Efficient Passive Cooling for Photovoltaic Cells via Self-Hygroscopic Polyvinyl Alcohol/Graphene Films
Xu Ran , Zhenyu Shi , An Zhang , Junhao Shen , Litao Sun , Xing Wu , Hengchang Bi
SmartMat ›› 2025, Vol. 6 ›› Issue (3) : e70015
Efficient Passive Cooling for Photovoltaic Cells via Self-Hygroscopic Polyvinyl Alcohol/Graphene Films
Photovoltaic (PV) technology plays a pivotal role in energy transformation processes, especially for sustainable energy systems. However, the conversion efficiency of the PV cells is adversely affected by increasing temperature, leading to a reduction in their overall performance. In this study, a self-hygroscopic polyvinyl alcohol/graphene (SPG) cooling film, comprising a graphene layer and a polyvinyl alcohol (PVA) hydrogel layer with lithium bromide (LiBr), is introduced to passively reduce the working temperature of the PV cells. The graphene layer, as a heat-conducting layer, can efficiently conduct heat from the heat source to the self-hygroscopic PVA hydrogel layer used as an evaporation cooling layer. In addition, the introduction of LiBr endows the PVA hydrogel with an excellent self-hygroscopic property. The SPG cooling film demonstrates an outstanding cooling performance under the synergistic effect of the graphene film and the self-hygroscopic PVA hydrogel. In the outdoor experiments, the SPG cooling film can reduce the temperature of the PV cells by 20.6°C and increase its average output power from 74 to 93 W/m2, about a 25.7% increase. This cooling film demonstrates significant potential for enhancing cooling performance in electronic devices and could be widely used in the thermal management of PV cells.
evaporation cooling / graphene films / hygroscopic hydrogels / photovoltaic cells / thermal conductivity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |