Single-Molecule Multi-Channel Conductance Assisted by Through-Space Conjugation

Shaoxin Song , Jinshi Li , Yi Xiong , Ben Zhong Tang , Zujin Zhao

SmartMat ›› 2025, Vol. 6 ›› Issue (3) : e70021

PDF
SmartMat ›› 2025, Vol. 6 ›› Issue (3) : e70021 DOI: 10.1002/smm2.70021
REVIEW

Single-Molecule Multi-Channel Conductance Assisted by Through-Space Conjugation

Author information +
History +
PDF

Abstract

Molecular electronics has emerged and evolved within the context of the miniaturization of silicon-based microchips, with the purpose to achieve conducting functions by integrating individual molecules into circuits through a “bottom-up” approach, but the exploration of intrinsic physical phenomena and operational principles is still in the infancy stage. One of the biggest challenges arises from the fundamental difference in charge transport modes between conventional macroscopic and molecular microscopic circuits. The former follows Ohm's law, while the latter operates via quantum transport. Undoubtedly, a deep understanding of the intrinsic physical mechanisms governing complex molecular circuits is essential for moving molecular-scale devices from the laboratory to large-scale production. Here, we review the fields from a molecular topology perspective and propose a straightforward definition to differentiate single-channel and multi-channel molecular circuits. We detail previously reported models and analyze their structure–property relationships. We also compare the conductance of molecules with multiple channels to those with single channels, giving special attention to the impact of noncovalent channels, such as through-space conjugation. Lastly, we discuss the opportunities and challenges for single-molecule systems with multiple channels, highlighting the advantages of through-space channels in molecular devices and envisioning their potential applications.

Keywords

charge transport / multi-channel systems / scanning tunneling microscope break junction / single-molecule conductance / through-space conjugation

Cite this article

Download citation ▾
Shaoxin Song, Jinshi Li, Yi Xiong, Ben Zhong Tang, Zujin Zhao. Single-Molecule Multi-Channel Conductance Assisted by Through-Space Conjugation. SmartMat, 2025, 6(3): e70021 DOI:10.1002/smm2.70021

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. M. Waldrop, “The Chips Are Down for Moore's Law,” Nature 530, no. 7589 (2016): 144–147.

[2]

C. J. Lambert, “Basic Concepts of Quantum Interference and Electron Transport in Single-Molecule Electronics,” Chemical Society Reviews 44, no. 4 (2015): 875–888.

[3]

D. Xiang, X. Wang, C. Jia, T. Lee, and X. Guo, “Molecular-Scale Electronics: From Concept to Function,” Chemical Reviews 116, no. 7 (2016): 4318–4440.

[4]

T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, and C. Nuckolls, “Chemical Principles of Single-Molecule Electronics,” Nature Reviews Materials 1 (2016): 16002.

[5]

A. Aviram and M. A. Ratner, “Molecular Rectifiers,” Chemical Physics Letters 29, no. 2 (1974): 277–283.

[6]

M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a Molecular Junction,” Science 278, no. 5336 (1997): 252–254.

[7]

B. Xu and N. J. Tao, “Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions,” Science 301, no. 5637 (2003): 1221–1223.

[8]

L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Dependence of Single-Molecule Junction Conductance on Molecular Conformation,” Nature 442 (2006): 904–907.

[9]

W. Shi, J. E. Greenwald, and L. Venkataraman, “Impact of Solvent Electrostatic Environment on Molecular Junctions Probed via Electrochemical Impedance Spectroscopy,” Nano Letters 24, no. 30 (2024): 9283–9288.

[10]

R. Huber, M. T. González, S. Wu, et al., “Electrical Conductance of Conjugated Oligomers at the Single Molecule Level,” Journal of the American Chemical Society 130, no. 3 (2008): 1080–1084.

[11]

L. Wang, L. Wang, L. Zhang, and D. Xiang, “Advance of Mechanically Controllable Break Junction for Molecular Electronics,” Topics in Current Chemistry 375 (2017): 61.

[12]

D. Xiang, H. Jeong, T. Lee, and D. Mayer, “Mechanically Controllable Break Junctions for Molecular Electronics,” Advanced Materials 25, no. 35 (2013): 4845–4867.

[13]

Y. Komoto, T. Ohshiro, Y. Notsu, and M. Taniguchi, “Single-Molecule Detection of Modified Amino Acid Regulating Transcriptional Activity,” RSC Advances 14, no. 43 (2024): 31740–31744.

