Emerging 2D Material-Based Synaptic Devices: Principles, Mechanisms, Improvements, and Applications

Zheyu Yang , Zhe Zhang , Shida Huo , Fanying Meng , Yue Wang , Yuexuan Ma , Baiyan Liu , Fanyi Meng , Yuan Xie , Enxiu Wu

SmartMat ›› 2025, Vol. 6 ›› Issue (2) : e70005

PDF
SmartMat ›› 2025, Vol. 6 ›› Issue (2) : e70005 DOI: 10.1002/smm2.70005
REVIEW

Emerging 2D Material-Based Synaptic Devices: Principles, Mechanisms, Improvements, and Applications

Author information +
History +
PDF

Abstract

The von Neumann architecture is encountering challenges, including the “memory wall” and “power wall” due to the separation of memory and central processing units, which imposes a major hurdle on today’s massive data processing. Neuromorphic computing, which combines data storage and spatiotemporal computation at the hardware level, represents a computing paradigm that surpasses the traditional von Neumann architecture. Artificial synapses are the basic building blocks of the artificial neural networks capable of neuromorphic computing, and require a high on/off ratio, high durability, low nonlinearity, and multiple conductance states. Recently, two-dimensional (2D) materials and their heterojunctions have emerged as a nanoscale hardware development platform for synaptic devices due to their intrinsic high surface-to-volume ratios and sensitivity to charge transfer at interfaces. Here, the latest progress of 2D material-based artificial synapses is reviewed regarding biomimetic principles, physical mechanisms, optimization methods, and application scenarios. In particular, there is a focus on how to improve resistive switching characteristics and synaptic plasticity of artificial synapses to meet actual needs. Finally, key technical challenges and future development paths for 2D material-based artificial neural networks are also explored.

Keywords

2D material / artificial synapse / neural network / neuromorphic computing

Cite this article

Download citation ▾
Zheyu Yang, Zhe Zhang, Shida Huo, Fanying Meng, Yue Wang, Yuexuan Ma, Baiyan Liu, Fanyi Meng, Yuan Xie, Enxiu Wu. Emerging 2D Material-Based Synaptic Devices: Principles, Mechanisms, Improvements, and Applications. SmartMat, 2025, 6(2): e70005 DOI:10.1002/smm2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. López, “Artificial Intelligence and Advanced Materials,” Advanced Materials 35, no. 23 (2023): 2208683.

[2]

N. J. Tye, S. Hofmann, and P. Stanley-Marbell, “Materials and Devices as Solutions to Computational Problems in Machine Learning,” Nature Electronics 6, no. 7 (2023): 479–490.

[3]

A. Zador, S. Escola, B. Richards, et al., “Catalyzing Next-Generation Artificial Intelligence Through Neuroai,” Nature Communications 14, no. 1 (2023): 1597.

[4]

Z. Rehman, N. Tariq, S. A. Moqurrab, J. Yoo, and G. Srivastava, “Machine Learning and Internet of Things Applications in Enterprise Architectures: Solutions, Challenges, and Open Issues,” Expert Systems 41, no. 1 (2024): e13467.

[5]

K. Rogdakis, G. Psaltakis, G. Fagas, A. Quinn, R. Martins, and E. Kymakis, “Hybrid Chips to Enable a Sustainable Internet of Things Technology: Opportunities and Challenges,” Discover Materials 4, no. 1 (2024): 4.

[6]

T. Sun, B. Feng, J. Huo, et al., “Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses,” Nano-Micro Letters 16, no. 1 (2024): 14.

[7]

X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han, “Breaking the von Neumann Bottleneck: Architecture-Level Processing-in-Memory Technology,” Science China Information Sciences 64, no. 6 (2021): 160404.

[8]

S. Wang, X. Liu, and P. Zhou, “The Road for 2D Semiconductors in the Silicon Age,” Advanced Materials 34, no. 48 (2022): 2106886.

[9]

R. K. Cavin, P. Lugli, and V. V. Zhirnov, “Science and Engineering Beyond Moore’s Law,” Proceedings of the IEEE 100 (2012): 1720–1749.

[10]

M. Li, “Review of Advanced CMOS Technology for Post-Moore Era,” Science China Physics, Mechanics and Astronomy 55, no. 12 (2012): 2316–2325.

[11]

P. Jetty, K. U. Mohanan, and S. N. Jammalamadaka, “Α-Fe2O3-Based Artificial Synaptic RRAM Device for Pattern Recognition Using Artificial Neural Networks,” Nanotechnology 34, no. 26 (2023): 265703.

[12]

S. Ling, C. Zhang, C. Ma, Y. Li, and Q. Zhang, “Emerging MXene-Based Memristors for In-Memory, Neuromorphic Computing, and Logic Operation,” Advanced Functional Materials 33, no. 1 (2023): 2208320.

[13]

Y. Wu, W. Deng, X. Wang, et al., “Progress in Bioinspired Photodetectors Design for Visual Information Processing,” Advanced Functional Materials 33, no. 40 (2023): 2302899.

[14]

W. Wang, Y. Wang, F. Yin, et al., “Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware,” Nano-Micro Letters 16, no. 1 (2024): 133.

[15]

C. F. Stevens, S. Tonegawa, and Y. Wang, “The Role of Calcium-Calmodulin Kinase II in Three Forms of Synaptic Plasticity,” Current Biology 4, no. 8 (1994): 687–693.

[16]

A. Barri, M. T. Wiechert, M. Jazayeri, and D. A. DiGregorio, “Synaptic Basis of a Sub-Second Representation of Time in a Neural Circuit Model,” Nature Communications 13, no. 1 (2022): 7902.

[17]

S. G. Sarwat, B. Kersting, T. Moraitis, V. P. Jonnalagadda, and A. Sebastian, “Phase-Change Memtransistive Synapses for Mixed-Plasticity Neural Computations,” Nature Nanotechnology 17, no. 5 (2022): 507–513.

[18]

S. Wang, X. Liu, M. Xu, L. Liu, D. Yang, and P. Zhou, “Two-Dimensional Devices and Integration Towards the Silicon Lines,” Nature Materials 21, no. 11 (2022): 1225–1239.

[19]

Z. Tang, S. Chen, D. Li, X. Wang, and A. Pan, “Two-Dimensional Optoelectronic Devices for Silicon Photonic Integration,” Journal of Materiomics 9, no. 3 (2023): 551–567.

[20]

H. Liu, A. T. Neal, and P. D. Ye, “Channel Length Scaling of MoS2 MOSFETs,” ACS Nano 6, no. 10 (2012): 8563–8569.

[21]

S. Fu, X. Jia, A. S. Hassan, et al., “Reversible Electrical Control of Interfacial Charge Flow Across van der Waals Interfaces,” Nano Letters 23, no. 5 (2023): 1850–1857.

[22]

M. Kapfer, B. S. Jessen, M. E. Eisele, et al., “Programming Twist Angle and Strain Profiles in 2D Materials,” Science 381, no. 6658 (2023): 677–681.

[23]

Y. Meng, J. Feng, S. Han, et al., “Photonic van der Waals Integration From 2D Materials to 3D Nanomembranes,” Nature Reviews Materials 8, no. 8 (2023): 498–517.

[24]

Y. Zhang, J. Wu, L. Jia, et al., “Advanced Optical Polarizers Based on 2D Materials,” Nanophotonics 1, no. 1 (2024): 28.

[25]

A. Kumar, L. Viscardi, E. Faella, et al., “Black Phosphorus Unipolar Transistor, Memory, and Photodetector,” Journal of Materials Science 58, no. 6 (2023): 2689–2699.

[26]

J. Park, J. Son, S. K. Park, D. S. Lee, and D. Y. Jeon, “Two-Dimensional Material-Based Complementary Ambipolar Field-Effect Transistors With Ohmic-Like Contacts,” Nanotechnology 34, no. 32 (2023): 325705.

[27]

G. Dastgeer, S. Nisar, A. Rasheed, et al., “Atomically Engineered, High-Speed Non-Volatile Flash Memory Device Exhibiting Multibit Data Storage Operations,” Nano Energy 119 (2024): 109106.

[28]

D. O. Hebb, “The First Stage of Perception: Growth of the Assembly,” Organization of Behavior 4, no. 60 (1949): 78–60.

[29]

L. Chua, “Memristor—The Missing Circuit Element,” IEEE Transactions on Circuit Theory 18, no. 5 (1971): 507–519.

[30]

C. Mead, “Neuromorphic Electronic Systems,” Proceedings of the IEEE 78, no. 10 (1990): 1629–1636.

[31]

K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, no. 5696 (2004): 666–669.

[32]

S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. J. Amit, “Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation,” Neural Computation 12, no. 10 (2000): 2227–2258.

[33]

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Memristor Found,” Nature 453, no. 7191 (2008): 80–83.

[34]

T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, “Short-Term Plasticity and Long-Term Potentiation Mimicked in Single Inorganic Synapses,” Nature Materials 10, no. 8 (2011): 591–595.

[35]

H. Tian, W. Mi, X. F. Wang, et al., “Graphene Dynamic Synapse With Modulatable Plasticity,” Nano Letters 15, no. 12 (2015): 8013–8019.

[36]

W. Xu, S. Y. Min, H. Hwang, and T. W. Lee, “Organic Core-Sheath Nanowire Artificial Synapses With Femtojoule Energy Consumption,” Science Advances 2, no. 6 (2016): e1501326.

[37]

S. G. Kim, S. H. Kim, J. Park, et al., “Infrared Detectable MoS2 Phototransistor and Its Application to Artificial Multilevel Optic-Neural Synapse,” ACS Nano 13, no. 9 (2019): 10294–10300.

[38]

W. Zhang, P. Yao, B. Gao, et al., “Edge Learning Using a Fully Integrated Neuro-Inspired Memristor Chip,” Science 381, no. 6663 (2023): 1205–1211.

[39]

Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of Conducting Filament Growth in Nanoscale Resistive Memories,” Nature Communications 3, no. 1 (2012): 732.

[40]

S. La Barbera, D. Vuillaume, and F. Alibart, “Filamentary Switching: Synaptic Plasticity Through Device Volatility,” ACS Nano 9, no. 1 (2015): 941–949.

[41]

S. H. Lee, H. L. Park, M. H. Kim, M. H. Kim, B. G. Park, and S. D. Lee, “Realization of Biomimetic Synaptic Functions in a One-Cell Organic Resistive Switching Device Using the Diffusive Parameter of Conductive Filaments,” ACS Applied Materials & Interfaces 12, no. 46 (2020): 51719–51728.

[42]

X. Feng, J. Huang, J. Ning, D. Wang, J. Zhang, and Y. Hao, “A Novel Nonvolatile Memory Device Based on Oxidized Ti3C2Tx MXene for Neurocomputing Application,” Carbon 205, no. 5 (2023): 365–372.

[43]

C. Mahata, D. Ju, T. Das, et al., “Artificial Synapses Based on 2D-layered Palladium Diselenide Heterostructure Dynamic Memristor for Neuromorphic Applications,” Nano Energy 120, no. 2 (2024): 109168.

[44]

K. Wang, S. Ren, Y. Jia, and X. Yan, “Dual Biological-Clock Controllable Low-Power Fibrous Synapse Array Based on Heterojunction Switched Conductive Filaments,” Nano Energy 127, no. 9 (2024): 109765.

[45]

Y. Wang, B. Han, M. Mayor, and P. Samorì, “Opto-Electrochemical Synaptic Memory in Supramolecularly Engineered Janus 2D MoS2,” Advanced Materials 36, no. 8 (2024): 2307359.

[46]

J. Yang, A. Yoon, D. Lee, et al., “Wafer-Scale Memristor Array Based on Aligned Grain Boundaries of 2D Molybdenum Ditelluride for Application to Artificial Synapses,” Advanced Functional Materials 34, no. 15 (2024): 2309455.

[47]

W. Yang, H. Kan, G. Shen, and Y. Li, “A Network Intrusion Detection System With Broadband WO3-x/WO3-x-Ag/WO3-x Optoelectronic Memristor,” Advanced Functional Materials 34, no. 23 (2024): 2312885.

[48]

F. S. Yang, M. Li, M. P. Lee, et al., “Oxidation-Boosted Charge Trapping in Ultra-Sensitive van der Waals Materials for Artificial Synaptic Features,” Nature Communications 11, no. 1 (2020): 2972.

[49]

S. Hong, H. Cho, B. H. Kang, et al., “Neuromorphic Active Pixel Image Sensor Array for Visual Memory,” ACS Nano 15, no. 9 (2021): 15362–15370.

[50]

J. Meng, T. Wang, H. Zhu, et al., “Integrated In-Sensor Computing Optoelectronic Device for Environment-Adaptable Artificial Retina Perception Application,” Nano Letters 22, no. 1 (2021): 81–89.

[51]

J. Tang, C. He, J. Tang, et al., “A Reliable All-2D Materials Artificial Synapse for High Energy-Efficient Neuromorphic Computing,” Advanced Functional Materials 31, no. 27 (2021): 2011083.

[52]

G. Liu, Q. Li, W. Shi, et al., “Ultralow-Power and Multisensory Artificial Synapse Based on Electrolyte-Gated Vertical Organic Transistors,” Advanced Functional Materials 32, no. 27 (2022): 2200959.

[53]

H. Cho, D. Lee, K. Ko, et al., “Double-Floating-Gate van der Waals Transistor for High-Precision Synaptic Operations,” ACS Nano 17, no. 8 (2023): 7384–7393.

[54]

M. Farronato, P. Mannocci, M. Melegari, S. Ricci, C. M. Compagnoni, and D. Ielmini, “Reservoir Computing With Charge-Trap Memory Based on a MoS2 Channel for Neuromorphic Engineering,” Advanced Materials 35, no. 37 (2023): 2205381.

[55]

C. Yao, G. Wu, M. Huang, et al., “Reconfigurable Artificial Synapse Based on Ambipolar Floating Gate Memory,” ACS Applied Materials & Interfaces 15, no. 19 (2023): 23573–23582.

[56]

D. Cao, Y. Yan, M. Wang, et al., “Layered Wide Bandgap Semiconductor GaPS4 as a Charge-Trapping Medium for Use in High-Temperature Artificial Synaptic Applications,” Advanced Functional Materials 34, no. 28 (2024): 2314649.

[57]

Y. Wei, J. Yu, Y. Li, et al., “Mechano-Driven Logic-In-Memory With Neuromorphic Triboelectric Charge-Trapping Transistor,” Nano Energy 126, no. 8 (2024): 109622.

[58]

J. Zhu, Z. Wang, D. Liu, et al., “Flexible Low-Voltage MXene Floating-Gate Synaptic Transistor for Neuromorphic Computing and Cognitive Learning,” Advanced Functional Materials 34, no. 40 (2024): 2403842.

[59]

Z. Su, Y. Yan, M. Sun, et al., “Broadband Artificial Tetrachromatic Synaptic Devices Composed of 2D/3D Integrated WSe2-GaN-Based Dual-Channel Floating Gate Transistors,” Advanced Functional Materials 34, no. 33 (2024): 2316802.

[60]

D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H. S. P. Wong, “Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing,” Nano Letters 12, no. 5 (2012): 2179–2186.

[61]

H. Akeiber, P. Nejat, M. Z. A. Majid, et al., “A Review on Phase Change Material (PCM) for Sustainable Passive Cooling in Building Envelopes,” Renewable and Sustainable Energy Reviews 60, no. 8 (2016): 1470–1497.

