Sputtered Ultra-Thin TiO2 Interlayer for Highly Reversible Aqueous Zinc-Ion Battery

Qiuxia Zhang , Linfeng Wan , Shaoheng Cheng , Jiantao Wang , Yuhang Dai , Xuan Gao , Guanjie He , Hongdong Li

SmartMat ›› 2025, Vol. 6 ›› Issue (4) : e70034

PDF
SmartMat ›› 2025, Vol. 6 ›› Issue (4) : e70034 DOI: 10.1002/smm2.70034
RESEARCH ARTICLE

Sputtered Ultra-Thin TiO2 Interlayer for Highly Reversible Aqueous Zinc-Ion Battery

Author information +
History +
PDF

Abstract

Undesirable side reactions at the Zn anode interface hindered the development of aqueous zinc-ion batteries (AZIBs). In particular, the direct contact between the zinc (Zn) anode and aqueous media triggers side reactions such as Zn dendrites, hydrogen evolution, and corrosion. In this study, an artificial interlayer (TiO2) is constructed on the Zn anode surface by magnetron sputtering technology. Thanks to its ultra-thin, uniform, and stable porous structure, the TiO2 interlayer can effectively suppress and reduce side reactions through a physical barrier and regulation of ion flux. The experimental results show that the Zn||Zn symmetric cells using Zn anode with TiO2 interlayer (TO-Zn) exhibit symmetric charge–discharge curves and an ultra-long cycle life of over 5100 h at 5 mA/cm2 (1 mA∙h/cm2), which is approximately 51 times longer than the bare Zn anode (only 100 h). Compared to the bare Zn||MnO2 full cell, the full cell assembled with TO-Zn exhibits a relatively stable cycling performance, retaining a reversible capacity of approximately 108.4 mA∙h/g after 1000 cycles. This study uses a facile process technology to provide a reference for constructing an artificial interlayer.

Keywords

aqueous zinc-ion batteries / artificial interlayer / physical barrier / Zn anode interface

Cite this article

Download citation ▾
Qiuxia Zhang, Linfeng Wan, Shaoheng Cheng, Jiantao Wang, Yuhang Dai, Xuan Gao, Guanjie He, Hongdong Li. Sputtered Ultra-Thin TiO2 Interlayer for Highly Reversible Aqueous Zinc-Ion Battery. SmartMat, 2025, 6(4): e70034 DOI:10.1002/smm2.70034

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Li, S. Yan, H. Dong, et al., “Engineering Hydrophobic Protective Layers on Zinc Anodes for Enhanced Performance in Aqueous Zinc-Ion Batteries,” Journal of Energy Chemistry 97 (2024): 1–11.

[2]

Z. Liu, R. Wang, Y. Gao, et al., “Low-Cost Multi-Function Electrolyte Additive Enabling Highly Stable Interfacial Chemical Environment for Highly Reversible Aqueous Zinc Ion Batteries,” Advanced Functional Materials 33, no. 49 (2023): 2308463.

[3]

R. Zhao, Y. Yang, G. Liu, et al., “Redirected Zn Electrodeposition by an Anti-Corrosion Elastic Constraint for Highly Reversible Zn Anodes,” Advanced Functional Materials 31, no. 2 (2021): 2001867.

[4]

J. Wang, J. Peng, W. Huang, et al., “Enabling Stable Zn Anode With PVDF/CNTs Nanocomposites Protective Layer Toward High-Performance Aqueous Zinc-Ion Batteries,” Advanced Functional Materials 34, no. 26 (2024): 2316083.

[5]

X. Xiao, X. Ye, Z. Wu, et al., “Trace Small Molecular/Nano-Colloidal Multiscale Electrolyte Additives Enable Ultra-Long Lifespan of Zinc Metal Anodes,” Advanced Materials 36, no. 38 (2024): 2408706.

[6]

D. Wang, H. Liu, D. Lv, C. Wang, J. Yang, and Y. Qian, “Rational Screening of Artificial Solid Electrolyte Interphases on Zn for Ultrahigh-Rate and Long-Life Aqueous Batteries,” Advanced Materials 35, no. 2 (2023): 2207908.