[14]

S. V. Aradhya, M. Frei, M. S. Hybertsen, and L. Venkataraman, “Van der Waals Interactions at Metal/Organic Interfaces at the Single-Molecule Level,” Nature Materials 11 (2012): 872–876.

[15]

B. Xu, X. Xiao, and N. J. Tao, “Measurements of Single-Molecule Electromechanical Properties,” Journal of the American Chemical Society 125, no. 52 (2003): 16164–16165.

[16]

M. Frei, S. V. Aradhya, M. S. Hybertsen, and L. Venkataraman, “Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions,” Journal of the American Chemical Society 134, no. 9 (2012): 4003–4006.

[17]

Y. Zhu, Z. Tan, and W. Hong, “Simultaneous Electrical and Mechanical Characterization of Single-Molecule Junctions Using AFM-BJ Technique,” ACS Omega 6, no. 46 (2021): 30873–30888.

[18]

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of Molecular Orbital Gating,” Nature 462 (2009): 1039–1043.

[19]

D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, “Vibrational and Electronic Heating in Nanoscale Junctions,” Nature Nanotechnology 6 (2011): 33–38.

[20]

Y. Cao, S. Dong, S. Liu, et al., “Building High-Throughput Molecular Junctions Using Indented Graphene Point Contacts,” Angewandte Chemie International Edition 51, no. 49 (2012): 12228–12232.

[21]

S. Caneva, P. Gehring, V. M. García-Suárez, et al., “Mechanically Controlled Quantum Interference in Graphene Break Junctions,” Nature Nanotechnology 13 (2018): 1126–1131.

[22]

S. Ryu, R. López, and L. Serra, “Conductance of Electrostatic Wire Junctions in Bilayer Graphene,” Physical Review B 106, no. 3 (2022): 035424.

[23]

R. Frisenda, R. Gaudenzi, C. Franco, et al., “Kondo Effect in a Neutral and Stable All Organic Radical Single Molecule Break Junction,” Nano Letters 15, no. 5 (2015): 3109–3114.

[24]

X. Li, Q. Wu, J. Bai, et al., “Structure-Independent Conductance of Thiophene-Based Single-Stacking Junctions,” Angewandte Chemie International Edition 59, no. 8 (2020): 3280–3286.

[25]

P. Yu, L. Chen, Y. Zhang, et al., “Single-Molecule Tunneling Sensors for Nitrobenzene Explosives,” Analytical Chemistry 94, no. 35 (2022): 12042–12050.

[26]

H. Wen, W. Li, J. Chen, et al., “Complex Formation Dynamics in a Single-Molecule Electronic Device,” Science Advances 2, no. 11 (2016): e1601113.

[27]

J. L. Xia, I. Diez-Perez, and N. J. Tao, “Electron Transport in Single Molecules Measured by a Distance-Modulation Assisted Break Junction Method,” Nano Letters 8, no. 7 (2008): 1960–1964.

[28]

M. Wang, T. Wang, O. S. Ojambati, et al., “Plasmonic Phenomena in Molecular Junctions: Principles and Applications,” Nature Reviews Chemistry 6 (2022): 681–704.

[29]

H. Chen, C. Jia, X. Zhu, C. Yang, X. Guo, and J. F. Stoddart, “Reactions in Single-Molecule Junctions,” Nature Reviews Materials 8 (2023): 165–185.

[30]

X. Xie, P. Li, Y. Xu, et al., “Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes,” ACS Nano 16, no. 3 (2022): 3476–3505.

[31]

A. Donarini, G. Begemann, and M. Grifoni, “Interference Effects in the Coulomb Blockade Regime: Current Blocking and Spin Preparation in Symmetric Nanojunctions,” Physical Review B 82 (2010): 125451.

[32]

Y. Meir and N. S. Wingreen, “Landauer Formula for the Current Through an Interacting Electron Region,” Physical Review Letters 68, no.16 (1992): 2512–2515.

[33]

M. J. van Setten, F. Caruso, S. Sharifzadeh, et al., “GW100: Benchmarking G0W0 for Molecular Systems,” Journal of Chemical Theory and Computation 11, no. 12 (2015): 5665–5687.

