 49–56.

[188]

Y. Shi, M. Sun, W. Chen, et al., “Rational Construction of Porous Amorphous WO3 Nanostructures With High Electrochromic Energy Storage Performance: Effect of Temperature,” Journal of Non-Crystalline Solids 549 (2020): 120337.

[189]

N. O. Young and J. Kowal, “Optically Active Fluorite Films,” Nature 183 (1959): 104–105.

[190]

R. M. A. Azzam, “Chiral Thin Solid Films: Method of Deposition and Applications,” Applied Physics Letters 61, no. 26 (1992): 3118–3120.

[191]

M. Yaseen, M. A. K. Khattak, A. Khan, et al., “State-of-The-Art Electrochromic Thin Films Devices, Fabrication Techniques and Applications: A Review,” Nanocomposites 10, no. 1 (2024): 1–40.

[192]

C. Wattanawikkam, A. Bootchanont, P. Porjai, et al., “Phase Evolution in Annealed Ni-Doped WO3 Nanorod Films Prepared via a Glancing Angle Deposition Technique for Enhanced Photoelectrochemical Performance,” Applied Surface Science 584 (2022): 152581.

[193]

D. Gogova, A. Iossifova, T. Ivanova, Z. Dimitrova, and K. Gesheva, “Electrochromic Behavior in CVD Grown Tungsten Oxide Films,” Journal of Crystal Growth 198–199 (1999): 1230–1234.

[194]

T. Ivanova, K. A. Gesheva, G. Popkirov, M. Ganchev, and E. Tzvetkova, “Electrochromic Properties of Atmospheric CVD MoO3 and MoO3–WO3 Films and Their Application in Electrochromic Devices,” Materials Science and Engineering: B 119, no. 3 (2005): 232–239.

[195]

D. Vernardou, “Using An Atmospheric Pressure Chemical Vapor Deposition Process for the Development of V2O5 as an Electrochromic Material,” Coatings 7, no. 24 (2017): 24–34.

[196]

A. Kafizas, L. Francàs, C. Sotelo-Vazquez, et al., “Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition,” Journal of Physical Chemistry C 121, no. 11 (2017): 5983–5993.

[197]

M. Hajimazdarani, M. J. Eshraghi, E. Ghasali, and M. Kolahdouz, “Cost-Effective Deposition of WO3 Films by AACVD Method for Electrochromic Applications: Influence of Precursor Concentration,” Ceramics International 50, no. 19 (2024): 36872–36883.

[198]

V. Jadkar, A. Pawbake, R. Waykar, et al., “Synthesis of Γ-WO3 Thin Films by Hot Wire-CVD and Investigation of Its Humidity Sensing Properties,” Physica Status Solidi A: Applications and Materials Science 214, no. 5 (2017): 1600717.

[199]

I. Kostis, M. Vasilopoulou, A. Soultati, et al., “Highly Porous Tungsten Oxides for Electrochromic Applications,” Microelectronic Engineering 111 (2013): 149–153.

[200]

A. K. Tan, N. A. Hamzah, M. A. Ahmad, S. S. Ng, and Z. Hassan, “Recent Advances and Challenges in the MOCVD Growth of Indium Gallium Nitride: A Brief Review,” Materials Science in Semiconductor Processing 143 (2022): 106545.

[201]

C. Yang and J. Pham, “Characteristic Study of Silicon Nitride Films Deposited by LPCVD and PECVD,” Silicon 10, no. 6 (2018): 2561–2567.

[202]

J. P. Lock, J. L. Lutkenhaus, N. S. Zacharia, S. G. Im, P. T. Hammond, and K. K. Gleason, “Electrochemical Investigation of PEDOT Films Deposited via CVD for Electrochromic Applications,” Synthetic Metals 157, no. 22 (2007): 894–898.

[203]

F. E. Annanouch, Z. Haddi, S. Vallejos, et al., “Aerosol-Assisted CVD-Grown WO₃ Nanoneedles Decorated With Copper Oxide Nanoparticles for the Selective and Humidity-Resilient Detection of H₂S,” ACS Applied Materials & Interfaces 7, no. 12 (2015): 6842–6851.

[204]

D. J. Lewis, A. A. Tedstone, X. L. Zhong, et al., “Thin Films of Molybdenum Disulfide Doped With Chromium by Aerosol-Assisted Chemical Vapor Deposition (AACVD),” Chemistry of Materials 27, no. 4 (2015): 1367–1374.

[205]

S. Li, K. Page, S. Sathasivam, et al., “Efficiently Texturing Hierarchical Superhydrophobic Fluoride-Free Translucent Films by AACVD With Excellent Durability and Self-Cleaning Ability,” Journal of Materials Chemistry A 6, no. 36 (2018): 17633–17641.

[206]

X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, “Electrochromic Properties of Porous NiO Thin Films Prepared by a Chemical Bath Deposition,” Solar Energy Materials and Solar Cells 92, no. 6 (2008): 628–633.

[207]

X. Wang, M. Ma, N. Zhang, et al., “The Nano-Sheet Structure Adjustment and Long-Term Stability of Zn-Doped NiO Electrochromic Films,” Electrochimica Acta 492 (2024): 144342.

[208]

X. Guo, S. Jia, N. Li, and G. Cai, “Regulating the Ion Transport in the Layered V2O5 Electrochromic Films With Tunable Interlayer Spacing,” Advanced Optical Materials 12, no. 20 (2024): 2400459.

[209]

H. Wang, T. Sugita, K. Nakamura, and N. Kobayashi, “Controllable Intermittent Potential Method for Reflectance Enhancement of Silver Deposition-Based Electrochromic Cell,” Solar Energy Materials and Solar Cells 271 (2024): 112830.

[210]

Z. Zhou, Z. Chen, D. Ma, and J. Wang, “Porous WO3·2H2O Film With Large Optical Modulation and High Coloration Efficiency for Electrochromic Smart Window,” Solar Energy Materials and Solar Cells 253 (2023): 112226.

[211]

X. Huang, Q. Niu, S. Fan, and Y. Zhang, “Highly Oriented Lamellar Polyaniline With Short-Range Disorder for Enhanced Electrochromic Performance,” Chemical Engineering Journal 417 (2021): 128126.

[212]

Y. Wang, Z. Meng, H. Chen, et al., “Pulsed Electrochemical Deposition of Porous WO3 on Silver Networks for Highly Flexible Electrochromic Devices,” Journal of Materials Chemistry C 7, no. 7 (2019): 1966–1973.

[213]

S. M. Youssry, I. S. El-Hallag, R. Kumar, G. Kawamura, A. Matsuda, and M. N. El-Nahass, “Synthesis of Mesoporous Co(OH)2 Nanostructure Film via Electrochemical Deposition Using Lyotropic Liquid Crystal Template as Improved Electrode Materials for Supercapacitors Application,” Journal of Electroanalytical Chemistry 857, no. 2020 (2020): 113728.

[214]

X. Wang, P. She, and Q. Zhang, “Recent Advances on Electrochemical Methods in Fabricating Two-Dimensional Organic-Ligand-Containing Frameworks,” SmartMat 2 (2021): 299–325.

[215]

H. Wang, C.-J. Yao, H.-J. Nie, L. Yang, S. Mei, and Q. Zhang, “Recent Progress in Integrated Functional Electrochromic Energy Storage Devices,” Journal of Materials Chemistry C 8 (2020): 15507–15525.

[216]

C. Zhang, Y. Li, H. Li, Q. Zhang, and J. Lu, “Overview of Electric-Field-Induced Deposition Technology in Fabricating Organic Thin Films,” Journal of Materials Chemistry C 9 (2021): 374–394.

[217]

P. J. Morankar, R. U. Amate, G. T. Chavan, A. M. Teli, D. S. Dalavi, and C. W. Jeon, “Improved Electrochromic Performance of Potentiostatically Electrodeposited Nanogranular WO3 Thin Films,” Journal of Alloys and Compounds 945 (2023): 169363.

[218]

G. Mineo, F. Ruffino, S. Mirabella, and E. Bruno, “Investigation of WO3 Electrodeposition Leading to Nanostructured Thin Films,” Nanomaterials 10, no. 8 (2020): 1493.

[219]

N. Mendoza-Agüero, Y. Kumar, S. F. Olive-Méndez, J. Campos-Alvarez, and V. Agarwal, “Optimization of Tungsten Oxide Films Electro-Deposited on Macroporous Silicon for Gas Sensing Applications: Effect of Annealing Temperature,” Ceramics International 40, no. 10 (2014): 16603–16610.

[220]

H. Qu, X. Zhang, L. Pan, et al., “One-Pot Preparation of Crystalline-Amorphous Double-Layer Structured WO3 Films and Their Electrochromic Properties,” Electrochimica Acta 148 (2014): 46–52.

[221]

J. Park, K. M. Kang, S. Choi, and Y. C. Nah, “Silver-Based Electrochromic Mirrors Based on Porous Tungsten Oxide Layers Prepared via Electrodeposition,” Ceramics International 50, no. 16 (2024): 28762–28767.

[222]

Z. Yu, R. Wang, H. Tang, D. Zheng, and J. Yu, “3,6-Dimethoxythieno[3,2-b]thiophene-Based Bifunctional Electrodes for High-Performance Electrochromic Supercapacitors Prepared by One-Step Electrodeposition,” Polymers 16, no. 16 (2024): 2313.

[223]

H. Mousavi, L. M. Ferrari, A. Whiteley, and E. Ismailova, “Kinetics and Physicochemical Characteristics of Electrodeposited Pedot: PSS Thin Film Growth,” Advanced Electronic Materials 9, no. 9 (2023): 2201282.

[224]

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline Films With Modified Nanostructure for Bifunctional Flexible Multicolor Electrochromic and Supercapacitor Applications,” Chemical Engineering Journal 345 (2018): 290–299.

[225]

Y. Su, Y. Wang, Z. Lu, et al., “A Dual-Function Device With High Coloring Efficiency Based on A Highly Stable Electrochromic Nanocomposite Material,” Chemical Engineering Journal 456 (2023): 141075.

[226]

M. Tian, X. Liu, X. Diao, and X. Zhong, “High Performance PANI/MnO2 Coral-Like Nanocomposite Anode for Flexible and Robust Electrochromic Energy Storage Device,” Solar Energy Materials and Solar Cells 253 (2023): 112239.

[227]

Q. Wang, S. Cao, Q. Meng, et al., “Robust and Stable Dual-Band Electrochromic Smart Window With Multicolor Tunability,” Materials Horizons 10, no. 3 (2023): 960–966.

[228]

N. S. Pham, L. T. Nguyen, H. T. Nguyen, et al., “Long-Term Stability Electrochromic Electrodes Based on Porous Tungsten Trioxide and Nickel Oxide Films via a Facile Triple Pulse Electrodeposition,” Ceramics International 49, no. 20 (2023): 33413–33417.

[229]

A. E. Danks, S. R. Hall, and Z. Schnepp, “The Evolution of ‘Sol–Gel’ Chemistry as a Technique for Materials Synthesis,” Materials Horizons 3, no. 2 (2016): 91–112.

[230]

G. J. Owens, R. K. Singh, F. Foroutan, et al., “Sol–Gel Based Materials for Biomedical Applications,” Progress in Materials Science 77 (2016): 1–79.

[231]

M. Faustini, B. Louis, P. A. Albouy, M. Kuemmel, and D. Grosso, “Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions,” Journal of Physical Chemistry C 114, no. 17 (2010): 7637–7645.

[232]

S. Amiri and A. Rahimi, “Hybrid Nanocomposite Coating by Sol–Gel Method: A Review,” Iranian Polymer Journal 25, no. 6 (2016): 559–577.

[233]

Y. W. Chiu, M. H. Pai, and G. S. Liou, “Facile Approach of Porous Electrochromic Polyamide/ZrO2 Films for Enhancing Redox Switching Behavior,” ACS Applied Materials & Interfaces 12, no. 31 (2020): 35273–35281.

[234]

H. Liu, M. Wang, X. Wang, A. Pawlicka, and X. Diao, “In Situ Synthesis and Structural Morphology Analysis of 3D Porous Hierarchical V2O5 Films for Transmissive-to-Black All-Solid-State Electrochromic Devices,” Chemical Engineering Journal 500 (2024): 156657.

[235]

T. Saidani, M. Zaabat, M. Aida, et al., “Influence of Precursor Source on Sol–Gel Deposited ZnO Thin Films Properties,” Journal of Materials Science: Materials in Electronics 28, no. 13 (2017): 9252–9257.

[236]

D. B. Mahadik, R. V. Lakshmi, and H. C. Barshilia, “High Performance Single Layer Nano-Porous Antireflection Coatings on Glass by Sol–Gel Process for Solar Energy Applications,” Solar Energy Materials and Solar Cells 140 (2015): 61–68.

[237]

Q. Lei, J. Guo, A. Noureddine, et al., “Sol–Gel-Based Advanced Porous Silica Materials for Biomedical Applications,” Advanced Functional Materials 30, no. 41 (2020): 1909539.

[238]

A. Hemati, M. Allaf B, M. Ranjbar, P. Kameli, and H. Salamati, “Gasochromic Tungsten Oxide Films With PdCl2 Solution as an Aqueous Hydrogen Catalyst,” Solar Energy Materials and Solar Cells 108 (2013): 105–112.

[239]

S. Park, D. T. Thuy, S. Sarwar, et al., “Synergistic Effects of Ti-Doping Induced Porous Networks on Electrochromic Performance of WO3 Films,” Journal of Materials Chemistry C 8, no. 48 (2020): 17245–17253.

[240]

Y. Ren, X. Zhou, H. Zhang, L. Lei, and G. Zhao, “Preparation of a Porous NiO Array-Patterned Film and Its Enhanced Electrochromic Performance,” Journal of Materials Chemistry C 6, no. 18 (2018): 4952–4958.

[241]

H. Xie, Y. Wang, H. Liu, et al., “Electrochromic Electrode With High Optical Contrast and Long Cyclic Life Using Nest-Like Porous Doped-Sm WO3 Films,” Ceramics International 49, no. 5 (2023): 8223–8231.

[242]

Z. Chen, A. Xiao, Y. Chen, C. Zuo, S. Zhou, and L. Li, “Highly Porous Nickel Oxide Thin Films Prepared by a Hydrothermal Synthesis Method for Electrochromic Application,” Journal of Physics and Chemistry of Solids 74, no. 11 (2013): 1522–1526.

[243]

Z. G. Zhao and M. Miyauchi, “Shape Modulation of Tungstic Acid and Tungsten Oxide Hollow Structures,” Journal of Physical Chemistry C 113, no. 16 (2009): 6539–6546.

[244]

J. Pan, Y. Wang, R. Zheng, et al., “Directly Grown High-Performance WO3 Films by a Novel One-Step Hydrothermal Method With Significantly Improved Stability for Electrochromic Applications,” Journal of Materials Chemistry A 7, no. 23 (2019): 13956–13967.

[245]

Y. Wang, G. Shen, T. Tang, et al., “Construction of Doped-Rare Earth (Ce, Eu, Sm, Gd) WO3 Porous Nanofilm for Superior Electrochromic and Energy Storage Windows,” Electrochimica Acta 412 (2022): 140099.

[246]

Z. Li, Z. Yu, W. Wang, et al., “Nickel Oxide Film With Tertiary Hierarchical Porous Structure and High Electrochromic Performance and Stability,” Materials Chemistry and Physics 269 (2021): 124738.

[247]

P. Lei, J. Wang, P. Zhang, et al., “Growth of a Porous NiCoO2 Nanowire Network for Transparent-to-Brownish Grey Electrochromic Smart Windows With Wide-Band Optical Modulation,” Journal of Materials Chemistry C 9, no. 40 (2021): 14378–14387.

[248]

N. Y. Bhosale, S. S. Mali, C. K. Hong, and A. V. Kadam, “Hydrothermal Synthesis of WO3 Nanoflowers on Etched ITO and Their Electrochromic Properties,” Electrochimica Acta 246 (2017): 1112–1120.

[249]

K. Xu, L. Wang, S. Xiong, et al., “Hydrothermally Prepared Ultra-Stable Multilayer Nanoflake NiO-Based Electrochromic Films,” Electrochimica Acta 441 (2023): 141812.

[250]

S. S. Shenouda, T. H. AlAbdulaal, H. Y. Zahran, and I. S. Yahia, “Synthesis, Structure Identification and Linear/Nonlinear Optics of Hydrothermally Grown WO3 Nanostructured Thin Film/FTO: Novel Approach,” Ceramics International 48, no. 6 (2022): 7663–7667.

[251]

E. B. Díaz-Cruz, L. González-Espinoza, E. Regalado-Pérez, O. A. Castelo-González, M. C. Arenas-Arrocena, and H. Hu, “Tuning Optoelectronic Properties of SnS Thin Films by a Kinetically Controllable Low Temperature Microwave Hydrothermal Method,” Journal of Alloys and Compounds 797 (2019): 537–547.

[252]

C. Zhu, H. Chen, C. Chen, and Y. Yu, “Preparation of Porous Polyamide Films With Enhanced Electrochromic Performance by Electrostatic Spray Deposition,” Journal of Electroanalytical Chemistry 887 (2021): 115038.

[253]

R. T. Ginting, M. M. Ovhal, and J. W. Kang, “A Novel Design of Hybrid Transparent Electrodes for High Performance and Ultra-Flexible Bifunctional Electrochromic-Supercapacitors,” Nano Energy 53 (2018): 650–657.

[254]

B. J. W. Liu, J. Zheng, J. L. Wang, J. Xu, H. H. Li, and S. H. Yu, “Ultrathin W18O49 Nanowire Assemblies for Electrochromic Devices,” Nano Letters 13, no. 8 (2013): 3589–3593.

[255]

J.-L. Wang, Y.-R. Lu, H.-H. Li, J. W. Liu, and S. H. Yu, “Large Area Co-Assembly of Nanowires for Flexible Transparent Smart Windows,” Journal of the American Chemical Society 139, no. 29 (2017): 9921–9926.

[256]

N. Malik, N. Elool Dov, G. de Ruiter, M. Lahav, and M. E. van der Boom, “On-Surface Self-Assembly of Stimuli-Responsive Metallo-Organic Films: Automated Ultrasonic Spray-Coating and Electrochromic Devices,” ACS Applied Materials & Interfaces 11, no. 25 (2019): 22858–22868.

[257]

S. Badalov and C. J. Arnusch, “Ink-Jet Printing Assisted Fabrication of Thin Film Composite Membranes,” Journal of Membrane Science 515, no. 1 (2016): 79–85.

[258]

M. Breitwieser, C. Klose, M. Klingele, et al., “Simple Fabrication of 12 μm Thin Nanocomposite Fuel Cell Membranes by Direct Electrospinning and Printing,” Journal of Power Sources 337 (2017): 137–144.

[259]

H. Li, J. Chen, M. Cui, et al., “Spray Coated Ultrathin Films From Aqueous Tungsten Molybdenum Oxide Nanoparticle Ink for High Contrast Electrochromic Applications,” Journal of Materials Chemistry C 4, no. 1 (2016): 33–38.

[260]

H. Li, J. Li, C. Hou, et al., “Solution-Processed Porous Tungsten Molybdenum Oxide Electrodes for Energy Storage Smart Windows,” Advanced Materials Technologies 2, no. 8 (2017): 1700047.

[261]

H. Li, L. McRae, and A. Y. Elezzabi, “Solution-Processed Interfacial PEDOT:PSS Assembly Into Porous Tungsten Molybdenum Oxide Nanocomposite Films for Electrochromic Applications,” ACS Applied Materials & Interfaces 10, no. 12 (2018): 10520–10527.

[262]

L. Filipovic, S. Selberherr, G. C. Mutinati, et al., “Methods of Simulating Thin Film Deposition Using Spray Pyrolysis Techniques,” Microelectronic Engineering 117 (2014): 57–66.

[263]

R. A. Ismail, S. Ghafori, and G. A. Kadhim, “Preparation and Characterization of Nanostructured Nickel Oxide Thin Films by Spray Pyrolysis,” Applied Nanoscience 3, no. 6 (2013): 509–514.

[264]

O. J. Ilegbusi, S. M. N. Khatami, and L. I. Trakhtenberg, “Spray Pyrolysis Deposition of Single and Mixed Oxide Thin Films,” Materials Sciences and Applications 8, no. 2 (2017): 153–169.

[265]

P. Dutta, I. Mondal, A. Saha, and A. K. Singh, “Complementary Electrochromic Device via a Scalable Solution Process: A Step Towards Affordable and Energy-Efficient Smart Windows,” Journal of Materials Chemistry C 12, no. 30 (2024): 11446–11457.

[266]

H. Enayati-Taloobaghi and H. Eshghi, “Achievement of High Electrochromic Performance of TiO2 Thin Films Prepared via Spray Pyrolysis Method, Influence of Annealing Process,” Materials Research Bulletin 167 (2023): 112416.

[267]

C. R. Dhas, R. Venkatesh, R. Sivakumar, A. Raj, and C. Sanjeeviraja, “Fast Electrochromic Response of Porous-Structured Cobalt Oxide (Co3O4) Thin Films by Novel Nebulizer Spray Pyrolysis Technique,” Ionics 22, no. 10 (2016): 1911–1926.

[268]

G. Cai, J. Chen, J. Xiong, et al., “Molecular Level Assembly for High-Performance Flexible Electrochromic Energy-Storage Devices,” ACS Energy Letters 5, no. 4 (2020): 1159–1166.

[269]

D. Khim, H. Han, K. J. Baeg, et al., “Simple Bar-Coating Process for Large-Area, High-Performance Organic Field-Effect Transistors and Ambipolar Complementary Integrated Circuits,” Advanced Materials 25, no. 31 (2013): 4302–4308.

[270]

S. G. Bucella, A. Luzio, E. Gann, et al., “Macroscopic and High-Throughput Printing of Aligned Nanostructured Polymer Semiconductors for MHz Large-Area Electronics,” Nature Communications 6, no. 1 (2015): 8394.

[271]

W. Zhang, H. Li, W. W. Yu, and A. Y. Elezzabi, “Transparent Inorganic Multicolour Displays Enabled by Zinc-Based Electrochromic Devices,” Light, Science & Applications 9, no. 1 (2020): 121.

[272]

M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin Coating Epitaxial Films,” Science 364, no. 6436 (2019): 166–169.

[273]

R. Nisticò, D. Scalarone, and G. Magnacca, “Sol-Gel Chemistry, Templating and Spin-Coating Deposition: A Combined Approach to Control in a Simple way the Porosity of Inorganic Thin Films/Coatings,” Microporous and Mesoporous Materials 248 (2017): 18–29.

[274]

H. Shin, S. Seo, C. Park, J. Na, M. Han, and E. Kim, “Energy Saving Electrochromic Windows From Bistable Low-HOMO Level Conjugated Polymers,” Energy & Environmental Science 9, no. 1 (2016): 117–122.

[275]

K. Tajima, T. Kubota, and C. Y. Jeong, “Preparation of Electrochromic Thin Films by Humidity-Controlled Spin Coating,” Thin Solid Films 758 (2022): 139412.

[276]

Y. Liu, K. Shigehara, M. Hara, and A. Yamada, “Electrochemistry and Electrochromic Behavior of Langmuir-Blodgett Films of Octakis-Substituted Rare-Earth Metal Diphthalocyanines,” Journal of the American Chemical Society 113, no. 2 (1991): 440–443.

[277]

V. V. Kondalkar, S. S. Mali, R. R. Kharade, et al., “Langmuir–Blodgett Self Organized Nanocrystalline Tungsten Oxide Thin Films for Electrochromic Performance,” RSC Advances 5, no. 34 (2015): 26923–26931.

[278]

G. Cai, R. Zhu, S. Liu, et al., “Tunable Intracrystal Cavity in Tungsten Bronze-Like Bimetallic Oxides for Electrochromic Energy Storage,” Advanced Energy Materials 12, no. 5 (2022): 2103106.

[279]

Y. Zhao, Q. Jiang, X. Wu, et al., “Multicolor Electrochromic Metamaterials Based on Mie Scatterer Nanospheres,” Advanced Optical Materials 12, no. 24 (2024): 2400838.

[280]

H. Li, M. Zhu, F. Tian, W. Hua, J. Guo, and C. Wang, “Polychrome Photonic Crystal Stickers With Thermochromic Switchable Colors for Anti-Counterfeiting and Information Encryption,” Chemical Engineering Journal 426 (2021): 130683.

[281]

Y. Guan, H. Li, S. Zhang, and W. Niu, “Mechanochromic Photonic Vitrimer Thermal Management Device Based on Dynamic Covalent Bond,” Advanced Functional Materials 33, no. 16 (2023): 2215055.

[282]

X. Zhu, G. Jiang, G. Wang, et al., “Cellulose-Based Functional Gels and Applications in Flexible Supercapacitors,” Resources Chemicals and Materials 2, no. 2 (2023): 177–188.

[283]

C. Huang, J. Peng, S. Wan, et al., “Ultra-Tough Inverse Artificial Nacre Based on Epoxy-Graphene by Freeze-Casting,” Angewandte Chemie International Edition 58, no. 23 (2019): 7636–7640.

[284]

F. Hu, H. Peng, S. Zhang, Y. Gu, B. Yan, and S. Chen, “PEDOT Nanoparticles Fully Covered on Natural Tubular Clay for Hierarchically Porous Electrochromic Film,” Solar Energy Materials and Solar Cells 199 (2019): 59–65.

[285]

K. R. Ansari, A. Singh, M. Younas, I. H. Ali, and Y. Lin, “Progress in Metal-Organic Frameworks (MOFs) as Multifunctional Material: Design, Synthesis and Anticorrosion Performance Techniques,” Coordination Chemistry Reviews 523 (2025): 216294.

[286]

X. Liu, G. Verma, Z. Chen, et al., “Metal-Organic Framework Nanocrystal-Derived Hollow Porous Materials: Synthetic Strategies and Emerging Applications,” Innovation 3, no. 5 (2022): 100281.

[287]

S. Zhou, S. Wang, S. Zhou, et al., “An Electrochromic Supercapacitor Based on an MOF Derived Hierarchical-Porous NiO Film,” Nanoscale 12, no. 16 (2020): 8934–8941.

[288]

H. Liang, R. Li, C. Li, et al., “Regulation of Carbon Content in MOF-Derived Hierarchical-Porous NiO@C Films for High-Performance Electrochromism,” Materials Horizons 6, no. 3 (2019): 571–579.

[289]

B. Wang, Y. Huang, S. Zhao, et al., “Novel Self-Assembled Porous Yolk-Shell NiO Nanospheres With Excellent Electrochromic Performance for Smart Windows,” Particuology 84 (2024): 72–80.

[290]

J. Kim, K. H. Lee, S. Lee, et al., “Minimized Optical Scattering of MXene-Derived 2D V2O5 Nanosheet-Based Electrochromic Device With High Multicolor Contrast and Accuracy,” Chemical Engineering Journal 453 (2023): 139973.

[291]

Z. Lin, H. Shao, K. Xu, et al., “MXenes as High-Rate Electrodes for Energy Storage,” Trends in Chemistry 2, no. 7 (2020): 654–664.

[292]

S. Ling, C. Zhang, C. Ma, Y. Li, and Q. Zhang, “Emerging MXene-Based Memristors for In-Memory, Neuromorphic Computing, and Logic Operation,” Advanced Functional Materials 33 (2022): 2208320.

[293]

J. Qiu, Y. Shang, J. Xu, and Y. Xia, “Template-Directed Synthesis of Colloidal Hollow Particles: Mind the Material Used for the Template,” Small 18 (2022): 2204278.