[7]

X. Sun, X. Lv, M. Zhang, et al., “Construction of Selective Ion Transport Polymer at Anode–Electrolyte Interface for Stable Aqueous Zinc-Ion Batteries,” ACS Nano 18, no. 11 (2024): 8452–8462.

[8]

N. Guo, Z. Peng, W. Huo, et al., “Stabilizing Zn Metal Anode Through Regulation of Zn Ion Transfer and Interfacial Behavior With a Fast Ion Conductor Protective Layer,” Small 19, no. 47 (2023): 2303963.

[9]

R. Zhang, Y. Feng, Y. Ni, et al., “Bifunctional Interphase With Target-Distributed Desolvation Sites and Directionally Depositional Ion Flux for Sustainable Zinc Anode,” Angewandte Chemie International Edition 62, no. 25 (2023): e202304503.

[10]

Y. Song, Y. Liu, S. Luo, et al., “Blocking the Dendrite-Growth of Zn Anode by Constructing Ti4O7 Interfacial Layer in Aqueous Zinc-Ion Batteries,” Advanced Functional Materials 34, no. 25 (2024): 2316070.

[11]

H. Wang, P. Wang, K. Yu, et al., “Constructing a Rapid Ion-Transport Anode Interface Protective Layer for Zinc Ion Batteries to Suppress Solvation and Improve Surface Electronic Structure,” Chemical Engineering Journal 485 (2024): 149544.

[12]

X. Yang, C. Li, Z. Sun, et al., “Interfacial Manipulation via in Situ Grown ZnSe Cultivator Toward Highly Reversible Zn Metal Anodes,” Advanced Materials 33, no. 52 (2021): 2105951.

[13]

S. Zhang, M. Ye, Y. Zhang, Y. Tang, X. Liu, and C. C. Li, “Regulation of Ionic Distribution and Desolvation Activation Energy Enabled by In Situ Zinc Phosphate Protective Layer Toward Highly Reversible Zinc Metal Anodes,” Advanced Functional Materials 33, no. 22 (2023): 2208230.

[14]

J. Hao, B. Li, X. Li, et al., “An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries,” Advanced Materials 32, no. 34 (2020): 2003021.

[15]

Y. Liu, T. Guo, Q. Liu, et al., “Ultrathin ZrO2 Coating Layer Regulates Zn Deposition and Raises Long-Life Performance of Aqueous Zn Batteries,” Materials Today Energy 28 (2022): 101056.

[16]

J. Yang, R. Zhao, Y. Wang, et al., “Insights on Artificial Interphases of Zn and Electrolyte: Protection Mechanisms, Constructing Techniques, Applicability, and Prospective,” Advanced Functional Materials 33, no. 14 (2023): 2213510.

[17]

D. Chaussende, V. Tabouret, A. Crisci, et al., “Investigation of Amorphous-SIC Thin Film Deposition by RF Magnetron Sputtering for Optical Applications,” Materials Science in Semiconductor Processing 182 (2024): 108673.

[18]

M. Gholami, K. Khojier, M. Monsefi, and S. M. Borghei, “Fabrication and Characterization of TaxN Thin Films Deposited by DC Magnetron Sputtering Technique: Application in Microelectronic Devices,” Brazilian Journal of Physics 52, no. 5 (2022): 171.

[19]

Y. Pan, J. Wang, Z. Lu, R. Wang, and Z. Xu, “A Review on the Application of Magnetron Sputtering Technologies for Solid Oxide Fuel Cell in Reduction of the Operating Temperature,” International Journal of Hydrogen Energy 50 (2024): 1179–1193.

[20]

H. Skliarova, S. Cisternino, E. Cazzola, et al., “PP#83-Use of Magnetron Sputtering Technique for Medical Cyclotron Solid Target Preparation,” Nuclear Medicine and Biology 72 (2019): S31.