[34]

Y. Tsuji, R. Hoffmann, R. Movassagh, and S. Datta, “Quantum Interference in Polyenes,” Journal of Chemical Physics 141 (2014): 224311.

[35]

F. Aryasetiawan and O. Gunnarsson, “The GW Method,” Reports on Progress in Physics 61, no. 3 (1998): 237–312.

[36]

J. L. Zhang, J. Q. Zhong, J. D. Lin, et al., “Towards Single Molecule Switches,” Chemical Society Reviews 44, no. 10 (2015): 2998–3022.

[37]

P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumdar, “Thermoelectricity in Molecular Junctions,” Science 315, no. 5818 (2007): 1568–1571.

[38]

Y. Han, C. Nickle, Z. Zhang, et al., “Electric-Field-Driven Dual-Functional Molecular Switches in Tunnel Junctions,” Nature Materials 19 (2020): 843–848.

[39]

J. Wang, F. Shen, Z. Wang, et al., “Point Decoration of Silicon Nanowires: An Approach Toward Single-Molecule Electrical Detection,” Angewandte Chemie International Edition 53, no. 20 (2014): 5038–5043.

[40]

R. Kumar, V. Kaliginedi, and R. Venkatramani, “A Strategy to Access Embedded Circuits in a Single-Molecule Bis-Terpyridine Breadboard Junction,” Nano Letters 25, no. 4 (2025): 1715–1721.

[41]

R. Kumar, C. Seth, V. Kaliginedi, and R. Venkatramani, “A Conceptual Framework for Designing and Analyzing Complex Molecular Circuits,” Journal of Materials Chemistry C 11, no. 42 (2023): 14680–14694.

[42]

X. Liu, S. Cui, X. Zhang, et al., “Engineering a Dual-Loop Molecular Circuit With Buffering Capability to Solve Molecular Information Tasks,” Nanoscale 16, no. 44 (2024): 20637–20646.

[43]

R. Hoffmann, A. Imamura, and W. J. Hehre, “Benzynes, Dehydroconjugated Molecules, and the Interaction of Orbitals Separated by a Number of Intervening Sigma Bonds,” Journal of the American Chemical Society 90, no. 6 (1968): 1499–1509.

[44]

C. A. Hunter and J. K. M. Sanders, “The Nature of π−π Interactions,” Journal of the American Chemical Society 112, no. 14 (1990): 5525–5534.

[45]

J. Li, P. Shen, Z. Zhao, and B. Z. Tang, “Through-Space Conjugation: A Thriving Alternative for Optoelectronic Materials,” CCS Chemistry 1, no. 2 (2019): 181–196.

[46]

J. Linnanto, V. M. Helenius, J. A. I. Oksanen, T. Peltola, J.-L. Garaud, and J. E. I. Korppi-Tommola, “Exciton Interactions and Femtosecond Relaxation in Chlorophyll a−Water and Chlorophyll a−Dioxane Aggregates,” Journal of Physical Chemistry A 102, no. 23 (1998): 4337–4349.

[47]

T. Gensch and S. E. Braslavsky, “Volume Changes Related to Triplet Formation of Water-Soluble Porphyrins: A Laser-Induced Optoacoustic Spectroscopy (LIOAS) Study,” Journal of Physical Chemistry B 101, no. 1 (1997): 101–108.

[48]

S. Chandra, K. G. Gunasinghe Pattiya Arachchillage, E. Kliuchnikov, et al., “Single-Molecule Conductance of Double-Stranded RNA Oligonucleotides,” Nanoscale 14, no. 7 (2022): 2572–2577.

[49]

M. R. Aguilar, J. Jover, E. Ruiz, A. C. Aragonès, and J. M. Artés Vivancos, “Single-Molecule Electrical Conductance in Z-Form DNA: RNA,” Small 21, no. 5 (2025): e2408459.

[50]

G. B. Schuster, “Long-Range Charge Transfer in DNA: Transient Structural Distortions Control the Distance Dependence,” Accounts of Chemical Research 33, no. 4 (2000): 253–260.

[51]

F. D. Lewis, T. Wu, X. Liu, et al., “Dynamics of Photoinduced Charge Separation and Charge Recombination in Synthetic DNA Hairpins With Stilbenedicarboxamide Linkers,” Journal of the American Chemical Society 122, no. 12 (2000): 2889–2902.