[294]

A. Stein, B. E. Wilson, and S. G. Rudisill, “Design and Functionality of Colloidal-Crystal-Templated Materials-Chemical Applications of Inverse Opals,” Chemical Society Reviews 42, no. 7 (2013): 2763–2803.

[295]

Z. Li, Q. Fan, and Y. Yin, “Colloidal Self-Assembly Approaches to Smart Nanostructured Materials,” Chemical Reviews 122, no. 5 (2022): 4976–5067.

[296]

Z. Cai, Z. Li, S. Ravaine, et al., “From Colloidal Particles to Photonic Crystals: Advances in Self-Assembly and Their Emerging Applications,” Chemical Society Reviews 50, no. 10 (2021): 5898–5951.

[297]

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved Electrochromic Performance and Lithium Diffusion Coefficient in Three-Dimensionally Ordered Macroporous V2O5 Films,” Journal of Materials Chemistry C: Materials for Optical and Electronic Devices 2, no. 18 (2014): 3651–3658.

[298]

J. Meng, X. Li, M. Qin, et al., “Effects of Pore Size of Reverse Opal Structured PEDOT Films on Their Electrochromic Performances,” Organic Electronics 50 (2017): 16–24.

[299]

Z. Tong, H. Lv, X. Zhang, et al., “Novel Morphology Changes From 3D Ordered Macroporous Structure to V2O5 Nanofiber Grassland and Its Application in Electrochromism,” Scientific Reports 5, no. 1 (2015): 16864.

[300]

X. Lai, J. Peng, Q. Cheng, et al., “Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami,” Angewandte Chemie International Edition 60, no. 26 (2021): 14307–14312.

[301]

N. X. V. Lan, J. Moon, T. H. Kang, K. Wang, H. G. Park, and G. R. Yi, “Index-Matched Composite Colloidal Crystals of Core–Shell Particles for Strong Structural Colors and Optical Transparency,” Chemistry of Materials 33, no. 5 (2021): 1714–1722.

[302]

B. Zhuang, X. Wang, Q. Zhang, J. Liu, Y. Jin, and H. Wang, “Nanoengineering of Poly(3,4-ethylenedioxythiophene) for Boosting Electrochemical Applications,” Solar Energy Materials and Solar Cells 232 (2021): 111357.

[303]

D. Ge, L. Yang, Z. Tong, et al., “Ion Diffusion and Optical Switching Performance of 3D Ordered Nanostructured Polyaniline Films for Advanced Electrochemical/Electrochromic Devices,” Electrochimica Acta 104 (2013): 191–197.

[304]

Q. Zhang, X. Li, M. Qin, et al., “Preparation of a Pb@SiO2 Photonic Crystal Composite With Enhanced Electrochromic Performance,” ACS Applied Electronic Materials 3, no. 10 (2021): 4441–4447.

[305]

J. N. L. Albert and T. H. Epps, “Self-Assembly of Block Copolymer Thin Films,” Materials Today 13, no. 6 (2010): 24–33.

[306]

C. Cummins, R. Lundy, J. J. Walsh, V. Ponsinet, G. Fleury, and M. A. Morris, “Enabling Future Nanomanufacturing Through Block Copolymer Self-Assembly: A Review,” Nano Today 35 (2020): 100936.

[307]

D. Wei, M. R. J. Scherer, C. Bower, P. Andrew, T. Ryhänen, and U. Steiner, “A Nanostructured Electrochromic Supercapacitor,” Nano Letters 12, no. 4 (2012): 1857–1862.

[308]

T. Brezesinski, D. Fattakhova Rohlfing, S. Sallard, M. Antonietti, and B. Smarsly, “Highly Crystalline WO3 Thin Films With Ordered 3D Mesoporosity and Improved Electrochromic Performance,” Small 2, no. 10 (2006): 1203–1211.

[309]

L. Cao, C. Gong, and J. Yang, “A Solution-Processable (Tetraaniline-b-Polyethylene Glycol)3 Star-Shaped Rod-Coil Block Copolymer With Enhanced Electrochromic Properties,” Macromolecular Rapid Communications 37, no. 4 (2016): 343–350.

[310]

V. V. Kondalkar, R. R. Kharade, S. S. Mali, et al., “Nanobrick-Like WO3 Thin Films: Hydrothermal Synthesis and Electrochromic Application,” Superlattices and Microstructures 73 (2014): 290–295.

[311]

Y. Liu, C. Jia, Z. Wan, X. Weng, J. Xie, and L. Deng, “Electrochemical and Electrochromic Properties of Novel Nanoporous NiO/V2O5 Hybrid Film,” Solar Energy Materials and Solar Cells 132 (2015): 467–475.

[312]

H. Liu, Y. Zhang, P. Lei, et al., “Selective Electrochromic Regulation for Near-Infrared and Visible Light via Porous Tungsten Oxide Films With Core/Shell Architecture,” ACS Applied Materials & Interfaces 15, no. 19 (2023): 23412–23420.

[313]

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-Coloration Efficiency Electrochromic Device Based on Novel Porous TiO2@Prussian Blue Core-Shell Nanostructures,” Electrochimica Acta 224 (2017): 534–540.

[314]

W. J. Bae, A. R. Davis, J. Jung, W. H. Jo, K. R. Carter, and E. B. Coughlin, “One-Pot Synthesis of Hybrid TiO2–Polyaniline Nanoparticles by Self-Catalyzed Hydroamination and Oxidative Polymerization From TiO2-Methacrylic Acid Nanoparticles,” Chemical Communications 47, no. 38 (2011): 10710–10712.

[315]

G. Cai, J. Tu, D. Zhou, et al., “Multicolor Electrochromic Film Based on TiO2@Polyaniline Core/Shell Nanorod Array,” Journal of Physical Chemistry C 117, no. 31 (2013): 15967–15975.

[316]

X. Fu, C. Jia, Z. Wan, X. Weng, J. Xie, and L. Deng, “Hybrid Electrochromic Film Based on Polyaniline and TiO2 Nanorods Array,” Organic Electronics 15, no. 11 (2014): 2702–2709.

[317]

G. F. Cai, J. P. Tu, D. Zhou, J. H. Zhang, X. L. Wang, and C. D. Gu, “Dual Electrochromic Film Based on WO3/Polyaniline Core/Shell Nanowire Array,” Solar Energy Materials and Solar Cells 122 (2014): 51–58.

[318]

M. Kateb, V. Ahmadi, and M. Mohseni, “Fast Switching and High Contrast Electrochromic Device Based on PEDOT Nanotube Grown on ZnO Nanowires,” Solar Energy Materials and Solar Cells 112 (2013): 57–64.

[319]

X. Lv, J. Sun, P. Wang, et al., “A Core–Shell Composite of Porous ZnO Nanosheets and a Multichromic Conducting Polymer: Enhanced Electrochromic Performances,” New Journal of Chemistry 38, no. 6 (2014): 2400–2406.