[62]

X. Chen, Y. Xue, Y. Sun, et al., “Neuromorphic Photonic Memory Devices Using Ultrafast, Non-Volatile Phase-Change Materials,” Advanced Materials 35, no. 37 (2023): 2203909.

[63]

Y. Li, Y. Zhang, Z. Liu, et al., “All-Fiber Synapse Utilizing Phase Change Materials for Information Recognition and Processing,” ACS Photonics 10, no. 12 (2023): 4160–4168.

[64]

X. Yu, C. Cheng, J. Liang, et al., “Graphene-Assisting Nonvolatile Vanadium Dioxide Phase Transition for Neuromorphic Machine Vision,” Advanced Functional Materials 34, no. 16 (2024): 2312481.

[65]

A. Chanthbouala, V. Garcia, R. O. Cherifi, et al., “A Ferroelectric Memristor,” Nature Materials 11, no. 10 (2012): 860–864.

[66]

Z. D. Luo, X. Xia, M. M. Yang, N. R. Wilson, A. Gruverman, and M. Alexe, “Artificial Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal Dichalcogenide Memristive Transistors,” ACS Nano 14, no. 1 (2019): 746–754.

[67]

Y. Joo, E. Hwang, H. Hong, S. Cho, and H. Yang, “Memory and Synaptic Devices Based on Emerging 2D Ferroelectricity,” Advanced Electronic Materials 9, no. 8 (2023): 2300211.

[68]

Y. Zhai, P. Xie, J. Hu, et al., “Reconfigurable 2D-Ferroelectric Platform for Neuromorphic Computing,” Applied Physics Reviews 10, no. 1 (2023): 011408.

[69]

C. M. Song, D. Kim, S. Lee, and H. J. Kwon, “Ferroelectric 2D SnS2 Analog Synaptic FET,” Advanced Science 11, no. 16 (2024): 2308588.

[70]

J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic Spintronics,” Nature Electronics 3, no. 7 (2020): 360–370.

[71]

X. Zhang, W. Cai, M. Wang, et al., “Spin-Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing,” Advanced Science 8, no. 10 (2021): 2004645.

[72]

Q. Zhang, Y. Zhao, C. He, et al., “Perpendicular Magnetization Switching Driven by Spin-Orbit Torque for Artificial Synapses in Epitaxial Pt-Based Multilayers,” Advanced Electronic Materials 8, no. 12 (2022): 2200845.

[73]

D. Kumar, H. J. Chung, J. Chan, et al., “Ultralow Energy Domain Wall Device for Spin-Based Neuromorphic Computing,” ACS Nano 17, no. 7 (2023): 6261–6274.

[74]

B. Chen, M. Zeng, K. H. Khoo, et al., “Spintronic Devices for High-Density Memory and Neuromorphic Computing-A Review,” Materials Today 70, no. 9 (2023): 193–217.

[75]

H. Lee, M. Jin, H. J. Na, et al., “Implementation of Synaptic Device Using Ultraviolet Ozone Treated Water-in-Bisalt/Polymer Electrolyte-Gated Transistor,” Advanced Functional Materials 32, no. 15 (2022): 2110591.

[76]

P. Liu, F. Hui, F. Aguirre, et al., “Nano-Memristors With 4 mV Switching Voltage Based on Surface-Modified Copper Nanoparticles,” Advanced Materials 34, no. 20 (2022): 2201197.

[77]

D. A. Nguyen, Y. Jo, T. U. Tran, M. S. Jeong, H. Kim, and H. Im, “Electrically and Optically Controllable P–N Junction Memtransistor Based on an Al2O3 Encapsulated 2D Te/ReS2 van der Waals Heterostructure,” Small Methods 5, no. 12 (2021): 2101303.

[78]

G. Cao, P. Meng, J. Chen, et al., “2D Material Based Synaptic Devices for Neuromorphic Computing,” Advanced Functional Materials 31, no. 4 (2021): 2005443.