[52]

A. Rich and F. H. C. Crick, “The Structure of Collagen,” Nature 176, no.4489 (1955): 915–916.

[53]

E. Spuling, N. Sharma, I. D. W. Samuel, E. Zysman-Colman, and S. Bräse, “(Deep) Blue Through-Space Conjugated TADF Emitters Based on [2.2]Paracyclophanes,” Chemical Communications 54, no. 67 (2018): 9278–9281.

[54]

S. Shao, J. Hu, X. Wang, L. Wang, X. Jing, and F. Wang, “Blue Thermally Activated Delayed Fluorescence Polymers With Nonconjugated Backbone and Through-Space Charge Transfer Effect,” Journal of the American Chemical Society 139, no. 49 (2017): 17739–17742.

[55]

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (Wiley, 2004). 7th ed..

[56]

J. Liu, X. Huang, F. Wang, and W. Hong, “Quantum Interference Effects in Charge Transport Through Single-Molecule Junctions: Detection, Manipulation, and Application,” Accounts of Chemical Research 52, no. 1 (2019): 151–160.

[57]

M. Magoga and C. Joachim, “Conductance of Molecular Wires Connected or Bonded in Parallel,” Physical Review B 59, no.24 (1999): 16011–16021.

[58]

S. N. Yaliraki and M. A. Ratner, “Molecule-Interface Coupling Effects on Electronic Transport in Molecular Wires,” Journal of Chemical Physics 109, no. 12 (1998): 5036–5043.

[59]

R. Liu, S.-H. Ke, H. U. Baranger, and W. Yang, “Intermolecular Effect in Molecular Electronics,” Journal of Chemical Physics 122, no. 4 (2005): 044703.

[60]

L. Wang, Y. Guo, C. Zhu, C. Tian, X. Song, and B. Ding, “Effect of Intermolecular Distance and Contact Hollow-Type on the Transport Properties of Parallel Atomic Wires,” Physics Letters A 374, no. 5 (2010): 778–781.

[61]

J. Tomfohr and O. F. Sankey, “Theoretical Analysis of Electron Transport Through Organic Molecules,” Journal of Chemical Physics 120, no. 3 (2004): 1542–1554.

[62]

Y. Selzer, L. Cai, M. A. Cabassi, et al., “Effect of Local Environment on Molecular Conduction: Isolated Molecule Versus Self-Assembled Monolayer,” Nano Letters 5, no. 1 (2005): 61–65.

[63]

M. G. Reuter, G. C. Solomon, T. Hansen, T. Seideman, and M. A. Ratner, “Understanding and Controlling Crosstalk Between Parallel Molecular Wires,” Journal of Physical Chemistry Letters 2, no. 14 (2011): 1667–1671.

[64]

M. G. Reuter, T. Seideman, and M. A. Ratner, “Molecular Conduction Through Adlayers: Cooperative Effects Can Help or Hamper Electron Transport,” Nano Letters 11, no. 11 (2011): 4693–4696.

[65]

M. Kiguchi, Y. Takahashi, S. Fujii, et al., “Additive Electron Pathway and Nonadditive Molecular Conductance by Using a Multipodal Bridging Compound,” Journal of Physical Chemistry C 118, no. 10 (2014): 5275–5283.

[66]

Y. Ie, T. Hirose, H. Nakamura, et al., “Nature of Electron Transport by Pyridine-Based Tripodal Anchors: Potential for Robust and Conductive Single-Molecule Junctions With Gold Electrodes,” Journal of the American Chemical Society 133, no. 9 (2011): 3014–3022.

[67]

P. Duan, K. Qu, J.-Y. Wang, et al., “Effective Suppression of Conductance in Multichannel Molecular Wires,” Cell Reports Physical Science 2, no. 2 (2021): 100342.

[68]

S.-S. Yan, L.-C. Chen, J.-Y. Wang, et al., “Exploring a Linear Combination Feature for Predicting the Conductance of Parallel Molecular Circuits,” Nano Letters 23, no. 20 (2023): 9399–9405.

[69]

R. S. Rowland and R. Taylor, “Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison With Distances Expected From Van Der Waals Radii,” Journal of Physical Chemistry 100, no. 18 (1996): 7384–7391.

[70]

Y. Li, B. Xiao, R. Chen, et al., “Single-Molecule Conductance Investigation of BDT Derivatives: An Additional Pattern Found to Induce Through-Space Channels Beyond π–π Stacking,” Chemical Communications 55, no. 57 (2019): 8325–8328.