[320]

X. Wu, Y. Zheng, J. Liang, et al., “Green-Solvent-Processed Formamidinium-Based Perovskite Solar Cells With Uniform Grain Growth and Strengthened Interfacial Contact via a Nanostructured Tin Oxide Layer,” Materials Horizons 10, no. 1 (2023): 122–135.

[321]

Y. Lv, P. Wang, B. Cai, et al., “Facile Fabrication of SnO2 Nanorod Arrays Films as Electron Transporting Layer for Perovskite Solar Cells,” Solar RRL 2, no. 9 (2018): 1800133.

[322]

J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical Characterization of 3D-Printed Polymers,” Additive Manufacturing 20 (2018): 44–67.

[323]

H. W. Tan, Y. Y. C. Choong, C. N. Kuo, H. Y. Low, and C. K. Chua, “3D Printed Electronics: Processes, Materials and Future Trends,” Progress in Materials Science 127 (2022): 100945.

[324]

T. Ramachandran, N. Roy, H. H. Hegazy, et al., “From Graphene Aerogels to Efficient Energy Storage: Current Developments and Future Prospects,” Journal of Alloys and Compounds 1010 (2025): 177248.

[325]

Y. A. Kumar, J. K. Alagarasan, T. Ramachandran, et al., “The Landscape of Energy Storage: Insights Into Carbon Electrode Materials and Future Directions,” Journal of Energy Storage 86 (2024): 111119.

[326]

P. Chang, H. Mei, M. Zhang, et al., “3D Printed Electrochromic Supercapacitors With Ultrahigh Mechanical Strength and Energy Density,” Small 17, no. 41 (2021): 2102639.

[327]

S.-J. Jeong, M.-H. Jo, and H.-J. Ahn, “3D-Printed Film Architecture via Automatic Micro 3D-Printing System: Micro-Intersection Engineering of V2O5 Thin/Thick Films for Ultrafast Electrochromic Energy Storage Devices,” Chemical Engineering Journal 475 (2023): 146503.

[328]

F. Niu, R. Guo, L. Dang, et al., “Coral-Like PEDOT Nanotube Arrays on Carbon Fibers as High-Rate Flexible Supercapacitor Electrodes,” ACS Applied Energy Materials 3, no. 8 (2020): 7794–7803.

[329]

S. I. Cho and S. B. Lee, “Fast Electrochemistry of Conductive Polymer Nanotubes: Synthesis, Mechanism, and Application,” Accounts of Chemical Research 41, no. 6 (2008): 699–707.

[330]

X. Luo, R. Wan, Z. Zhang, et al., “3D-Printed Hydrogel-Based Flexible Electrochromic Device for Wearable Displays,” Advanced Science 11, no. 38 (2024): 2404679.

[331]

L. H. Thai, L. T. T. Nhi, T. C. Giang, et al., “3D Printed Multicolor Prussian Blue-Viologen Hybrid Electrochromic Devices: Toward High Contrast Ratio and Fast Switching Electrochromic Devices,” Applied Materials Today 40 (2024): 102369.

[332]

T. Chen, F. Wang, S. Cao, et al., “In Situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel–Zinc Batteries,” Advanced Materials 34, no. 30 (2022): 2201779.

[333]

P. I. Scheurle, A. Mähringer, A. C. Jakowetz, et al., “A Highly Crystalline Anthracene-Based MOF-74 Series Featuring Electrical Conductivity and Luminescence,” Nanoscale 11, no. 43 (2019): 20949–20955.

[334]

S. Wang, C. M. McGuirk, A. d'Aquino, et al., “Metal–Organic Framework Nanoparticles,” Advanced Materials 37 (2018): 1800202.

[335]

Y. Pan, R. Abazari, Y. Wu, J. Gao, and Q. Zhang, “Advances in Metal-Organic Frameworks and Their Derivatives for Diverse Electrocatalytic Applications,”,” Electrochemistry Communications 126 (2021): 107024.

[336]

Y.-P. Wu, X.-Q. Wu, J. Wang, et al., “Assembly of Two Novel Cd3/(Cd3+Cd5)-Cluster-Based Metal–Organic Frameworks: Structures, Luminescence and Photocatalytic Degradation of Organic Dyes,” Crystal Growth & Design 16 (2016): 2309–2316.

[337]

H.-S. Lu, L. Bai, W.-W. Xiong, et al., “Surfactant Media to Grow New Crystalline Cobalt-1,3,5-Benzenetricarboxylate Metal-Organic Frameworks,” Inorganic Chemistry 53 (2014): 8529–8537.

[338]

Y. Guo, K. Wang, Y. Hong, H. Wu, and Q. Zhang, “Recent Progress on Pristine Two-Dimensional Metal-Organic Frameworks as Active Components in Supercapacitors,” Dalton Transactions 50 (2021): 11331–11346.

[339]

K. Wang, Y. Guo, and Q. Zhang, “Metal-Organic Frameworks Constructed From Iron-Series Elements for Supercapacitors,” Small Structures 3 (2022): 2100115.

[340]

C. Li, K. Wang, J. Li, and Q. Zhang, “Nanostructured Potassium-Organic Framework as an Effective Anode for Potassium-Ion Battery With a Long Cycle Life,” Nanoscale 12 (2020): 7870–7874.

[341]

L. Han, X. Bu, Q. Zhang, and P. Feng, “Solvothermal In Situ Ligand Synthesis Through Disulfide Cleavage: 3D (3,4)-Connected and 2D Square-Grid-Type Coordination,” Inorganic Chemistry 45 (2006): 5736–5738.

[342]

S. Peng, B. Bie, Y. Sun, et al., “Metal-Organic Frameworks for Precise Inclusion of Single-Stranded DNA and Transfection in Immune Cells,” Nature Communications 9 (2018): 1293.

[343]

C. R. Wade, M. Li, and M. Dincă, “Facile Deposition of Multicolored Electrochromic Metal-Organic Framework Thin Films,” Angewandte Chemie International Edition 52, no. 50 (2013): 13377–13381.

[344]

S. Xie, Q. Qin, H. Liu, et al., “MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for Low-Temperature NH3-SCR and In Situ DRIFTS Study Reaction Mechanism,” ACS Applied Materials & Interfaces 12, no. 43 (2020): 48476–48485.

[345]

A. de Oliveira, G. F. de Lima, and H. A. De Abreu, “Structural and Electronic Properties of M-MOF-74 (M = Mg, Co or Mn),” Chemical Physics Letters 691 (2018): 283–290.

[346]

N. Zhang, Y. Jin, Q. Zhang, J. Liu, Y. Zhang, and H. Wang, “Direct Fabrication of Electrochromic Ni-MOF 74 Film on ITO With High-Stable Performance,” Ionics 27, no. 8 (2021): 3655–3662.

[347]

K. AlKaabi, C. R. Wade, and M. Dincă, “Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs,” Chemical Science 1, no. 2 (2016): 264–272.

[348]

V. Stavila, M. E. Foster, J. W. Brown, et al., “IRMOF-74(n)–Mg: A Novel Catalyst Series for Hydrogen Activation and Hydrogenolysis of C-O Bonds,” Chemical Science 10, no. 42 (2019): 9880–9892.

