Design Strategies and Emerging Applications of Perovskite-Based Sensors

Yingchun Li , Yarong Ding , Jiachun Sun , Shaozhe Tan , Yufeng Li , Xiaodong Wang , Jun Cai , Jianbin Bai , Xinmeng Lv , Wenhui Guo , Yue Hao , Yannan Liu , Zhenhua Lin , Jingjing Chang

SmartMat ›› 2025, Vol. 6 ›› Issue (3) : e70022

PDF
SmartMat ›› 2025, Vol. 6 ›› Issue (3) : e70022 DOI: 10.1002/smm2.70022
REVIEW

Design Strategies and Emerging Applications of Perovskite-Based Sensors

Author information +
History +
PDF

Abstract

Perovskite materials, with their outstanding optoelectronic properties, low cost, solution-processability, and scalability, have emerged as promising candidates in the field of sensors. Despite extensive exploration into the photoelectric properties and traditional applications (e.g., gas sensing) of perovskite sensors, there has been limited focus on the fabrication processes that dominate their performance and emerging application directions. The flourishing development of perovskite sensors should comprehend the challenges in fabrication processes (e.g., stability, uniformity, and scale-up production) of perovskite sensors and further improve the sensing performance in conjunction with the working principles, extending their application fields. Herein, a comprehensive overview primarily focuses on the significant challenges faced by perovskite sensors in emerging application fields, including performance enhancement and process optimization. The key performance parameters and working principles of perovskite sensor are analyzed first. Then we review the effective design strategies and solutions proposed in recent research, while providing insights into optimizing sensor design to enhance sensing performance for precise detection. Moreover, some emerging applications of perovskite sensors, such as smart biomedical diagnosis, wearable devices, and artificial intelligence, are explored. Current challenges and future trends are also addressed, emphasizing the growing potential of perovskite sensors in advancing sensor technology innovation and interdisciplinary applications.

Keywords

artificial intelligence / design strategy / fabrication method / perovskite sensor / wearable device

Cite this article

Download citation ▾
Yingchun Li, Yarong Ding, Jiachun Sun, Shaozhe Tan, Yufeng Li, Xiaodong Wang, Jun Cai, Jianbin Bai, Xinmeng Lv, Wenhui Guo, Yue Hao, Yannan Liu, Zhenhua Lin, Jingjing Chang. Design Strategies and Emerging Applications of Perovskite-Based Sensors. SmartMat, 2025, 6(3): e70022 DOI:10.1002/smm2.70022

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Li, X. Zhu, X. Hai, S. Bi, and X. Zhang, “Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications,” ACS Sensors 8, no. 3 (2023): 994–1016.

[2]

C. M. Costa, V. F. Cardoso, P. Martins, et al., “Smart and Multifunctional Materials Based on Electroactive Poly(Vinylidene Fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications,” Chemical Reviews 123, no. 19 (2023): 11392–11487.

[3]

J. Park, B. Seo, Y. Jeong, and I. Park, “A Review of Recent Advancements in Sensor-Integrated Medical Tools,” Advanced Science 11, no. 20 (2024): 2307427.

[4]

H. C. Ates, P. Q. Nguyen, L. Gonzalez-Macia, et al., “End-to-End Design of Wearable Sensors,” Nature Reviews Materials 7, no. 11 (2022): 887–907.

[5]

H. Chen, Z. Luo, X. Lin, Y. Zhu, and Y. Zhao, “Sensors-Integrated Organ-on-a-Chip for Biomedical Applications,” Nano Research 16, no. 7 (2023): 10072–10099.

[6]

R. G. Ferreira, A. P. Silva, and J. Nunes-Pereira, “Current on-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review,” ACS Sensors 9, no. 3 (2024): 1104–1133.

[7]

X. Zhou, X. Zhao, Y. Wang, et al., “Gel-Based Strain/Pressure Sensors for Underwater Sensing: Sensing Mechanisms, Design Strategies and Applications,” Composites, Part B: Engineering 255 (2023): 110631.

[8]

H. Li, J. Yu, Y. Gong, et al., “Perovskite Catalysts With Different Dimensionalities for Environmental and Energy Applications: A Review,” Technology 307 (2023): 122716.

[9]

J. He, X. Xu, M. Li, S. Zhou, and W. Zhou, “Recent Advances in Perovskite Oxides for Non-Enzymatic Electrochemical Sensors: A Review,” Analytica Chimica Acta 1251 (2023): 341007.

[10]

Q. A. Akkerman, G. Rainò, M. V. Kovalenko, and L. Manna, “Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals,” Nature Materials 17, no. 5 (2018): 394–405.

[11]

C. I. Piñón-Balderrama, C. Leyva-Porras, A. S. Conejo-Dávila, et al., “Electrochemical Perovskite-Based Sensors for the Detection of Relevant Biomarkers for Human Kidney Health,” Chemosensors 11, no. 9 (2023): 507.

[12]

T. W. Chen, R. Ramachandran, S. M. Chen, et al., “Developing Low-Cost, High Performance, Robust and Sustainable Perovskite Electrocatalytic Materials in the Electrochemical Sensors and Energy Sectors: An Overview,” Catalysts 10, no. 8 (2020): 938.

[13]

B. Ai, Z. Fan, and Z. J. Wong, “Plasmonic-Perovskite Solar Cells, Light Emitters, and Sensors,” Microsystems & Nanoengineering 8, no. 1 (2022): 5.

[14]

K. Brintakis, E. Gagaoudakis, A. Kostopoulou, et al., “Ligand-Free All-Inorganic Metal Halide Nanocubes for Fast, Ultra-Sensitive and Self-Powered Ozone Sensors,” Nanoscale Advances 1, no. 7 (2019): 2699–2706.

[15]

Q. Liu, S. Gao, L. Xu, et al., “Nanostructured Perovskites for Nonvolatile Memory Devices,” Chemical Society Reviews 51, no. 9 (2022): 3341–3379.

[16]

V. V. Halali, C. Sanjayan, V. Suvina, M. Sakar, and R. G. Balakrishna, “Perovskite Nanomaterials as Optical and Electrochemical Sensors,” Frontiers in Chemistry 7, no. 14 (2020): 2702–2725.

[17]

S. D. Stranks, G. E. Eperon, G. Grancini, et al., “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342, no. 6156 (2013): 341–344.

[18]

D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks, et al., “Impact of Microstructure on Local Carrier Lifetime in Perovskite Solar Cells,” Science 348, no. 6235 (2015): 683–686.

[19]

L. Meng, Z. Wei, T. Zuo, and P. Gao, “Finding Junction Partners for CsPbI3 in a Two-Terminal Tandem Solar Cell: A Theoretical Prospect,” Nano Energy 75 (2020): 104866.

[20]

S. Yang, Y. Xu, Z. Hao, et al., “Recent Advances in High-Efficiency Perovskite for Medical Sensors,” Acta Physico-Chimica Sinica 39, no. 5 (2023): 2211025.

[21]

X. Yu, H. N. Tsao, Z. Zhang, and P. Gao, “Miscellaneous and Perspicacious: Hybrid Halide Perovskite Materials Based Photodetectors and Sensors,” Advanced Optical Materials 8, no. 21 (2020): 2001095.

[22]

H. Jinno, T. Yokota, M. Koizumi, et al., “Self-Powered Ultraflexible Photonic Skin for Continuous Bio-Signal Detection via Air-Operation-Stable Polymer Light-Emitting Diodes,” Nature Communications 12, no. 1 (2021): 2234.

[23]

J. H. Zhang, Z. Li, J. Xu, et al., “Versatile Self-Assembled Electrospun Micropyramid Arrays for High-Performance on-Skin Devices With Minimal Sensory Interference,” Nature Communications 13, no. 1 (2022): 5839.

[24]

D. Li, P. Zhuang, and C. Sun, “Unlocking the Potential of Perovskite-Based Nanomaterials for Revolutionary Smartphone-Based Sensor Applications,” Journal of Materials Chemistry C 12, no. 13 (2024): 4544–4561.

[25]

C. H. Wei, Z. Y. Guo, H. Wang, S. Q. Zhang, D. D. Hao, and J. Huang, “Recent Progress of Gas Sensors Based on Perovskites,” Materials Horizons 11, no. 8 (2024): 6239.