[71]

X. Li, J. He, J. Hihath, B. Xu, S. M. Lindsay, and N. Tao, “Conductance of Single Alkanedithiols: Conduction Mechanism and Effect of Molecule−Electrode Contacts,” Journal of the American Chemical Society 128, no. 6 (2006): 2135–2141.

[72]

T. A. Su, H. Li, M. L. Steigerwald, L. Venkataraman, and C. Nuckolls, “Stereoelectronic Switching in Single-Molecule Junctions,” Nature Chemistry 7 (2015): 215–220.

[73]

T. A. Su, H. Li, V. Zhang, et al., “Single-Molecule Conductance in Atomically Precise Germanium Wires,” Journal of the American Chemical Society 137, no. 38 (2015): 12400–12405.

[74]

P. Moreno-García, M. Gulcur, D. Z. Manrique, et al., “Single-Molecule Conductance of Functionalized Oligoynes: Length Dependence and Junction Evolution,” Journal of the American Chemical Society 135, no. 33 (2013): 12228–12240.

[75]

W. Chen, H. Li, J. R. Widawsky, C. Appayee, L. Venkataraman, and R. Breslow, “Aromaticity Decreases Single-Molecule Junction Conductance,” Journal of the American Chemical Society 136, no. 3 (2014): 918–920.

[76]

J. He, F. Chen, J. Li, et al., “Electronic Decay Constant of Carotenoid Polyenes From Single-Molecule Measurements,” Journal of the American Chemical Society 127, no. 5 (2005): 1384–1385.

[77]

T. A. Su, H. Li, R. S. Klausen, et al., “Tuning Conductance in π–σ–π Single-Molecule Wires,” Journal of the American Chemical Society 138, no. 24 (2016): 7791–7795.

[78]

C. Tang, L. Chen, L. Zhang, et al., “Multicenter-Bond-Based Quantum Interference in Charge Transport Through Single-Molecule Carborane Junctions,” Angewandte Chemie International Edition 58, no. 31 (2019): 10601–10605.

[79]

M. Kiguchi and S. Kaneko, “Electron Transport Through Single π-Conjugated Molecules Bridging Between Metal Electrodes,” ChemPhysChem 13, no. 5 (2012): 1116–1126.

[80]

M. Kiguchi, T. Takahashi, Y. Takahashi, et al., “Electron Transport Through Single Molecules Comprising Aromatic Stacks Enclosed in Self-Assembled Cages,” Angewandte Chemie International Edition 50, no. 25 (2011): 5708–5711.

[81]

M. Kiguchi, J. Inatomi, Y. Takahashi, et al., “Highly Conductive [3×n] Gold-Ion Clusters Enclosed Within Self-Assembled Cages,” Angewandte Chemie International Edition 52, no. 24 (2013): 6202–6205.

[82]

S. Fujii, T. Tada, Y. Komoto, et al., “Rectifying Electron-Transport Properties Through Stacks of Aromatic Molecules Inserted Into a Self-Assembled Cage,” Journal of the American Chemical Society 137, no. 18 (2015): 5939–5947.

[83]

S. T. Schneebeli, M. Kamenetska, Z. Cheng, et al., “Single-Molecule Conductance Through Multiple π−π-Stacked Benzene Rings Determined With Direct Electrode-to-Benzene Ring Connections,” Journal of the American Chemical Society 133, no. 7 (2011): 2136–2139.

[84]

Y. Tsuji and K. Yoshizawa, “Current Rectification Through π–π Stacking in Multilayered Donor–Acceptor Cyclophanes,” Journal of Physical Chemistry C 116, no. 50 (2012): 26625–26635.

[85]

M. Iwane, T. Tada, T. Osuga, et al., “Controlling Stacking Order and Charge Transport in π-Stacks of Aromatic Molecules Based on Surface Assembly,” Chemical Communications 54, no. 88 (2018): 12443–12446.

[86]

B. Giese, “Long-Distance Electron Transfer Through DNA,” Annual Review of Biochemistry 71 (2002): 51–70.

[87]

M. D. Watson, F. Jäckel, N. Severin, J. P. Rabe, and K. Müllen, “A Hexa-Peri-Hexabenzocoronene Cyclophane: An Addition to the Toolbox for Molecular Electronics,” Journal of the American Chemical Society 126, no. 5 (2004): 1402–1407.