[349]

C. Tao, Y. Li, and J. Wang, “The Progress of Electrochromic Materials Based on Metal–Organic Frameworks,” Coordination Chemistry Reviews 475 (2023): 214891.

[350]

Z. Lu, R. Li, L. Ping, et al., “Ultra-Stable Ionic-Liquid-Based Electrochromism Enabled by Metal-Organic Frameworks,” Cell Reports Physical Science 3, no. 5 (2022): 100866.

[351]

H. Shiozawa, Z. Melnikova, Z. Bastl, H. Peterlik, M. Kalbac, and O. Frank, “Electrochromic 2,5-Dihydroxyterephthalic Acid Linker in Metal-Organic Frameworks,” Advanced Photonics Research 3, no. 4 (2022): 2100219.

[352]

Q. Wu, J. Liang, D. Wang, R. Wang, and C. Janiak, “Host Molecules Inside Metal–Organic Frameworks: Host@MOF and Guest@Host@MOF (Matrjoschka) Materials,” Chemical Society Reviews 54 (2025): 601–622.

[353]

W. H. Li, W. H. Deng, G. E. Wang, and G. Xu, “Conductive MOFs,” EnergyChem 2, no. 2 (2020): 100029.

[354]

H. Montes-Andrés, G. Orcajo, C. Martos, J. A. Botas, and G. Calleja, “Co/Ni Mixed-Metal Expanded IRMOF-74 Series and Their Hydrogen Adsorption Properties,” International Journal of Hydrogen Energy 44, no. 33 (2019): 18205–18213.

[355]

P. Apostol, S. M. Gali, A. Su, et al., “Controlling Charge Transport in 2D Conductive MOFs—The Role of Nitrogen-Rich Ligands and Chemical Functionality,” Journal of the American Chemical Society 145, no. 45 (2023): 24669–24677.

[356]

R. Li, S. Li, Q. Zhang, Y. Li, and H. Wang, “Layer-by-Layer Assembled Triphenylene-Based MOFs Films for Electrochromic Electrode,” Inorganic Chemistry Communications 123 (2021): 108354.

[357]

K. W. Nam, S. S. Park, R. dos Reis, et al., “Conductive 2D Metal-Organic Framework for High-Performance Cathodes in Aqueous Rechargeable Zinc Batteries,” Nature Communications 10, no. 1 (2019): 4948.

[358]

D. Sheberla, L. Sun, M. A. Blood-Forsythe, et al., “High Electrical Conductivity in Ni3(2,3,6,7,10,11-Hexaiminotriphenylene)2, a Semiconducting Metal-Organic Graphene Analogue,” Journal of the American Chemical Society 136, no. 25 (2014): 8859–8862.

[359]

Z. G. Gu, J. Bürck, A. Bihlmeier, et al., “Oriented Circular Dichroism Analysis of Chiral Surface-Anchored Metal-Organic Frameworks Grown by Liquid-Phase Epitaxy and Upon Loading With Chiral Guest Compounds,” Chemistry—A European Journal 20, no. 32 (2014): 9879–9882.

[360]

Z. G. Gu, S. Grosjean, S. Bräse, C. Wöll, and L. Heinke, “Enantioselective Adsorption in Homochiral Metal-Organic Frameworks: The Pore Size Influence,” Chemical Communications 51, no. 43 (2015): 8998–9001.

[361]

W. Zhao, T. Chen, W. Wang, et al., “Layer-by-Layer 2D Ultrathin Conductive Cu3(HHTP)2 Film for High-Performance Flexible Transparent Supercapacitors,” Advanced Materials Interfaces 8, no. 11 (2021): 2100308.

[362]

W. Zhao, T. Chen, W. Wang, et al., “Conductive Ni3(HITP)2 MOFs Thin Films for Flexible Transparent Supercapacitors With High-Rate Capability,” Science Bulletin 65, no. 21 (2020): 1803–1811.

[363]

J. Park, A. C. Hinckley, Z. Huang, et al., “High Thermopower in a Zn-Based 3D Semiconductive Metal–Organic Framework,” Journal of the American Chemical Society 142, no. 49 (2020): 20531–20535.

[364]

A. M. P. Peedikakkal and I. H. Aljundi, “Mixed-Metal Cu-BTC Metal–Organic Frameworks as a Strong Adsorbent for Molecular Hydrogen at Low Temperatures,” ACS Omega 5, no. 44 (2020): 28493–28499.

[365]

Z. Peng, X. Yi, Z. Liu, J. Shang, and D. Wang, “Triphenylamine-Based Metal–Organic Frameworks as Cathode Materials in Lithium-Ion Batteries With Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability,” ACS Applied Materials & Interfaces 8, no. 23 (2016): 14578–14585.

[366]

J. Liu, X. Y. D. Ma, Z. Wang, et al., “Metal–Organic Framework-Based Flexible Devices With Simultaneous Electrochromic and Electrofluorochromic Functions,” ACS Applied Electronic Materials 3, no. 3 (2021): 1489–1495.

[367]

S. Feng, J. Wang, Z. Tong, and H. Y. Qu, “Metal-Organic Framework Thin Films With Diverse Redox-Active/Inactive Components for Enhanced Optical Modulation and Coloration Efficiency,” Chemical Engineering Journal 442 (2022): 136158.

[368]

T. M. Figueira-Duarte and K. Müllen, “Pyrene-Based Materials for Organic Electronics,” Chemical Reviews 111, no. 11 (2011): 7260–7314.

[369]

Y.-X. Xie, W.-N. Zhao, G.-C. Li, P. F. Liu, and L. Han, “A Naphthalenediimide-Based Metal–Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties,” Inorganic Chemistry 55, no. 2 (2016): 549–551.

[370]

X. Wang, Z. Liu, H. Ma, et al., “Alkali-Stable Metal–Organic Frameworks With Enhanced Electroconductivity for Black-Brown Electrochromic Energy Storage Smart Window,” Advanced Science 11, no. 44 (2024): 2407297.

[371]

X. Li, Z. Li, W. He, et al., “Enhanced Electrochromic Properties of Nanostructured WO3 Film by Combination of Chemical and Physical Methods,” Coatings 11, no. 8 (2021): 959.

[372]

Q. Hao, Z. J. Li, C. Lu, et al., “Oriented Two-Dimensional Covalent Organic Framework Films for Near-Infrared Electrochromic Application,” Journal of the American Chemical Society 141, no. 50 (2019): 19831–19838.

[373]

F. Yu, W. Liu, S. W. Ke, M. Kurmoo, J. L. Zuo, and Q. Zhang, “Electrochromic Two-Dimensional Covalent Organic Framework With a Reversible Dark-to-Transparent Switch,” Nature Communications 11, no. 1 (2020): 5534.

[374]

Y.-A. Wang, Q. Wu, X. Wang, et al., “In Situ Electrochemical Interfacial Polymerization for Covalent Organic Frameworks With Tunable Electrochromism,” Angewandte Chemie International Edition 63 (2024): e202413071.