[26]

C. Koventhan, R. Shanmugam, and S. M. Chen, “Development of Highly Sensitive Electrochemical Sensor for Antipsychotic Drug Perphenazine Using Perovskite Structured Lanthanum Cobalt Oxide Nanoparticles Wrapped Graphitic Carbon Nitride Nanocomposites,” Electrochimica Acta 467 (2023): 143096.

[27]

Z. Hu, B. Zhang, F. Zhang, et al., “All Solution-Processed SnO2/1D-CsAg2I3 Heterojunction for High-Sensitivity Self-Powered Visible-Blind UV Photodetector,” Science China Materials 66, no. 9 (2023): 3629–3636.

[28]

M. Pi, D. Wu, J. Wang, et al., “Real-Time and Ultrasensitive Humidity Sensor Based on Lead-Free Cs2SnCl6 Perovskites,” Sensors and Actuators B: Chemical 354 (2022): 131084.

[29]

T. Bu, L. K. Ono, J. Li, et al., “Modulating Crystal Growth of Formamidinium-Caesium Perovskites for over 200 cm2 Photovoltaic Sub-Modules,” Nature Energy 7, no. 6 (2022): 528–536.

[30]

W. Wang, D. Zhao, F. Zhang, et al., “Highly Sensitive Low-Bandgap Perovskite Photodetectors With Response From Ultraviolet to the Near-Infrared Region,” Advanced Functional Materials 27, no. 42 (2017): 1703953.

[31]

Q. Fan, H. Zhang, K. Li, et al., “Narrowband and Broadband Dual-Mode Perovskite Photodetector for RGB Detection Application,” Advanced Optical Materials 11, no. 16 (2023): 2300272.

[32]

T. Wang, D. Zheng, K. Vegso, N. Mrkyvkova, P. Siffalovic, and T. Pauporté, “High-Resolution and Stable Ruddlesden-Popper Quasi-2D Perovskite Flexible Photodetectors Arrays for Potential Applications as Optical Image Sensor,” Advanced Functional Materials 33, no. 43 (2023): 2304659.

[33]

L. Li, S. Ye, J. Qu, F. Zhou, J. Song, and G. Shen, “Recent Advances in Perovskite Photodetectors for Image Sensing,” Small 17, no. 18 (2021): 202005606.

[34]

N. Ding, D. Zhou, G. Pan, et al., “Europium-Doped Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots and Ultrasensitive Cu2+ Detection,” ACS Sustainable Chemistry & Engineering 7, no. 9 (2019): 8397–8404.

[35]

Y. Liu, L. Gao, T. Cheng, et al., “Lead-Free Double Perovskite Halide Fluorescent Oxygen Sensor With High Stability,” Ceramics International 49, no. 18 (2023): 30266–30272.

[36]

G. Li, C. She, Y. Zhang, et al., “A “Turn-on” Fluorescence Perovskite Sensor Based on MAPbBr3/Mesoporous TiO2 for NH3 and Amine Vapor Detections,” Sensors and Actuators B: Chemical 327 (2021): 128918.

[37]

M. A. Shohag, G. Adams, V. Eze, L. B. Carani, T. Ichite, and O. Okoli, “An Efficient Way of Harvesting Mechanoluminescent Light: Flexible Pressure Sensor Application,” Journal of Luminescence 260 (2023): 119895.

[38]

R. Saraf, L. Pu, and V. Maheshwari, “A Light Harvesting, Self-Powered Monolith Tactile Sensor Based on Electric Field Induced Effects in MAPbI3 Perovskite,” Advanced Materials 30, no. 9 (2018): 1705778.

[39]

J. Luo, L. Zhang, T. Wu, et al., “Flexible Electronic Skin With High Performance Pressure Sensing Based on PVDF/rGO/BaTiO3 Composite Thin Film,” Organic Electronics 98 (2021): 106296.

[40]

Y. Tang, P. Jin, Y. Wang, et al., “Enabling Low-Drift Flexible Perovskite Photodetectors by Electrical Modulation for Wearable Health Monitoring and Weak Light Imaging,” Nature Communications 14, no. 1 (2023): 4961.

[41]

S. O. Abdellatif, A. Moustafa, A. Khalid, and R. Ghannam, “Integration of Capacitive Pressure Sensor-on-Chip With Lead-Free Perovskite Solar Cells for Continuous Health Monitoring,” Micromachines 14, no. 9 (2023): 1676.

[42]

M. A. S. Shohag, V. O. Eze, L. Braga Carani, and O. I. Okoli, “Fully Integrated Mechanoluminescent Devices With Nanometer-Thick Perovskite Film as Self-Powered Flexible Sensor for Dynamic Pressure Sensing,” ACS Applied Nano Materials 3, no. 7 (2020): 6749–6756.

[43]

M. Aamir, M. Sher, M. A. Malik, J. Akhtar, and N. Revaprasadu, “A Chemodosimetric Approach for the Selective Detection of Pb2+ Ions Using a Cesium Based Perovskite,” New Journal of Chemistry 40, no. 11 (2016): 9719–9724.

[44]

L. Q. Lu, T. Tan, X. K. Tian, Y. Li, and P. Deng, “Visual and Sensitive Fluorescent Sensing for Ultratrace Mercury Ions by Perovskite Quantum Dots,” Analytica Chimica Acta 986 (2017): 109–114.

[45]

G. Y. Lee, M. Y. Yang, D. H. Kim, et al., “Nitrogen-Dopant-Induced Organic Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes,” Advanced Functional Materials 29, no. 30 (2019): 1902489.

[46]

G. Li, Y. Zhang, X. Zhao, et al., “Bismuth-Based Lead-Free Perovskite Film for Highly Sensitive Detection of Ammonia Gas,” Sensors and Actuators B: Chemical 345 (2021): 130298.

[47]

W. Wang, P. Deng, X. Liu, Y. Ma, and Y. Yan, “A CsPbBr3 Quantum Dots/Ultra-Thin BN Fluorescence Sensor for Stability and Highly Sensitive Detection of Tetracycline,” Microchemical Journal 162, no. 1 (2021): 105876.

[48]

A. Naz, Y. Meng, J. Luo, et al., “Cutting-Edge Perovskite-Based Flexible Pressure Sensors Made Possible by Piezoelectric Innovation,” Materials 17, no. 17 (2024): 4196.

[49]

L. B. Carani, T. D. Martin, V. O. Eze, and O. I. Okoli, “Impact Sensing and Localization in Composites Structures With Embedded Mechanoluminescence-Perovskite Sensors,” Sensors and Actuators, A: Physical 346 (2022): 113843.

[50]

X. Huang and X. Zhang, “Recent Advance in Stretchable Self-Powered Piezoelectric Sensors: Trends, Challenges, and Solutions,” Advanced Materials Technologies 8, no. 24 (2023): 2301226.

[51]

Y. Chen, X. Zhang, and C. Lu, “Flexible Piezoelectric Materials and Strain Sensors for Wearable Electronics and Artificial Intelligence Applications,” Chemical Science 15, no. 40 (2024): 16436–16466.

[52]

T. Ahmed, S. A. Khan, J. Bae, et al., “Role of Bi Chemical Pressure on Electrical Properties of BiFeO3-BaTiO3-Based Ceramics,” Solid State Sciences 114 (2021): 106562.

[53]

G. Jian, Y. Jiao, Q. Meng, et al., “Excellent High-Temperature Piezoelectric Energy Harvesting Properties in Flexible Polyimide/3D PbTiO3 Flower Composites,” Nano Energy 82 (2021): 105778.

[54]

M. Ju, Z. Dou, J. W. Li, et al., “Piezoelectric Materials and Sensors for Structural Health Monitoring: Fundamental Aspects, Current Status, and Future Perspectives,” Sensors 23, no. 1 (2023): 543.

[55]

G. Prasad, S. A. Graham, J. S. Yu, H. Kim, and D. W. Lee, “Investigated a PLL Surface-Modified Nylon 11 Electrospun as a Highly Tribo-Positive Frictional Layer to Enhance Output Performance of Triboelectric Nanogenerators and Self-Powered Wearable Sensors,” Nano Energy 108 (2023): 108178.