[88]

S. Wu, M. T. González, R. Huber, et al., “Molecular Junctions Based on Aromatic Coupling,” Nature Nanotechnology 3 (2008): 569–574.

[89]

S. Martín, I. Grace, M. R. Bryce, et al., “Identifying Diversity in Nanoscale Electrical Break Junctions,” Journal of the American Chemical Society 132, no. 26 (2010): 9157–9164.

[90]

P. Li, S. Hou, B. Alharbi, et al., “Quantum Interference-Controlled Conductance Enhancement in Stacked Graphene-Like Dimers,” Journal of the American Chemical Society 144, no. 34 (2022): 15689–15697.

[91]

H. Yu, J. Li, S. Li, et al., “Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes,” Journal of the American Chemical Society 144, no. 7 (2022): 3162–3173.

[92]

Y. Tang, Y. Zhou, D. Zhou, et al., “Electric Field-Induced Assembly in Single-Stacking Terphenyl Junctions,” Journal of the American Chemical Society 142, no. 45 (2020): 19101–19109.

[93]

R. Frisenda, V. A. E. C. Janssen, F. C. Grozema, H. S. J. van der Zant, and N. Renaud, “Mechanically Controlled Quantum Interference in Individual π-Stacked Dimers,” Nature Chemistry 8 (2016): 1099–1104.

[94]

X. Zhu, B. Wang, W. Xiong, et al., “Vibration-Assisted Charge Transport Through Positively Charged Dimer Junctions,” Angewandte Chemie International Edition 61, no. 45 (2022): e202210939.

[95]

W. Xu, H. Zhang, Y. Zhou, et al., “Supramolecular Diodes With Donor–Acceptor Interactions,” Journal of the American Chemical Society 147, no. 7 (2025): 5879–5886.

[96]

Q. Li and G. C. Solomon, “Exploring Coherent Transport Through π-Stacked Systems for Molecular Electronic Devices,” Faraday Discussions 174 (2014): 21–35.

[97]

B. Zhang, M. H. Garner, L. Li, L. M. Campos, G. C. Solomon, and L. Venkataraman, “Destructive Quantum Interference in Heterocyclic Alkanes: The Search for Ultra-Short Molecular Insulators,” Chemical Science 12, no. 30 (2021): 10299–10305.

[98]

J. Ye, A. Al-Jobory, Q.-C. Zhang, et al., “Highly Insulating Alkane Rings With Destructive σ-Interference,” Science China Chemistry 65 (2022): 1822–1828.

[99]

J.-H. Tang, Y. Li, Q. Wu, et al., “Single-Molecule Level Control of Host-Guest Interactions in Metallocycle-C60 Complexes,” Nature Communications 10 (2019): 4599.

[100]

J. Lin, Y. Lv, K. Song, et al., “Cleavage of Non-Polar C(sp2)‒C(sp2) Bonds in Cycloparaphenylenes via Electric Field-Catalyzed Electrophilic Aromatic Substitution,” Nature Communications 14 (2023): 293.

[101]

H. Chen, H. Zheng, C. Hu, et al., “Giant Conductance Enhancement of Intramolecular Circuits Through Interchannel Gating,” Matter 2, no. 2 (2020): 378–389.

[102]

H. Chen, S. Hou, Q. Wu, et al., “Promotion and Suppression of Single-Molecule Conductance by Quantum Interference in Macrocyclic Circuits,” Matter 4, no. 11 (2021): 3662–3676.

[103]

Z. Hassan, E. Spuling, D. M. Knoll, and S. Bräse, “Regioselective Functionalization of [2.2]Paracyclophanes: Recent Synthetic Progress and Perspectives,” Angewandte Chemie International Edition 59, no. 6 (2020): 2156–2170.

[104]

H. Vazquez, R. Skouta, S. Schneebeli, et al., “Probing the Conductance Superposition Law in Single-Molecule Circuits With Parallel Paths,” Nature Nanotechnology 7 (2012): 663–667.

[105]

A. Borges, J. Xia, S. H. Liu, L. Venkataraman, and G. C. Solomon, “The Role of Through-Space Interactions in Modulating Constructive and Destructive Interference Effects in Benzene,” Nano Letters 17, no. 7 (2017): 4436–4442.