[79]

M. Li, F. S. Yang, H. C. Hsu, et al., “Defect Engineering in Ambipolar Layered Materials for Mode-Regulable Nociceptor,” Advanced Functional Materials 31, no. 5 (2021): 2007587.

[80]

J. Zou, Z. Cai, Y. Lai, et al., “Doping Concentration Modulation in Vanadium-Doped Monolayer Molybdenum Disulfide for Synaptic Transistors,” ACS Nano 15, no. 4 (2021): 7340–7347.

[81]

C. Pan, C. Y. Wang, S. J. Liang, et al., “Reconfigurable Logic and Neuromorphic Circuits Based on Electrically Tunable Two-Dimensional Homojunctions,” Nature Electronics 3, no. 7 (2020): 383–390.

[82]

Y. Sun, Y. Ding, and D. Xie, “Mixed-Dimensional van der Waals Heterostructures Enabled Optoelectronic Synaptic Devices for Neuromorphic Applications,” Advanced Functional Materials 31, no. 47 (2021): 2105625.

[83]

S. Kim, C. Yoon, G. Oh, et al., “Progressive and Stable Synaptic Plasticity With Femtojoule Energy Consumption by the Interface Engineering of a Metal/Ferroelectric/Semiconductor,” Advanced Science 9, no. 22 (2022): 2201502.

[84]

J. Ren, H. Shen, Z. Liu, M. Xu, and D. Li, “Artificial Synapses Based on WSe2 Homojunction via Vacancy Migration,” ACS Applied Materials & Interfaces 14, no. 18 (2022): 21141–21149.

[85]

J. Du, H. Yu, B. Liu, et al., “Strain Engineering in 2D Material-Based Flexible Optoelectronics,” Small Methods 5, no. 1 (2021): 2000919.

[86]

J. M. Kim, M. F. Haque, E. Y. Hsieh, et al., “Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities,” Advanced Materials 35, no. 27 (2023): 2107362.

[87]

M. Pandey, C. Pandey, R. Ahuja, and R. Kumar, “Straining Techniques for Strain Engineering of 2D Materials Towards Flexible Straintronic Applications,” Nano Energy 109, no. 5 (2023): 108278.

[88]

D. Liu, Q. Shi, S. Dai, and J. Huang, “The Design of 3D-interface Architecture in an Ultralow-Power, Electrospun Single-Fibe. Synaptic Transistor for Neuromorphic Computing,” Small 16, no. 13 (2020): 1907472.

[89]

L. Yin, W. Huang, R. Xiao, et al., “Optically Stimulated Synaptic Devices Based on the Hybrid Structure of Silicon Nanomembrane and Perovskite,” Nano Letters 20, no. 5 (2020): 3378–3387.

[90]

N. Ilyas, J. Wang, C. Li, et al., “Nanostructured Materials and Architectures for Advanced Optoelectronic Synaptic Devices,” Advanced Functional Materials 32, no. 15 (2022): 2110976.

[91]

P. Greengard, “The Neurobiology of Slow Synaptic Transmission,” Science 294, no. 5544 (2001): 1024–1030.

[92]

R. C. Malenka and R. A. Nicoll, “NMDA-Receptor-Dependent Synaptic Plasticity: Multiple Forms and Mechanisms,” Trends in Neurosciences 16, no. 12 (1993): 521–527.

[93]

G. Rachmuth, H. Z. Shouval, M. F. Bear, and C. S. Poon, “A Biophysically-Based Neuromorphic Model of Spike Rate-And Timing-Dependent Plasticity,” Proceedings of the National Academy of Sciences 108, no. 49 (2011): E1266–E1274.

[94]

L. E. Dobrunz, E. P. Huang, and C. F. Stevens, “Very Short-Term Plasticity in Hippocampal Synapses,” Proceedings of the National Academy of Sciences 94, no. 26 (1997): 14843–14847.

[95]

E. S. Fortune and G. J. Rose, “Short-Term Synaptic Plasticity as a Temporal Filter,” Trends in Neurosciences 24, no. 7 (2001): 381–385.

[96]

J. D. Clements and R. A. Silver, “Unveiling Synaptic Plasticity: A New Graphical and Analytical Approach,” Trends in Neurosciences 23, no. 3 (2000): 105–113.

[97]

E. J. Nestler, “Molecular Basis of Long-Term Plasticity Underlying Addiction,” Nature Reviews Neuroscience 2, no. 2 (2001): 119–128.

[98]

T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-Barranco, “STDP and STDP Variations With Memristors for Spiking Neuromorphic Learning Systems,” Frontiers in Neuroscience 7, no. 1 (2013): 2.

[99]

Y. Li, Y. Zhong, J. Zhang, et al., “Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems,” Scientific Reports 4, no. 1 (2014): 4906.

[100]

Y. Dan and M. M. Poo, “Spike Timing-Dependent Plasticity: From Synapse to Perception,” Physiological Reviews 86, no. 3 (2006): 1033–1048.

[101]

R. Wang, P. Chen, D. Hao, et al., “Artificial Synapses Based on Lead-Free Perovskite Floating-Gate Organic Field-Effect Transistors for Supervised and Unsupervised Learning,” ACS Applied Materials & Interfaces 13, no. 36 (2021): 43144–43154.

[102]

S. T. Yang, X. Y. Li, T. L. Yu, et al., “High-Performance Neuromorphic Computing Based on Ferroelectric Synapses With Excellent Conductance Linearity and Symmetry,” Advanced Functional Materials 32, no. 35 (2022): 2202366.

[103]

U. Y. Won, Vu Q. An, S. B. Park, et al., “Multi-Neuron Connection Using Multi-Terminal Floating-Gate Memristor for Unsupervised Learning,” Nature Communications 14, no. 1 (2023): 3070.

[104]

Z. Y. Ren, L. Q. Zhu, Y. B. Guo, et al., “Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating From Interfacial Proton Gating for Pattern Learning and Memory,” ACS Applied Materials & Interfaces 12, no. 6 (2020): 7833–7839.

[105]

B. Linares-Barranco and T. Serrano-Gotarredona, “Memristance Can Explain Spike-Time-Dependent-Plasticity in Neural Synapses,” Nature Precedings 3010, no. 1 (2009): 1.

[106]

J. Tang, F. Yuan, X. Shen, et al., “Bridging Biological and Artificial Neural Networks With Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges,” Advanced Materials 31, no. 49 (2019): 1902761.

[107]

M. Naqi, M. S. Kang, N. Liu, et al., “Multilevel Artificial Electronic Synaptic Device of Direct Grown Robust MoS2 Based Memristor Array for In-Memory Deep Neural Network,” npj 2D Materials and Applications 6, no. 1 (2022): 53.

[108]

J. H. Baek, K. J. Kwak, S. J. Kim, et al., “Two-Terminal Lithium-Mediated Artificial Synapses With Enhanced Weight Modulation for Feasible Hardware Neural Networks,” Nano-Micro Letters 15, no. 1 (2023): 69.

[109]

X. Feng, S. Li, S. L. Wong, et al., “Self-Selective Multi-Terminal Memtransistor Crossbar Array for In-Memory Computing,” ACS Nano 15, no. 1 (2021): 1764–1774.

[110]

F. Zhang, C. Li, Z. Li, L. Dong, and J. Zhao, “Recent Progress in Three-Terminal Artificial Synapses Based on 2D Materials: From Mechanisms to Applications,” Microsystems & Nanoengineering 9, no. 1 (2023): 16.

[111]

R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges,” Advanced Materials 21, no. 25–26 (2009): 2632–2663.

[112]

I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical Metallization Memories-Fundamentals, Applications, Prospects,” Nanotechnology 22, no. 25 (2011): 254003.

[113]

U. Celano, L. Goux, A. Belmonte, et al., “Three-Dimensional Observation of the Conductive Filament in Nanoscaled Resistive Memory Devices,” Nano Letters 14, no. 5 (2014): 2401–2406.