[56]

Y. He, Y. Huang, R. Xue, Q. Shi, Y. Wu, and R. Liu, “Flexible Pressure Sensor Based on Multi-Layer With Gradient Structure P(VDF-HFP)/MXene/BaTiO3 Composite Film for Human Motion Monitoring,” Diamond and Related Materials 140, no. Part B (2023): 110536.

[57]

Y. Yang, Y. Liu, and R. Yin, “Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors,” Advanced Fiber Materials 7 (2025): 34–71.

[58]

S. Han, S. Li, X. Fu, et al., “Research Progress of Flexible Piezoresistive Sensors Based on Polymer Porous Materials,” ACS Sensors 9, no. 8 (2024): 3848–3863.

[59]

W. Xuan, Y. Fang, S. Teng, et al., “In Situ Fabrication of Porous Polymer Films Embedded With Perovskite Nanocrystals for Flexible Superhydrophobic Piezoresistive Sensors,” Journal of Colloid and Interface Science 669, no. 6 (2024): 358–365.

[60]

H. Niu, H. Li, N. Li, et al., “Fringing-Effect-Based Capacitive Proximity Sensors,” Advanced Functional Materials 34, no. 51 (2024): 2409820.

[61]

H. Yuan, Q. Zhang, T. Zhou, et al., “Progress and Challenges in Flexible Capacitive Pressure Sensors: Microstructure Designs and Applications,” Chemical Engineering Journal 485 (2024): 149926.

[62]

A. Gurarslan, B. Özdemir, İ. H. Bayat, M. B. Yelten, and G. Karabulut Kurt, “Silver Nanowire Coated Knitted Wool Fabrics for Wearable Electronic Applications,” Journal of Engineered Fibers and Fabrics 14, no. 3 (2019): 1558925019856222.

[63]

C. R. Yang, M. F. Lin, C. K. Huang, W. C. Huang, S. F. Tseng, and H. H. Chiang, “Highly Sensitive and Wearable Capacitive Pressure Sensors Based on PVDF/BaTiO3 Composite Fibers on PDMS Microcylindrical Structures,” Measurement 202 (2022): 111817.

[64]

S. N. Khonina, G. S. Voronkov, E. P. Grakhova, N. L. Kazanskiy, R. V. Kutluyarov, and M. A. Butt, “Polymer Waveguide-Based Optical Sensors-Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications,” Coatings 13, no. 3 (2023): 549.

[65]

P. Zhang, Z. Teng, L. Zhao, et al., “Multi-Dimensional Mechanical Mapping Sensor Based on Flexoelectric-Like and Optical Signals,” Advanced Science 10, no. 19 (2023): 2301214.

[66]

A. Hinojo, E. Lujan, J. Abella, and S. Colominas, “A Novel Solution for Hydrogen Monitoring in Fusion Processes: 3D Printed BaCe0.6Zr0.3Y0.1O3-α Sensors,” Nuclear Materials and Energy 39 (2024): 101661.

[67]

A. Sharma, N. Kumar, J. H. Malik, A. A. Bhat, and R. Tomar, “Study of Electrochemical Sensor and Energy Storage Properties of MnTiO3 Nano-Perovskite,” Energy Storage 5, no. 1 (2023): e385.

[68]

Y. Zhang, T. Liu, T. Wang, et al., “Ce0.8Gd0.2O1.95-Based Mixed Potential Type Triethylamine Sensor Utilizing La2NiFeO6 Sensing Electrode,” Sensors and Actuators B: Chemical 345 (2021): 130438.

[69]

H. R. Kim, J. H. Bong, J. H. Park, et al., “Cesium Lead Bromide (CsPbBr3) Perovskite Quantum Dot-Based Photosensor for Chemiluminescence Immunoassays,” ACS Applied Materials & Interfaces 13, no. 25 (2021): 29392–29405.

[70]

Y. Wang, L. Yin, J. Wu, et al., “Perovskite-SrTiO3/TiO2/PDA as Photoelectrochemical Glucose Biosensor,” Ceramics International 47, no. 21 (2021): 29807–29814.

[71]

G. P. Ratkovski, K. T. O. do Nascimento, G. C. Pedro, et al., “Spinel Cobalt Ferrite Nanoparticles for Sensing Phosphate Ions in Aqueous Media and Biological Samples,” Langmuir 36, no. 11 (2020): 2920–2929.

[72]

K. Zhou, L. Tang, C. Zhu, et al., “Recent Advances in Structure Design and Application of Metal Halide Perovskite-Based Gas Sensor,” ACS Sensors 9, no. 9 (2024): 4425–4449.

[73]

Y. Zhang, T. Liu, T. Wang, et al., “Ce0.8Gd0.2O1.95-Based Mixed Potential Type Triethylamine Sensor Utilizing La2NiFeO6 Sensing Electrode,” Sensors and Actuators B: Chemical 345 (2021): 130438.

[74]

A. Jamil, S. Fareed, F. Afsar, F. Siddique, F. Sher, and M. A. Rafiq, “Development of High Performance Bi5Ti3FeO15 Layered Perovskite Oxygen Gas Sensor and Its Dielectric Behavior,” Materials Research Express 6, no. 11 (2019): 115028.

[75]

T. W. Chen, R. Ramachandran, S. M. Chen, G. Anushya, and K. Ramachandran, “Graphene and Perovskite-Based Nanocomposite for Both Electrochemical and Gas Sensor Applications: An Overview,” Sensors 20, no. 23 (2020): 6755.

[76]

C. Chen, L. Li, and T. Lu, “Development of Electrolytes in Current-Type Electrochemical Gas Sensor,” Chinese Journal of Chemistry 29, no. 3 (2012): 245–250.

[77]

S. N. Mohseni, M. R. Majidi, H. Sohrabi, E. Mahmoudi, N. Caylak Delibas, and A. Niaei, “High-Throughput Screening of Perovskite-Based Electrochemical Sensor for Determination of Piroxicam via Electrocatalytic Oxidation in Pharmaceutical and Biomedical Analysis,” Materials Chemistry and Physics 316 (2024): 129100.

[78]

S. Basavapura Ravikumar, S. B. Prasanna, N. S. Shanthappa, et al., “Development of a Highly Sensitive Electrochemical Sensor Using Sm2CuZrO6 Double Perovskite as an Electrocatalyst for Determination of Risperidone Antipsychotic Drug in Tablet Samples,” ACS Omega 8, no. 50 (2023): 47781–47790.

[79]

Z. Anajafi, M. Naseri, and G. Neri, “Gas Sensing and Electrochemical Properties of Rare Earthferrite, LnFeO3 (Ln = Nd, Sm),” Ceramics International 46, no. 17 (2020): 26682–26688.

[80]

C. D. Flynn, D. Chang, A. Mahmud, et al., “Biomolecular Sensors for Advanced Physiological Monitoring,” Nature Reviews Bioengineering 1, no. 8 (2023): 560–575.

[81]

R. Ouyang, H. Shen, M. Feng, et al., “Perovskite Materials Advance the Potent Sensor Exploration,” Journal of the Chinese Chemical Society 71, no. 8 (2024): 829–842.

[82]

O. A. L. dos Santos, M. Sneha, T. Devarani, et al., “Review—Perovskite/Spinel Based Graphene Derivatives Electrochemical and Biosensors,” Journal of the Electrochemical Society 168, no. 6 (2021): 067506.

[83]

Q. Zhang, J. Hu, D. Li, J. G. Qiu, B. H. Jiang, and C. Zhang, “Construction of Single-Molecule Counting-Based Biosensors for DNA-Modifying Enzymes: A Review,” Analytica Chimica Acta 1298 (2024): 342395.

[84]

S. R. Yashas, S. Sandeep, B. P. Shivakumar, and N. K. Swamy, “Potentiometric Polyphenol Oxidase Biosensor for Sensitive Determination of Phenolic Micropollutant in Environmental Samples,” Environmental Science and Pollution Research 27, no. 22 (2020): 27234–27243.

[85]

R. M. Bialy, A. Mainguy, Y. Li, and J. D. Brennan, “Functional Nucleic Acid Biosensors Utilizing Rolling Circle Amplification,” Chemical Society Reviews 51, no. 21 (2022): 9009–9067.