[106]

Z. Zhao, J. W. Y. Lam, C. Y. K. Chan, et al., “Stereoselective Synthesis, Efficient Light Emission, and High Bipolar Charge Mobility of Chiasmatic Luminogens,” Advanced Materials 23, no. 45 (2011): 5430–5435.

[107]

P. Shen, Z. Zhuang, X.-F. Jiang, et al., “Through-Space Conjugation: An Effective Strategy for Stabilizing Intramolecular Charge-Transfer States,” Journal of Physical Chemistry Letters 10, no. 11 (2019): 2648–2656.

[108]

Z. Zhuang, P. Shen, J. Li, J. Li, Z. Zhao, and B. Z. Tang, “Deciphering Benzene–Heterocycle Stacking Interaction Impact on the Electronic Structures and Photophysical Properties of Tetraphenylethene-Cored Foldamers,” CCS Chemistry 4, no. 1 (2022): 286–303.

[109]

B. He, H. Nie, W. Luo, et al., “Synthesis, Structure and Optical Properties of Tetraphenylethene Derivatives With Through-Space Conjugation Between Benzene and Various Planar Chromophores,” Organic Chemistry Frontiers 3, no. 9 (2016): 1091–1095.

[110]

B. He, W. Luo, S. Hu, et al., “Synthesis and Photophysical Properties of New Through-Space Conjugated Luminogens Constructed by Folded Tetraphenylethene,” Journal of Materials Chemistry C 5, no. 47 (2017): 12553–12560.

[111]

W. Luo, H. Nie, B. He, Z. Zhao, Q. Peng, and B. Z. Tang, “Spectroscopic and Theoretical Characterization of Through-Space Conjugation of Foldamers With a Tetraphenylethene Hinge,” Chemistry – A European Journal 23, no. 71 (2017): 18041–18048.

[112]

L. Chen, Y.-H. Wang, B. He, et al., “Multichannel Conductance of Folded Single-Molecule Wires Aided by Through-Space Conjugation,” Angewandte Chemie International Edition 54, no. 14 (2015): 4231–4235.

[113]

P. Shen, M. Huang, J. Qian, et al., “Achieving Efficient Multichannel Conductance in Through-Space Conjugated Single-Molecule Parallel Circuits,” Angewandte Chemie International Edition 59, no. 11 (2020): 4581–4588.

[114]

T. Gao, A. Daaoub, Z. Pan, et al., “Supramolecular Radical Electronics,” Journal of the American Chemical Society 145, no. 31 (2023): 17232–17241.

[115]

H. Chen and J. Fraser Stoddart, “From Molecular to Supramolecular Electronics,” Nature Reviews Materials 6 (2021): 804–828.

[116]

P. Zhou, Y. Fu, M. Wang, et al., “Robust Single-Supermolecule Switches Operating in Response to Two Different Non-Covalent Interactions,” Journal of the American Chemical Society 145, no. 34 (2023): 18800–18811.

[117]

Y. Zhou, S. Ji, Y. Zhu, et al., “Nanoscale Evolution of Charge Transport Through C–H···π Interactions,” Journal of the American Chemical Society 146, no. 49 (2024): 33378–33385.

[118]

C. S. Hartley, “Folding of Ortho-Phenylenes,” Accounts of Chemical Research 49, no. 4 (2016): 646–654.

[119]

C. S. Hartley and J. He, “Conformational Analysis of o-Phenylenes: Helical Oligomers With Frayed Ends,” Journal of Organic Chemistry 75, no. 24 (2010): 8627–8636.

[120]

J. Li, P. Shen, S. Zhen, et al., “Mechanical Single-Molecule Potentiometers With Large Switching Factors From Ortho-Pentaphenylene Foldamers,” Nature Communications 12 (2021): 167.

[121]

J. Li, Z. Zhuang, P. Shen, S. Song, B. Z. Tang, and Z. Zhao, “Achieving Multiple Quantum-Interfered States via Through-Space and Through-Bond Synergistic Effect in Foldamer-Based Single-Molecule Junctions,” Journal of the American Chemical Society 144, no. 18 (2022): 8073–8083.

[122]

J. Li, P. Shen, Z. Zhuang, J. Wu, B. Z. Tang, and Z. Zhao, “In-Situ Electro-Responsive Through-Space Coupling Enabling Foldamers as Volatile Memory Elements,” Nature Communications 14 (2023): 6250.