[21]

S. Yan, X. Yan, Y. Tong, M. Zhang, and J. Liu, “Application of Magnetron Sputtering Technique to Fabricate Sulfur/Carbon Composites Cathode Plates of Lithium-Sulfur Battery,” Materials Letters 273 (2020): 127888.

[22]

F. Zhao, J. Feng, H. Dong, et al., “Ultrathin Protection Layer via Rapid Sputtering Strategy for Stable Aqueous Zinc Ion Batteries,” Advanced Functional Materials 34, no. 51 (2024): 2409400.

[23]

Q. Zhang, J. Luan, X. Huang, et al., “Revealing the Role of Crystal Orientation of Protective Layers for Stable Zinc Anode,” Nature Communications 11, no. 1 (2020): 3961.

[24]

Y. Zhu, G. Liang, X. Cui, et al., “Engineering Hosts for Zn Anodes in Aqueous Zn-Ion Batteries,” Energy & Environmental Science 17, no. 2 (2024): 369–385.

[25]

J. Zheng, Z. Huang, Y. Zeng, et al., “Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes,” Nano Letters 22, no. 3 (2022): 1017–1023.

[26]

L. Hong, X. Wu, L.-Y. Wang, et al., “Highly Reversible Zinc Anode Enabled by a Cation-Exchange Coating With Zn-Ion Selective Channels,” ACS Nano 16, no. 4 (2022): 6906–6915.

[27]

T. Wang, P. Wang, L. Pan, et al., “Stabling Zinc Metal Anode With Polydopamine Regulation Through Dual Effects of Fast Desolvation and Ion Confinement,” Advanced Energy Materials 13, no. 5 (2023): 2203523.

[28]

M. Zhou, S. Guo, J. Li, et al., “Surface-Preferred Crystal Plane for a Stable and Reversible Zinc Anode,” Advanced Materials 33, no. 21 (2021): 2100187.

[29]

K. S. Sánchez-Zambrano, M. Hernández-Reséndiz, C. Gómez-Rodríguez, et al., “XPS Study on Calcining Mixtures of Brucite With Titania,” Materials 15, no. 9 (2022): 3117.

[30]

J. Yang, Y. Zhang, K. Liu, et al., “Z-Scheme Heterojunction of Phosphorus-Doped Carbon Nitride/Titanium Dioxide: Photocatalytic Performance,” Molecules 29, no. 18 (2024): 4342.

[31]

Z. Guo, L. Fan, C. Zhao, et al., “A Dynamic and Self-Adapting Interface Coating for Stable Zn-Metal Anodes,” Advanced Materials 34, no. 2 (2022): 2105133.

[32]

T. Sudare, R. Shimizu, N. Yamada, et al., “Elucidating the Role of Interstitial Oxygen in Transparent Conducting Anatase TiO2 by Polarized X-Ray Absorption Spectroscopy Study,” Chemistry of Materials 37, no. 1 (2025): 480–488.

[33]

Y. Cui, Z. Ju, R. Yu, et al., “Challenges, Strategies, and Perspectives of Anode Protection in Aqueous Zinc-Ion Batteries,” ACS Materials Letters 6, no. 2 (2024): 611–626.

[34]

X. Yu, Z. Li, X. Wu, et al., “Ten Concerns of Zn Metal Anode for Rechargeable Aqueous Zinc Batteries,” Joule 7, no. 6 (2023): 1145–1175.

[35]

Y. Dai, C. Zhang, W. Zhang, et al., “Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators,” Angewandte Chemie International Edition 62, no. 18 (2023): e202301192.

[36]

J. Zhou, F. Wu, Y. Mei, et al., “Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zinc-Ion Batteries,” Advanced Materials 34, no. 21 (2022): 2200782.

[37]

Y. Song, P. Ruan, C. Mao, et al., “Metal–Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries,” Nano-Micro Letters 14, no. 1 (2022): 218.

[38]

W. Zhang, X. Zhu, L. Kang, et al., “Stabilizing Zinc Anode Using Zeolite Imidazole Framework Functionalized Separator for Durable Aqueous Zinc-Ion Batteries,” Journal of Energy Chemistry 90 (2024): 23–31.