[86]

J. Zhao, K. Xia, P. He, G. Wei, X. Zhou, and X. Zhang, “Recent Advances of Nucleic Acid-Based Cancer Biomarkers and Biosensors,” Coordination Chemistry Reviews 497 (2023): 215456.

[87]

W. Wang, Q. Wang, H. Xie, D. Wu, and N. Gan, “A Universal Assay Strategy for Sensitive and Simultaneous Quantitation of Multiplex Tumor Markers Based on the Stirring Rod-Immobilized DNA-LaMnO3 Perovskite-Metal Ions Encoded Probes,” Talanta 222 (2021): 121456.

[88]

J. Kim and M. Park, “Recent Progress in Electrochemical Immunosensors,” Biosensors 11, no. 10 (2021): 360.

[89]

T. Chakraborty, M. Das, C. Y. Lin, K. F. Lei, and C. H. Kao, “Highly Sensitive and Selective Electrochemical Detection of Lipocalin 2 by NiO Nanoparticles/Perovskite CeCuOx Based Immunosensor to Diagnose Renal Failure,” Analytica Chimica Acta 1205 (2022): 339754.

[90]

C. Huang, M. Jiang, and F. Liu, “Recent Progress on Environmentally Friendly Humidity Sensor: A Mini Review,” ACS Applied Electronic Materials 5, no. 8 (2023): 4067–4079.

[91]

Y. J. Gao, G. Romolini, H. Huang, et al., “Ultrasensitive Turn-on Luminescence Humidity Sensor Based on a Perovskite/Zeolite Composite,” Journal of Materials Chemistry C 10, no. 34 (2022): 12191–12196.

[92]

Z. Weng, J. Qin, A. A. Umar, et al., “Lead-Free Cs2BiAgBr6 Double Perovskite-Based Humidity Sensor With Superfast Recovery Time,” Advanced Functional Materials 29, no. 24 (2019): 1902234.

[93]

Y. Zu, Z. Duan, Z. Yuan, Y. Jiang, and H. Tai, “Electrospun Nanofiber-Based Humidity Sensors: Materials, Devices, and Emerging Applications,” Journal of Materials Chemistry A 12, no. 40 (2024): 27157–27179.

[94]

M. Y. Cho, S. Kim, I. S. Kim, et al., “Perovskite-Induced Ultrasensitive and Highly Stable Humidity Sensor Systems Prepared by Aerosol Deposition at Room Temperature,” Advanced Functional Materials 30, no. 3 (2020): 1907449.

[95]

Z. Wu, J. Yang, X. Sun, et al., “An Excellent Impedance-Type Humidity Sensor Based on Halide Perovskite CsPbBr3 Nanoparticles for Human Respiration Monitoring,” Sensors and Actuators B: Chemical 337 (2021): 129772.

[96]

Y. Zhang, X. Pan, Z. Wang, et al., “Fast and Highly Sensitive Humidity Sensors Based on NaNbO3 Nanofibers,” RSC Advances 5, no. 26 (2015): 20453–20458.

[97]

C. Doroftei and L. Leontie, “Porous Nanostructured Gadolinium Aluminate for High-Sensitivity Humidity Sensors,” Materials 14, no. 22 (2021): 7102.

[98]

H. Farahani, R. Wagiran, and G. A. Urban, “Investigation of Room Temperature Protonic Conduction of Perovskite Humidity Sensors,” IEEE Sensors Journal 21, no. 8 (2021): 9657–9666.

[99]

Y. Xu, Z. Lin, J. Zhang, et al., “Flexible Perovskite Solar Cells: Material Selection and Structure Design,” Applied Physics Reviews 9, no. 2 (2022): 021307.

[100]

K. Wang, G. Xing, Q. Song, and S. Xiao, “Micro- and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices,” Advanced Materials 33, no. 6 (2021): 2000306.

[101]

W. Wu, X. Han, J. Li, et al., “Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retina-Like Vision Sensing,” Advanced Materials 33, no. 9 (2021): 2006006.

[102]

Y. K. Syue, K. C. Hsu, T. H. Fang, C. I. Lee, and C. J. Shih, “Characteristics and Gas Sensor Applications of ZnO-Perovskite Heterostructure,” Ceramics International 48, no. 9 (2022): 12585–12591.

[103]

Y. Zhuang, W. Yuan, L. Qian, S. Chen, and G. Shi, “High-Performance Gas Sensors Based on a Thiocyanate Ion-Doped Organometal Halide Perovskite,” Physical Chemistry Chemical Physics 19, no. 20 (2017): 12876–12881.

[104]

J. H. H. Rossato, M. E. Oliveira, B. V. Lopes, et al., “A Flexible Electrochemical Biosensor Based on NdNiO3 Nanotubes for Ascorbic Acid Detection,” ACS Applied Nano Materials 5, no. 3 (2022): 3394–3405.

[105]

C. Y. Wu, Z. Wang, L. Liang, et al., “Graphene-Assisted Growth of Patterned Perovskite Films for Sensitive Light Detector and Optical Image Sensor Application,” Small 15, no. 19 (2019): 1900730.

[106]

W. Deng, X. Zhang, L. Huang, et al., “Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors With Long-Term Stability,” Advanced Materials 28, no. 11 (2016): 2201–2208.

[107]

C. Aranthady, T. Jangid, K. Gupta, et al., “Selective SO2 Detection at Low Concentration by Ca Substituted LaFeO3 Chemiresistive Gas Sensor: A Comparative Study of LaFeO3 Pellet vs Thin Film,” Sensors and Actuators B: Chemical 329 (2021): 129211.

[108]

Y. H. Gao, Y. Q. Bi, J. H. Lang, and Q. Zhang, “Insights into Theoretical and Practical Characteristics of Capacitive Flexible Tactile Sensor Based on Spherical Surface Plate,” Journal of Materials Science: Materials in Electronics 32, no. 13 (2021): 17182–17190.

[109]

Y. Chen, C. Zhao, T. Zhang, X. Wu, W. Zhang, and S. J. Ding, “Flexible and Filter-Free Color-Imaging Sensors With Multicomponent Perovskites Deposited Using Enhanced Vapor Technology,” Small 17, no. 26 (2021): 2007543.

[110]

Z. Gu, Z. Huang, C. Li, M. Li, and Y. Song, “A General Printing Approach for Scalable Growth of Perovskite Single-Crystal Films,” Science Advances 4, no. 6 (2018): 2390.

[111]

Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin, and Y. Huang, “High-Resolution, Flexible, and Full-Color Perovskite Image Photodetector via Electrohydrodynamic Printing of Ionic-Liquid-Based Ink,” Advanced Functional Materials 31, no. 28 (2021): 2100857.

[112]

M. M. Monroe, L. G. Villanueva, and D. Briand, “Low-Temperature Processing of Screen-Printed Piezoelectric KNbO3 With Integration Onto Biodegradable Paper Substrates,” Microsystems & Nanoengineering 9, no. 1 (2023): 19.

[113]

Z. Zhao, Y. Li, Y. Du, L. Zhang, J. Wei, and F. Lin, “Preparation and Testing of Anisotropic MAPbI3 Perovskite Photoelectric Sensors,” ACS Applied Materials & Interfaces 12, no. 39 (2020): 44248–44255.

[114]

X. Liu, J. Tong, J. Wang, et al., “BaTiO3/MXene/PVDF-TrFE Composite Films via an Electrospinning Method for Flexible Piezoelectric Pressure Sensors,” Journal of Materials Chemistry C 11, no. 14 (2023): 4614–4622.

[115]

J. Wang, C. Zhao, C. Cao, et al., “Boosting Sensing Performance of Flexible Piezoelectric Pressure Sensors by Sb Nanosheets and BaTiO3 Nanoparticles Co-Doping in P(VDF-TrFE) Nanofibers Mat,” Advanced Electronic Materials 10, no. 4 (2024): 2300718.

[116]

C. Zhang, Z. Wang, T. Chen, et al., “Methylamine Gas Sensor Based on Fluorescent Perovskite Nanocrystal Nanofibers Incorporating Aggregation-Induced Emission Materials,” ACS Applied Nano Materials 7, no. 15 (2024): 17329–17338.