[123]

D. H. Shin, H. Kim, and S. W. Lee, “Nanoelectromechanical Graphene Switches for the Multi-Valued Logic Systems,” Nanotechnology 30, no. 36 (2019): 364005.

[124]

J. W. Jeong, Y.-E. Choi, W.-S. Kim, et al., “Tunnelling-Based Ternary Metal–Oxide–Semiconductor Technology,” Nature Electronics 2 (2019): 307–312.

[125]

L. Lee, J. Hwang, J. W. Jung, et al., “ZnO Composite Nanolayer With Mobility Edge Quantization for Multi-Value Logic Transistors,” Nature Communications 10 (2019): 1998.

[126]

K. C. Smith, “The Prospects for Multivalued Logic: A Technology and Applications View,” IEEE Transactions on Computers 30, no. 9 (1981): 619–634.

[127]

S. L. Hurst, “Multiple-Valued Logic Its Status and Its Future,” IEEE Transactions on Computers 33, no. 12 (1984): 1160–1179.

[128]

S. Jiao, P. Shen, J. Li, X. Dong, B. Z. Tang, and Z. Zhao, “Towards Stable Helical Structures With Enhanced Molecular Conductance by Strengthening Through-Space Conjugation,” Angew. Chem. Int. Ed. 64, no. 2 (2024): e202414801.

[129]

O. Adak, E. Rosenthal, J. Meisner, et al., “Flicker Noise as a Probe of Electronic Interaction at Metal-Single Molecule Interfaces,” Nano Letters 15, no. 6 (2015): 4143–4149.

[130]

P. He, J. Ye, J. Zhang, et al., “A Helicene-Based Single-Molecule Inductor and Capacitor With Frequency-Dependent Charge-Transport Pathways,” Angewandte Chemie International Edition 64, no. 4 (2025): e202416319.

[131]

V. Vij, V. Bhalla, and M. Kumar, “Hexaarylbenzene: Evolution of Properties and Applications of Multitalented Scaffold,” Chemical Reviews 116, no. 16 (2016): 9565–9627.

[132]

D. Sun, S. V. Rosokha, and J. K. Kochi, “Through-Space (Cofacial) π-Delocalization Among Multiple Aromatic Centers: Toroidal Conjugation in Hexaphenylbenzene-Like Radical Cations,” Angewandte Chemie International Edition 44, no. 32 (2005): 5133–5136.

[133]

V. J. Chebny, R. Shukla, and R. Rathore, “Toroidal Hopping of a Single Hole Through the Circularly-Arrayed Naphthyl Groups in Hexanaphthylbenzene Cation Radical,” Journal of Physical Chemistry A 110, no. 48 (2006): 13003–13006.

[134]

X. Wang, J. Hu, J. Lv, et al., “π-Stacked Donor–Acceptor Dendrimers for Highly Efficient White Electroluminescence,” Angewandte Chemie International Edition 60, no. 30 (2021): 16585–16593.

[135]

X. Wang, S. Wang, J. Lv, et al., “Through-Space Charge Transfer Hexaarylbenzene Dendrimers With Thermally Activated Delayed Fluorescence and Aggregation-Induced Emission for Efficient Solution-Processed Oleds,” Chemical Science 10 (2019): 2915–2923.

[136]

X. Zheng, R. Huang, C. Zhong, et al., “Achieving 21% External Quantum Efficiency for Nondoped Solution-Processed Sky-Blue Thermally Activated Delayed Fluorescence Oleds by Means of Multi-(Donor/Acceptor) Emitter With Through-Space/-Bond Charge Transfer,” Advanced Science 7, no. 7 (2020): 1902087.

[137]

S. Zhen, J.-C. Mao, L. Chen, et al., “Remarkable Multichannel Conductance of Novel Single-Molecule Wires Built on Through-Space Conjugated Hexaphenylbenzene,” Nano Letters 18, no. 7 (2018): 4200–4205.

[138]

S. Zhen, P. Shen, J. Li, Z. Zhao, and B. Z. Tang, “Giant Single-Molecule Conductance Enhancement Achieved by Strengthening Through-Space Conjugation With Thienyls,” Cell Reports Physical Science 2, no. 3 (2021): 100364.

RIGHTS & PERMISSIONS

2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/