[39]

H. Liu, Q. Ye, D. Lei, et al., “Molecular Brush: An Ion-Redistributor to Homogenize Fast Zn2+ Flux and Deposition for Calendar-Life Zn Batteries,” Energy & Environmental Science 16, no. 4 (2023): 1610–1619.

[40]

T. Shen, M. Fang, T. Lv, et al., “In Situ Assembly of Metal-Organic Coordination Polymer Layers Enables Highly Reversible Zn Anodes With a Long Cycle Life of Over 6900 h,” Advanced Functional Materials 34, no. 48 (2024): 2408578.

[41]

Z. Zhao, J. Zhao, Z. Hu, et al., “Long-Life and Deeply Rechargeable Aqueous Zn Anodes Enabled by a Multifunctional Brightener-Inspired Interphase,” Energy & Environmental Science 12, no. 6 (2019): 1938–1949.

[42]

Y. Ai, C. Yang, Z. Yin, et al., “Biomimetic Superstructured Interphase for Aqueous Zinc-Ion Batteries,” Journal of the American Chemical Society 146, no. 22 (2024): 15496–15505.

[43]

B. -b. Sui, L. Sha, P. -f. Wang, et al., “In Situ Zinc Citrate on the Surface of Zn Anode Improves the Performance of Aqueous Zinc-Ion Batteries,” Journal of Energy Storage 82 (2024): 110550.

[44]

H. Qiu, X. Du, J. Zhao, et al., “Zinc Anode-Compatible In-Situ Solid Electrolyte Interphase via Cation Solvation Modulation,” Nature Communications 10, no. 1 (2019): 5374.

[45]

J. H. Park, C. Choi, J. B. Park, S. Yu, and D.-W. Kim, “Fortifying Zinc Metal Anodes Against Uncontrollable Side-Reactions and Dendrite Growth for Practical Aqueous Zinc Ion Batteries: A Novel Composition of Anti-Corrosive and Zn2+ Regulating Artificial Protective Layer,” Advanced Energy Materials 14, no. 5 (2024): 2302493.

[46]

Y. Wang, N. Li, H. Liu, et al., “Interface Regulation Using a Fluorinated Vinylene-Linked Covalent Organic Framework for a Highly Stable Zn Anode,” Journal of Materials Chemistry A 12, no. 13 (2024): 7799–7806.

[47]

C.-Y. Tian, W.-W. Li, X.-W. Liu, et al., “Hydrophobic Organic–Inorganic Hybrid Surface Modification-Induced Uniform Zinc Deposition and Prohibited Side Reactions Toward a Ultra-Stable Zinc Anode,” ACS Sustainable Chemistry & Engineering 11, no. 9 (2023): 3576–3584.

[48]

H. J. Kim, S. Kim, K. Heo, J. Lim, H. Yashiro, and S. Myung, “Nature of Zinc-Derived Dendrite and Its Suppression in Mildly Acidic Aqueous Zinc-Ion Battery,” Advanced Energy Materials 13, no. 2 (2023): 2203189.

[49]

Y. Hu, C. Fu, S. Chai, et al., “Construction of Zinc Metal-Tin Sulfide Polarized Interface for Stable Zn Metal Batteries,” Advanced Powder Materials 2, no. 2 (2023): 100093.

[50]

H. Zhang, T. Jiang, D. Jin, L. Xie, and M. Wu, “Hydrophobic and Zincophilic Organic Hierarchical Nano-Membranes With Ordered Molecular Packing for Stable Zinc Metal Anodes,” Energy Storage Materials 70 (2024): 103513.

[51]

J. Huang, Z. Wang, M. Hou, et al., “Polyaniline-Intercalated Manganese Dioxide Nanolayers as a High-Performance Cathode Material for an Aqueous Zinc-Ion Battery,” Nature Communications 9, no. 1 (2018): 2906.

RIGHTS & PERMISSIONS

2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/