[117]

T. A. Ali, J. Groten, J. Clade, et al., “Screen-Printed Ferroelectric P(VDF-TrFE)-co-PbTiO3 and P(VDF-TrFE)-co-NaBiTi2O6 Nanocomposites for Selective Temperature and Pressure Sensing,” ACS Applied Materials & Interfaces 12, no. 34 (2020): 38614–38625.

[118]

Y. Wu, S. Dai, X. Liu, et al., “Optical Microlithography of Perovskite Quantum Dots/Organic Semiconductor Heterojunctions for Neuromorphic Photosensors,” Advanced Functional Materials 34, no. 23 (2024): 2315175.

[119]

D. Lin, J. Liu, R. Haroldson, et al., “High-Performance Directly Patterned Nanograting Perovskite Photodetector With Interdigitated Electrodes,” Advanced Optical Materials 10, no. 24 (2022): 2201516.

[120]

S. X. Li, J. C. Feng, Y. An, and H. Xia, “Flexible, Self-Powered, and Polarization-Sensitive Photodetector Based on Perovskite Lateral Heterojunction Microwire Arrays,” Photonics Research 11, no. 12 (2023): 2231–2241.

[121]

W. Zhan, L. Meng, C. Shao, X. Wu, K. Shi, and H. Zhong, “In Situ Patterning Perovskite Quantum Dots by Direct Laser Writing Fabrication,” ACS Photonics 8, no. 3 (2021): 765–770.

[122]

S. Y. Liang, Y. F. Liu, S. Y. Wang, et al., “High-Resolution Patterning of 2D Perovskite Films Through Femtosecond Laser Direct Writing,” Advanced Functional Materials 32, no. 38 (2022): 0224957.

[123]

Q. Chen, X. Huang, D. Yang, et al., “Three-Dimensional Laser Writing Aligned Perovskite Quantum Dots in Glass for Polarization-Sensitive Anti-Counterfeiting,” Advanced Optical Materials 11, no. 10 (2023): 2300090.

[124]

M. Miao, Z. Wang, Z. Guo, G. Yan, and J. Xing, “Lattice-Matched Quantum-Dots-Perovskite Solid-Sol for the Ultrafast, Ultrasensitive and Ultrastable Uncooled Photoconductive Near-Infrared Sensor With Simple Structure,” Ceramics International 49, no. 5 (2023): 8148–8154.

[125]

H. Wang, P. Liu, M. Zhang, et al., “Spraying Perovskite Intermediate Enabling Inch-Scale Microwire Film Fabrication for Integration Compatible Efficient-Photodetectors Array,” Advanced Functional Materials 33, no. 6 (2023): 2209942.

[126]

H. Zhang, L. Zhang, Z. Zhao, et al., “A Sensitive CsBr/Cs3Bi2Br3I6 Heterostructure Perovskite Gas Sensor for H2S Detection at Room Temperature With High Stability,” Sensors and Actuators B: Chemical 403 (2024): 135238.

[127]

Y. Wang, K. Ou, Y. Ni, et al., “Novel Lead-Free CsCu2I3 Film Gas Sensor for NH3 Detection at Room Temperature,” Sensors and Actuators, A: Physical 375 (2024): 115508.

[128]

K. Nie, X. Zhang, Z. Hu, et al., “Ion-Driven Fiber-Based Sensitive High Output Voltage Perovskite Crystals for Flexible Wearable Fabrics and Piezoelectric Sensor Devices,” Chemical Engineering Journal 508 (2025): 161038.

[129]

S. Jin, H. Yuan, T. Pang, et al., “Highly Bright and Stable Lead-Free Double Perovskite White Light-Emitting Diodes,” Advanced Materials 36, no. 4 (2024): 2308487.

[130]

S. Sajid, S. Alzahmi, I. B. Salem, J. Park, and I. M. Obaidat, “Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints,” Nanomaterials 13, no. 6 (2023): 983.

[131]

Z. Liu, H. Tang, P. Cheng, et al., “High-Performance and Environmentally Robust Multilevel Lead-Free Organotin Halide Perovskite Memristors,” Advanced Electronic Materials 9, no. 1 (2023): 2201005.

[132]

A. Altaf, I. Khan, A. Khan, et al., “Metal/Covalent Organic Framework Encapsulated Lead-Free Halide Perovskite Hybrid Nanocatalysts: Multifunctional Applications, Design, Recent Trends, Challenges, and Prospects,” ACS Omega 9, no. 32 (2024): 34220–34242.

[133]

B. Szafraniak, Ł. Fuśnik, J. Xu, F. Gao, A. Brudnik, and A. Rydosz, “Semiconducting Metal Oxides: SrTiO3, BaTiO3 and BaSrTiO3 in Gas-Sensing Applications: A Review,” Coatings 11, no. 2 (2021): 185.

[134]

Y. Zheng, Z. Zhan, Q. Chen, et al., “Highly Sensitive Perovskite Photoplethysmography Sensor for Blood Glucose Sensing Using Machine Learning Techniques,” Advanced Science 11, no. 43 (2024): 2405681.

[135]

L. Wang, M. Zhu, Y. Shao, et al., “Smart Sensing Multifunctionalities Based on Barium Strontium Titanate Thin Films,” Sensors 22, no. 19 (2022): 7183.

[136]

B. Beklešovas, A. Iljinas, V. Stankus, et al., “Structural, Morphologic, and Ferroelectric Properties of PZT Films Deposited Through Layer-by-Layer Reactive DC Magnetron Sputtering,” Coatings 12, no. 6 (2022): 717.

[137]

K. A. B. Beegum, S. Sasi, A. Mathew, A. S. Asha, and R. Reshmi, “Nano Fibers of Lead Free Perovskite Cesium Titanium Bromide (CsTiBr3) Thin Films by in-House Deposition Technique,” Physica Scripta 96, no. 5 (2021): 055707.

[138]

X. Yang, L. Ma, L. Li, et al., “Towards Micro-PeLED Displays,” Nature Reviews Materials 8, no. 5 (2023): 341–353.

[139]

K. Zub, S. Hoeppener, and U. S. Schubert, “Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications,” Advanced Materials 34, no. 31 (2022): 2105015.

[140]

M. Peng, F. Zhang, L. Tian, et al., “Modified Fabrication of Perovskite-Based Composites and Its Exploration in Printable Humidity Sensors,” Polymers 14, no. 20 (2022): 4354.

[141]

R. Song, Y. Li, and J. Qian, “Macro-Prepared Cs4PbBr6/CsPbBr3 Perovskite Screen Printing Inks,” Journal of Nanoparticle Research 24, no. 3 (2022): 69.

[142]

A. Kumar, P. Nath, V. Kumar, N. Kumar Tailor, and S. Satapathi, “3D Printed Optical Sensor for Highly Sensitive Detection of Picric Acid Using Perovskite Nanocrystals and Mechanism of Photo-Electron Transfer,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 286 (2023): 121956.

[143]

A. Hinojo, E. Lujan, J. Abella, and S. Colominas, “A Novel Solution for Hydrogen Monitoring in Fusion Processes: 3D Printed BaCe0.6Zr0.3Y0.1O3-α Sensors,” Nuclear Materials and Energy 39 (2024): 101661.

[144]

H. J. Kim, H. Oh, T. Kim, D. Kim, and M. Park, “Stretchable Photodetectors Based on Electrospun Polymer/Perovskite Composite Nanofibers,” ACS Applied Nano Materials 5, no. 1 (2022): 1308–1316.

[145]

Y. Zhao, X. Yin, P. Li, et al., “Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-Scale Morphology Manipulation,” Nano-Micro Letters 15, no. 1 (2023): 187.

[146]

S. Du, F. Zhang, and L. Ma, “Advances in Femtosecond Laser Synthesis and Micromachining of Halide Perovskites,” Light: Advanced Manufacturing 5, no. 3 (2024): 1.

[147]

Y. Sheng, X. Wen, B. Jia, and Z. Gan, “Direct Laser Writing on Halide Perovskites: From Mechanisms to Applications,” Light: Advanced Manufacturing 4, no. 1 (2024): 1.