[375]

P. Salles, D. Pinto, K. Hantanasirisakul, K. Maleski, C. E. Shuck, and Y. Gogotsi, “Electrochromic Effect in Titanium Carbide MXene Thin Films Produced by Dip-Coating,” Advanced Functional Materials 29, no. 17 (2019): 1809223.

[376]

Y. Li, J. Yin, Y. Feng, et al., “Metal-Organic Framework/Polyimide Composite With Enhanced Breakdown Strength for Flexible Capacitor,” Chemical Engineering Journal 429, no. 1 (2022): 132228.

[377]

A. Hu, Q. Pang, C. Tang, et al., “Epitaxial Growth and Integration of Insulating Metal–Organic Frameworks in Electrochemistry,” Journal of the American Chemical Society 141, no. 28 (2019): 11322–11327.

[378]

Y. Sun, W. He, C. Jiang, J. Li, J. Liu, and M. Liu, “Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems,” Nano-Micro Letters 17, no. 1 (2025): 109.

[379]

O. A. Moses, L. Gao, H. Zhao, et al., “2D Materials Inks Toward Smart Flexible Electronics,” Materials Today 50 (2021): 116–148.

[380]

C. R. DeBlase, K. Hernández-Burgos, K. E. Silberstein, et al., “Rapid and Efficient Redox Processes Within 2D Covalent Organic Framework Thin Films,” ACS Nano 9, no. 3 (2015): 3178–3183.

[381]

T. Sick, A. G. Hufnagel, J. Kampmann, et al., “Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting,” Journal of the American Chemical Society 140, no. 6 (2018): 2085–2092.

[382]

H. H. Hegazy, S. S. Sana, T. Ramachandran, et al., “Covalent Organic Frameworks in Supercapacitors: Unraveling the Pros and Cons for Energy Storage,” Journal of Energy Storage 74 (2023): 109405.

[383]

J. Liu, M. Li, and J. Yu, “High-Performance Electrochromic Covalent Hybrid Framework Membranes via a Facile One-Pot Synthesis,” ACS Applied Materials & Interfaces 14, no. 1 (2022): 2051–2057.

[384]

Y. Wu, X. Mao, M. Zhang, et al., “2D Molecular Sheets of Hydrogen-Bonded Organic Frameworks for Ultrastable Sodium-Ion Storage,” Advanced Materials 33, no. 51 (2021): 2106079.

[385]

P. Brunet, M. Simard, and J. D. Wuest, “Molecular Tectonics. Porous Hydrogen-Bonded Networks With Unprecedented Structural Integrity,” Journal of the American Chemical Society 119, no. 11 (1997): 2737–2738.

[386]

K. V. V. Chandra Mouli, R. M. N. Kalla, T. Ramachandran, Y. A. Kumar, M. Moniruzzaman, and J. Lee, “Cutting-Edge Advancements in HOFs-Derived Materials for Energy Storage Supercapacitor Application,” International Journal of Hydrogen Energy 90 (2024): 1–24.

[387]

K. Ma, P. Li, J. H. Xin, et al., “Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites Toward Mustard Gas Detoxification,” Cell Reports Physical Science 1, no. 2 (2020): 100024.

[388]

Y. A. Kumar, C. J. Raorane, H. H. Hegazy, T. Ramachandran, S. C. Kim, and M. Moniruzzaman, “2D MXene-Based Supercapacitors: A Promising Path Towards High-Performance Energy Storage,” Journal of Energy Storage 72 (2023): 108433.

[389]

Y. A. Kumar, R. M. Naidu Kalla, T. Ramachandran, et al., “MXene Mastery: Transforming Supercapacitors Through Solid-Solution Innovations,” Journal of Industrial and Engineering Chemistry 145 (2025): 216–233.

[390]

M. Naguib, M. Kurtoglu, V. Presser, et al., “Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2,” Advanced Materials 23, no. 37 (2011): 4248–4253.

[391]

T. Ramachandran, F. Hamed, Y. A. Kumar, R. K. Raji, and H. H. Hegazy, “Multifunctional Covalent-Organic Frameworks (COFs)-2D MXenes Composites for Diverse Applications,” Journal of Energy Storage 73 (2023): 109299.

[392]

K. Hantanasirisakul, M.-Q. Zhao, P. Urbankowski, et al., “Fabrication of Ti3C2Tx MXene Transparent Thin Films With Tunable Optoelectronic Properties,” Advanced Electronic Materials 2, no. 6 (2016): 1600050.

[393]

C. Zhang, B. Anasori, A. Seral-Ascaso, et al., “Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films With High Volumetric Capacitance,” Advanced Materials 29, no. 36 (2017): 1702678.

[394]

C. Zhang and V. Nicolosi, “Graphene and MXene-Based Transparent Conductive Electrodes and Supercapacitors,” Energy Storage Materials 16 (2019): 102–125.

[395]

J. Halim, J. Palisaitis, J. Lu, et al., “Synthesis of Two-Dimensional Nb1.33C (MXene) With Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb2/3Sc1/3)2AlC MAX Phase,” ACS Applied Nano Materials 1, no. 6 (2018): 2455–2460.

[396]

G. Valurouthu, K. Maleski, N. Kurra, et al., “Tunable Electrochromic Behavior of Titanium-Based MXenes,” Nanoscale 12, no. 26 (2020): 14204–14212.

[397]

J. Li, A. Levitt, N. Kurra, et al., “MXene-Conducting Polymer Electrochromic Microsupercapacitors,” Energy Storage Materials 20 (2019): 455–461.

[398]

T. Ramachandran, R. K. Raji, and M. Rezeq, “From Lab to Market: The Future of Zinc–Air Batteries Powered by MOF/MXene Hybrids,” Journal of Materials Chemistry A 13, no. 18 (2025): 12855–12890.

[399]

Y. A. Kumar, S. Vignesh, T. Ramachandran, et al., “Solidifying the Future: Metal-Organic Frameworks in Zinc Battery Development,” Journal of Energy Storage 97 (2024): 112826.

[400]

X. Fan, M. Pan, X. Li, L. Kong, A. Kuchmizha, and H. Xu, “Research Progress of MOF Electrochromic Materials,” Resources Chemicals and Materials 3 (2024): 230–245.

[401]

Y. Li, P. Sun, J. Chen, et al., “Colorful Electrochromic Displays With High Visual Quality Based on Porous Metamaterials,” Advanced Materials 35 (2023): 2300116.

[402]

X. Fan, M. Xu, W. Liu, et al., “Resolving Molecular Size and Homologues With a Self-Assembled Metal−Organic Framework Photonic Crystal Detector,” ACS Materials Letters 5 (2023): 1703–1709.

[403]

C. Huang, W. Sun, Y. Jin, et al., “A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks From Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors,” Angewandte Chemie International Edition 63 (2024): e202313591.

[404]

Z. Huang, Y. Peng, J. Zhao, et al., “An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating With Energy Storage,” Nano-Micro Letters 17, no. 1 (2025): 98.

RIGHTS & PERMISSIONS

2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/