[148]

K. J. Riisnaes, M. Alshehri, I. Leontis, et al., “2D Hybrid Perovskite Sensors for Environmental and Healthcare Monitoring,” ACS Applied Materials & Interfaces 16, no. 24 (2024): 31399–31406.

[149]

L. Yang, Y. Ge, L. Lyu, et al., “Enhancing Vehicular Emissions Monitoring: A GA-GRU-Based Soft Sensors Approach for HDDVs,” Environmental Research 247 (2024): 118190.

[150]

R. Malik, V. K. Tomer, Y. K. Mishra, and L. Lin, “Functional Gas Sensing Nanomaterials: A Panoramic View,” Applied Physics Reviews 7, no. 2 (2020): 021301.

[151]

K. P. Ramaiyan and R. Mukundan, “Editors’ Choice-Review-Recent Advances in Mixed Potential Sensors,” Journal of the Electrochemical Society 167, no. 3 (2020): 037547.

[152]

J. Zeng, Y. Xu, J. Yu, et al., “Compact Yttria-Stabilized Zirconia Based Total NOx Sensor With a Dual Functional Co3O4/NiO Sensing Electrode,” ACS Sensors 4, no. 8 (2019): 2150–2155.

[153]

T. Ueda, N. Oide, K. Kamada, T. Hyodo, and Y. Shimizu, “Improved Toluene Response of Mixed-Potential Type YSZ-Based Gas Sensors Using CeO2-Added Au Electrodes,” ECS Sensors Plus 1, no. 1 (2022): 013604.

[154]

A. Bhardwaj, H. Bae, L. Mathur, S. Mathur, and S. J. Song, “Cubic Bi2O3-Based Electrochemical Nitric Oxide Sensor Using Double Perovskite Oxide Electrodes,” Journal of the Electrochemical Society 169, no. 11 (2022): 117510.

[155]

X. Zhang, J. Zhang, C. Li, X. Zhang, J. Yun, and D. Cao, “A Review on Nanofiber-Based Composites for Toxic and Flammable Gas Sensing,” Advanced Composites and Hybrid Materials 7, no. 4 (2024): 108.

[156]

A. Maity, A. K. Raychaudhuri, and B. Ghosh, “High Sensitivity NH3 Gas Sensor With Electrical Readout Made on Paper With Perovskite Halide as Sensor Material,” Scientific Reports 9, no. 1 (2019): 7777.

[157]

W. Jiao, J. He, and L. Zhang, “Synthesis and High Ammonia Gas Sensitivity of (CH3NH3) PbBr3-xIx Perovskite Thin Film at Room Temperature,” Sensors and Actuators B: Chemical 309 (2020): 127786.

[158]

M. Ando, V. Biju, and Y. Shigeri, “Development of Technologies for Sensing Ozone in Ambient Air,” Analytical Sciences 34, no. 3 (2018): 263–267.

[159]

A. Argyrou, K. Brintakis, A. Kostopoulou, et al., “Highly Sensitive Ozone and Hydrogen Sensors Based on Perovskite Microcrystals Directly Grown on Electrodes,” Journal of Materiomics 8, no. 2 (2022): 446–453.

[160]

Y. Q. Jin, H. Yuan, Y. F. Liu, et al., “Role of Hydrogen Sulfide in Health and Disease,” MedComm 5, no. 9 (2024): e661.

[161]

R. Mehta, R. M. Kulkarni, and D. Sunil, “Small Molecule Optical Probes for Detection of H2S in Water Samples: A Review,” ACS Omega 9, no. 13 (2024): 14672–14691.

[162]

M. Y. Zhu, L. X. Zhang, J. Yin, J. J. Chen, L. J. Bie, and B. D. Fahlman, “Physisorption Induced p-Xylene Gas-Sensing Performance of (C4H9NH3)2PbI4 Layered Perovskite,” Sensors and Actuators B: Chemical 282 (2019): 659–664.

[163]

K. Y. Lee, J. C. Hsieh, C. A. Chen, et al., “Ultrasensitive Detection of Hydrogen Sulfide Gas Based on Perovskite Vertical Channel Chemo-Sensor,” Sensors and Actuators B: Chemical 326 (2021): 128988.

[164]

A. I. Ayesh, S. A. Alghamdi, B. Salah, S. H. Bennett, C. Crean, and P. J. Sellin, “High Sensitivity H2S Gas Sensors Using Lead Halide Perovskite Nanoparticles,” Results in Physics 35, no. 38 (2022): 105333.

[165]

H. Shan, W. Xuan, Z. Li, D. Hu, X. Gu, and S. Huang, “Room-Temperature Hydrogen Sulfide Sensor Based on Tributyltin Oxide Functionalized Perovskite CsPbBr3 Quantum Dots,” ACS Applied Nano Materials 5, no. 5 (2022): 6801–6809.

[166]

K. Ou, Y. Wang, W. Zhang, et al., “Highly Sensitive H2S Gas Sensor Based on a Lead-Free CsCu2I3 Perovskite Film at Room Temperature,” ACS Omega 8, no. 50 (2023): 48326–48335.

[167]

Y. Liu, X. Tang, T. Zhu, et al., “All-Inorganic CsPbBr3 Perovskite Quantum Dots as a Photoluminescent Probe for Ultrasensitive Cu2+ Detection,” Journal of Materials Chemistry C 6, no. 17 (2018): 4793–4799.

[168]

X. Shan, S. Zhang, M. Zhou, et al., “Porous Halide Perovskite–Polymer Nanocomposites for Explosive Detection With a High Sensitivity,” Advanced Materials Interfaces 6, no. 3 (2019): 1801686.

[169]

F. P. García de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-Processed Semiconductors for Next-Generation Photodetectors,” Nature Reviews Materials 2, no. 3 (2017): 16100.

[170]

T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, and D. Cahen, “Hybrid Organic-Inorganic Perovskites: Low-Cost Semiconductors With Intriguing Charge-Transport Properties,” Nature Reviews Materials 1, no. 1 (2016): 15007.

[171]

Q. A. Akkerman, V. D'innocenzo, S. Accornero, et al., “Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions,” Journal of the American Chemical Society 137, no. 32 (2015): 10276–10281.

[172]

Y. Liu, Y. Zhang, K. Zhao, et al., “A 1300 mm2 Ultrahigh-Performance Digital Imaging Assembly Using High-Quality Perovskite Single Crystals,” Advanced Materials 30, no. 29 (2018): 1707314.

[173]

H. L. Zhu, H. Lin, Z. Song, et al., “Achieving High-Quality Sn-Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array,” ACS Nano 13, no. 10 (2019): 11800–11808.

[174]

W. Deng, H. Huang, H. Jin, et al., “All-Sprayed-Processable, Large-Area, and Flexible Perovskite/MXene-Based Photodetector Arrays for Photocommunication,” Advanced Optical Materials 7, no. 6 (2019): 1801521.

[175]

Y. Wang, L. Song, Y. Chen, and W. Huang, “Emerging New-Generation Photodetectors Based on Low-Dimensional Halide Perovskites,” ACS Photonics 7, no. 1 (2019): 10–28.

[176]

X. Xu, W. Deng, X. Zhang, et al., “Dual-Band, High-Performance Phototransistors From Hybrid Perovskite and Organic Crystal Array for Secure Communication Applications,” ACS Nano 13, no. 5 (2019): 5910–5919.

[177]

T. Zhai, L. Li, Y. Ma, et al., “One-Dimensional Inorganic Nanostructures: Synthesis, Field-Emission and Photodetection,” Chemical Society Reviews 40, no. 5 (2011): 2986–3004.

[178]

Z. Liu, J. Xu, D. Chen, and G. Shen, “Flexible Electronics Based on Inorganic Nanowires,” Chemical Society Reviews 44, no. 1 (2015): 161–192.

[179]

X. Xu, X. Zhang, W. Deng, J. Jie, and X. Zhang, “1D Organic–Inorganic Hybrid Perovskite Micro/Nanocrystals: Fabrication, Assembly, and Optoelectronic Applications,” Small Methods 2, no. 7 (2018): 1700340.

[180]

L. Gu, M. M. Tavakoli, D. Zhang, et al., “3D Arrays of 1024-Pixel Image Sensors Based on Lead Halide Perovskite Nanowires,” Advanced Materials 28, no. 44 (2016): 9713–9721.

[181]

Y. Zhang, R. Sun, X. Ou, et al., “Metal Halide Perovskite Nanosheet for X-Ray High-Resolution Scintillation Imaging Screens,” ACS Nano 13, no. 2 (2019): 2520–2525.

[182]

J. Zhou and J. Huang, “Photodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites,” Advanced Science 5, no. 1 (2018): 1700256.

[183]

Y. Liu, X. Ren, J. Zhang, et al., “120 mm Single-Crystalline Perovskite and Wafers: Towards Viable Applications,” Science China Chemistry 60, no. 10 (2017): 1367–1376.

[184]

W. Deng, J. Jie, X. Xu, et al., “A Microchannel-Confined Crystallization Strategy Enables Blade Coating of Perovskite Single Crystal Arrays for Device Integration,” Advanced Materials 32, no. 16 (2020): 1908340.

[185]

W. Wu, X. Wang, X. Han, et al., “Flexible Photodetector Arrays Based on Patterned CH3NH3PbI3-xClx Perovskite Film for Real-Time Photosensing and Imaging,” Advanced Materials 31, no. 3 (2019): 1805913.

[186]

L. Zhao, P. Ouyang, X. Yi, and G. Li, “Fast-Response Humidity Sensors Based on All-Inorganic Lead-Free Cs2PdBr6 Perovskite Integrated With Bulk Acoustic Wave Resonators for Motions Monitoring,” Applied Surface Science 649 (2024): 159110.

[187]

U. Rajaji, P. S. Ganesh, S. M. Chen, et al., “Deep Eutectic Solvents Synthesis of Perovskite Type Cerium Aluminate Embedded Carbon Nitride Catalyst: High-Sensitive Amperometric Platform for Sensing of Glucose in Biological Fluids,” Journal of Industrial and Engineering Chemistry 102, no. 5 (2021): 312–320.

[188]

M. Govindasamy, S. F. Wang, W. C. Pan, B. Subramanian, R. J. Ramalingam, and H. Al-Lohedan, “Facile Sonochemical Synthesis of Perovskite-Type SrTiO3 Nanocubes With Reduced Graphene Oxide Nanocatalyst for an Enhanced Electrochemical Detection of α-Amino Acid (Tryptophan),” Ultrasonics Sonochemistry 56 (2019): 193–199.

[189]

Y. Qiao, Q. Liu, S. Lu, et al., “High-Performance Non-Enzymatic Glucose Detection: Using a Conductive Ni-MOF as an Electrocatalyst,” Journal of Materials Chemistry B 8, no. 25 (2020): 5411–5415.

[190]

L. Yang, J. Yang, Q. Dong, et al., “One-Step Synthesis of CuO Nanoparticles Based on Flame Synthesis: As a Highly Effective Non-Enzymatic Sensor for Glucose, Hydrogen Peroxide and Formaldehyde,” Journal of Electroanalytical Chemistry 881 (2021): 114965.

[191]

H. Dai, Y. Zhong, X. Wu, et al., “Synthesis of Perovskite-Type SrTiO3 Nanoparticles for Sensitive Electrochemical Biosensing Applications,” Journal of Electroanalytical Chemistry 810 (2018): 95–99.

[192]

N. F. Atta, A. Galal, and E. H. El-Ads, “Effect of B-Site Doping on Sr2PdO3 Perovskite Catalyst Activity for Non-Enzymatic Determination of Glucose in Biological Fluids,” Journal of Electroanalytical Chemistry 852 (2019): 113523.

[193]

J. Thomas, P. K. Anitha, T. Thomas and N. Thomas, “The Influence of B-Site Cation in LaBO3 (B= Fe, Co, Ni) Perovskites on the Nanomolar Sensing of Neurotransmitters,” Sensor Actuat B-Chem 332 (2021): 129362.

[194]

A. Sreekumar, L. Durai, and S. Badhulika, “Solid-State Single-Step Synthesis of FeNbO4 Perovskite Modified Nickel Foam for Electrochemical Detection of Creatine Phosphokinase in Simulated Human Blood Serum,” Ceramics International 49, no. 13 (2023): 21722–21728.

[195]

P. Supraja, V. Sudarshan, S. Tripathy, A. Agrawal, and S. G. Singh, “Label Free Electrochemical Detection of Cardiac Biomarker Troponin T Using ZnSnO3 Perovskite Nanomaterials,” Analytical Methods 11, no. 6 (2019): 744–751.

[196]

Y. Wang, Y. Zhu, J. Huang, et al., “Perovskite Quantum Dots Encapsulated in Electrospun Fiber Membranes as Multifunctional Supersensitive Sensors for Biomolecules, Metal Ions and pH,” Nanoscale Horizons 2, no. 4 (2017): 225–232.

[197]

J. Kim, A. S. Campbell, B. E. F. de Ávila, and J. Wang, “Wearable Biosensors for Healthcare Monitoring,” Nature Biotechnology 37, no. 4 (2019): 389–406.

[198]

J. Lee, B. Llerena Zambrano, J. Woo, K. Yoon, and T. Lee, “Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications,” Advanced Materials 32, no. 5 (2020): 1902532.

[199]

J. Min, S. Demchyshyn, J. R. Sempionatto, et al., “An Autonomous Wearable Biosensor Powered by a Perovskite Solar Cell,” Nature Electronics 6, no. 8 (2023): 630–641.

[200]

S. Chang, J. H. Koo, J. Yoo, et al., “Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics,” Chemical Reviews 124, no. 3 (2024): 768–859.

[201]

X. Fu, W. Cheng, G. Wan, Z. Yang, and B. C. K. Tee, “Toward an AI Era: Advances in Electronic Skins,” Chemical Reviews 124, no. 17 (2024): 9899–9948.

[202]

R. Zhao, Z. Gu, P. Li, Y. Zhang, and Y. Song, “Flexible and Wearable Optoelectronic Devices Based on Perovskites,” Advanced Materials Technologies 7, no. 3 (2022): 2101124.

[203]

T. Yokota, T. Nakamura, H. Kato, et al., “A Conformable Imager for Biometric Authentication and Vital Sign Measurement,” Nature Electronics 3, no. 2 (2020): 113–121.

[204]

L. Gu, S. Poddar, Y. Lin, et al., “A Biomimetic Eye With a Hemispherical Perovskite Nanowire Array Retina,” Nature 581, no. 7808 (2020): 278–282.

[205]

M. Kim, G. J. Lee, C. Choi, et al., “An Aquatic-Vision-Inspired Camera Based on a Monocentric Lens and a Silicon Nanorod Photodiode Array,” Nature Electronics 3, no. 9 (2020): 546–553.

[206]

M. Lee, G. J. Lee, H. J. Jang, et al., “An Amphibious Artificial Vision System With a Panoramic Visual Field,” Nature Electronics 5, no. 7 (2022): 452–459.

[207]

Y. Zhou, X. Qiu, Z. Wan, et al., “Halide-Exchanged Perovskite Photodetectors for Wearable Visible-Blind Ultraviolet Monitoring,” Nano Energy 100 (2022): 107516.

[208]

B. Shi, P. Wang, J. Feng, et al., “Split-Ring Structured All-Inorganic Perovskite Photodetector Arrays for Masterly Internet of Things,” Nano-Micro Letters 15, no. 1 (2023): 3.

[209]

L. Jia, Z. Xu, L. Zhang, Y. Li, T. Zhao, and J. Xu, “The Fabrication of Water-Stable Perovskite-Europium Hybrid Polychromatic Fluorescence Nanosensor for Fast Visual Sensing of Tetracycline,” Applied Surface Science 592 (2022): 153170.

[210]

Q. Shu, Y. Pang, Q. Li, et al., “Flexible Resistive Tactile Pressure Sensors,” Journal of Materials Chemistry A 12, no. 16 (2024): 9296–9321.

[211]

X. Li, Y. Liu, Y. Ding, et al., “Capacitive Pressure Sensor Combining Dual Dielectric Layers With Integrated Composite Electrode for Wearable Healthcare Monitoring,” ACS Applied Materials & Interfaces 16, no. 10 (2024): 12974–12985.

[212]

X. Gao, F. Zhou, M. Li, X. Wang, S. Chen, and J. Yu, “Flexible Stannum-Doped SrTiO3 Nanofiber Membranes for Highly Sensitive and Reliable Piezoresistive Pressure Sensors,” ACS Applied Materials & Interfaces 13, no. 44 (2021): 52811–52821.

[213]

L. B. Carani, V. O. Eze, C. Iwuagwu, and O. I. Okoli, “Performance Analysis of Embedded Mechanoluminescence-Perovskite Self-Powered Pressure Sensor for Structural Health Monitoring,” Journal of Composites Science 4, no. 4 (2020): 190.

[214]

Y. Yang, H. Pan, G. Xie, et al., “Flexible Piezoelectric Pressure Sensor Based on Polydopamine-Modified BaTiO3/PVDF Composite Film for Human Motion Monitoring,” Sensors and Actuators, A: Physical 301, no. 9 (2020): 111789.

[215]

H. S. Wu, S. M. Wei, S. W. Chen, et al., “Metal-Free Perovskite Piezoelectric Nanogenerators for Human–Machine Interfaces and Self-Powered Electrical Stimulation Applications,” Advanced Science 9, no. 18 (2022): 2105974.

[216]

C. Zhu, Z. Peng, Z. Guo, L. Peng, and C. Zhao, “Flexible Self-Powered CsPbI3/rGO/P(VDF-TrFE) Pressure Sensor and Photodetector Based on Piezo-Phototronic Effect With Long-Term Stability,” Physica B: Condensed Matter 646 (2022): 414264.

[217]

S. Ippili, V. Jella, J. Kim, S. Hong, and S. G. Yoon, “Unveiling Predominant Air-Stable Organotin Bromide Perovskite Toward Mechanical Energy Harvesting,” ACS Applied Materials & Interfaces 12, no. 14 (2020): 16469–16480.

[218]

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of Organometal Halide Perovskite Solar Cells,” Nature Materials 15, no. 3 (2016): 247–251.

[219]

S. Ippili, V. Jella, J. H. Eom, et al., “An Eco-Friendly Flexible Piezoelectric Energy Harvester That Delivers High Output Performance Is Based on Lead-Free MASnI3 Films and MASnI3-PVDF Composite Films,” Nano Energy 57 (2019): 911–923.

[220]

H. Y. Ye, Y. Y. Tang, P. F. Li, et al., “Metal-Free Three-Dimensional Perovskite Ferroelectrics,” Science 361, no. 6398 (2018): 151–155.

[221]

H. Wang, H. Liu, Z. Zhang, et al., “Large Piezoelectric Response in a Family of Metal-Free Perovskite Ferroelectric Compounds From First-Principles Calculations,” npj Computational Materials 5, no. 1 (2019): 17.

[222]

R. Saraf, L. Pu, and V. Maheshwari, “A Light Harvesting, Self-Powered Monolith Tactile Sensor Based on Electric Field Induced Effects in MAPbI3 Perovskite,” Advanced Materials 30, no. 9 (2018): 1705778.

[223]

J. Yu, S. Xian, Z. Zhang, et al., “Synergistic Piezoelectricity Enhanced BaTiO3 Polyacrylonitrile Elastomer-Based Highly Sensitive Pressure Sensor for Intelligent Sensing and Posture Recognition Applications,” Nano Research 16, no. 4 (2023): 5490–5502.

[224]

Y. Sun, T. N. H. Nguyen, A. Anderson, et al., “In Vivo Glutamate Sensing Inside the Mouse Brain With Perovskite Nickelate–Nafion Heterostructures,” ACS Applied Materials & Interfaces 12, no. 22 (2020): 24564–24574.

[225]

X. Liang, S. Zhang, S. Meng, R. Tan, K. Zhang, and J. Hu, “A Non-Enzymatic Flexible and Wearable Sensor Based on Thermal Transfer Printing Technology for Continuous Glucose Detection in Sweat,” Microchemical Journal 207 (2024): 111690.

[226]

X. Feng, C. Li, J. Song, et al., “Differential Perovskite Hemispherical Photodetector for Intelligent Imaging and Location Tracking,” Nature Communications 15, no. 1 (2024): 577.

[227]

Q. Xia and J. J. Yang, “Memristive Crossbar Arrays for Brain-Inspired Computing,” Nature Materials 18, no. 4 (2019): 309–323.

[228]

T. Sun, B. Feng, J. Huo, et al., “Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses,” Nano-Micro Letters 16, no. 1 (2024): 14.

[229]

Z. Xu, C. Wu, Y. Zhu, et al., “Bio-Inspired Smart Electronic-Skin Based on Inorganic Perovskite Nanoplates for Application in Photomemories and Mechanoreceptors,” Nanoscale 13, no. 1 (2021): 253–260.

[230]

J. Pang, H. Wu, H. Li, T. Jin, J. Tang, and G. Niu, “Reconfigurable Perovskite X-Ray Detector for Intelligent Imaging,” Nature Communications 15, no. 1 (2024): 1769.

[231]

D. Hu, Z. Yang, and S. Huang, “Machine Learning Prediction of Perovskite Sensors for Monitoring the Gas in Lithium-Ion Battery,” Sensors and Actuators, A: Physical 369 (2024): 115162.

[232]

S. J. Kim, I. H. Im, J. H. Baek, et al., “Linearly Programmable Two-Dimensional Halide Perovskite Memristor Arrays for Neuromorphic Computing,” Nature Nanotechnology 20 (2024): 83–92.

[233]

M. Nur-E-Alam, M. S. Islam, T. Abedin, et al., “Current Scenario and Future Trends on Stability Issues of Perovskite Solar Cells: A Mini Review,” Current Opinion in Colloid & Interface Science 76 (2025): 101895.

[234]

T. H. Bui and J. H. Shin, “Perovskite Materials for Sensing Applications: Recent Advances and Challenges,” Microchemical Journal 191 (2023): 108924.

[235]

C. Zhang and N. G. Park, “Materials and Methods for Cost-Effective Fabrication of Perovskite Photovoltaic Devices,” Communications Materials 5, no. 1 (2024): 194.

[236]

T. Kim, S. Lee, T. Hong, G. Shin, T. Kim, and Y. L. Park, “Heterogeneous Sensing in a Multifunctional Soft Sensor for Human-Robot Interfaces,” Science Robotics 5, no. 49 (2020): eabc6878.

[237]

S. Qiu, H. Zhao, N. Jiang, et al., “Multi-Sensor Information Fusion Based on Machine Learning for Real Applications in Human Activity Recognition: State-of-the-Art and Research Challenges,” Information Fusion 80 (2022): 241–265.

[238]

M. A. Jamshed, K. Ali, Q. H. Abbasi, M. A. Imran, and M. Ur-Rehman, “Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review,” IEEE Sensors Journal 22, no. 6 (2022): 5482–5494.

[239]

S. Liu, Z. Wu, Z. He, et al., “Low-Power Perovskite Neuromorphic Synapse With Enhanced Photon Efficiency for Directional Motion Perception,” ACS Applied Materials & Interfaces 16, no. 17 (2024): 22303–22311.

[240]

F. Luo, S. Li, L. Cui, et al., “Biocompatible Perovskite Quantum Dots With Superior Water Resistance Enable Long-Term Monitoring of the H2S Level In Vivo,” Nanoscale 13, no. 34 (2021): 14297–14303.

[241]

Z. Li, M. A. Najeeb, L. Alves, et al., “Robot-Accelerated Perovskite Investigation and Discovery,” Chemistry of Materials 32, no. 13 (2020): 5650–5663.

[242]

F. Song, D. Zheng, J. Feng, et al., “Mechanical Durability and Flexibility in Perovskite Photovoltaics: Advancements and Applications,” Advanced Materials 36, no. 18 (2024): 2312041.

[243]

Q. Tao, P. Xu, M. Li, and W. Lu, “Machine Learning for Perovskite Materials Design and Discovery,” npj Computational Materials 7, no. 1 (2021): 23.

RIGHTS & PERMISSIONS

2025 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/