[114]

B. K. You, M. Byun, S. Kim, and K. J. Lee, “Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition,” ACS Nano 9, no. 6 (2015): 6587–6594.

[115]

X. Zhang, L. Xu, H. Zhang, et al., “Effect of Joule Heating on Resistive Switching Characteristic in AlOx Cells Made by Thermal Oxidation Formation,” Nanoscale Research Letters 15, no. 1 (2020): 11.

[116]

A. V. Yakimov, D. O. Filatov, O. N. Gorshkov, et al., “Influence of Oxygen Ion Elementary Diffusion Jumps on the Electron Current Through the Conductive Filament in Yttria Stabilized Zirconia Nanometer-Sized Memristor,” Chaos, Solitons & Fractals 148, no. 7 (2021): 111014.

[117]

T. Wang, J. Meng, X. Zhou, et al., “Reconfigurable Neuromorphic Memristor Network for Ultralow-Power Smart Textile Electronics,” Nature Communications 13, no. 1 (2022): 7432.

[118]

X. Zhu, Q. Wang, and W. D. Lu, “Memristor Networks for Real-Time Neural Activity Analysis,” Nature Communications 11, no. 1 (2020): 2439.

[119]

R. A. John, N. Yantara, S. E. Ng, et al., “Diffusive and Drift Halide Perovskite Memristive Barristors as Nociceptive and Synaptic Emulators for Neuromorphic Computing,” Advanced Materials 33, no. 15 (2021): 2007851.

[120]

Y. Park and J. S. Lee, “Metal Halide Perovskite-Based Memristors for Emerging Memory Applications,” Journal of Physical Chemistry Letters 13, no. 24 (2022): 5638–5647.

[121]

S. Meloni, G. Palermo, N. Ashari-Astani, M. Grätzel, and U. Rothlisberger, “Valence and Conduction Band Tuning in Halide Perovskites for Solar Cell Applications,” Journal of Materials Chemistry A 4, no. 41 (2016): 15997–16002.

[122]

H. Kim, M. J. Choi, J. M. Suh, et al., “Quasi-2D Halide Perovskites for Resistive Switching Devices With ON/OFF Ratios Above 109,” NPG Asia Materials 12, no. 1 (2020): 21.

[123]

M. Wuttig, C. F. Schön, M. Schumacher, et al., “Halide Perovskites: Advanced Photovoltaic Materials Empowered by a Unique Bonding Mechanism,” Advanced Functional Materials 32, no. 2 (2022): 2110166.

[124]

K. Beom, Z. Fan, D. Li, and N. Newman, “Halide Perovskite Based Synaptic Devices for Neuromorphic Systems,” Materials Today Physics 24, no. 3 (2022): 100667.

[125]

D. Hao, Z. Yang, J. Huang, and F. Shan, “Recent Developments of Optoelectronic Synaptic Devices Based on Metal Halide Perovskites,” Advanced Functional Materials 33, no. 8 (2023): 2211467.

[126]

S. J. Kim, T. H. Lee, J. M. Yang, et al., “Vertically Aligned Two-Dimensional Halide Perovskites for Reliably Operable Artificial Synapses,” Materials Today 52, no. 1 (2022): 19–30.

[127]

C. Lee, K. Pak, J. Choi, M. J. Kim, B. J. Cho, and S. G. Im, “Long-Term Retention of Low-Power, Nonvolatile Organic Transistor Memory Based on Ultrathin, Trilayered Dielectric Containing Charge Trapping Functionality,” Advanced Functional Materials 30, no. 43 (2020): 2004665.

[128]

C. Gao, M. P. Lee, M. Li, et al., “Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge-Trap Layered Electronics,” Advanced Functional Materials 31, no. 5 (2021): 2005182.

[129]

C. Liu, J. Pan, Q. Yuan, et al., “Highly Reliable van der Waals Memory Boosted by a Single 2D Charge Trap Medium,” Advanced Materials 36, no. 3 (2024): 2305580.

[130]

Y. Yao, W. Huang, J. Chen, et al., “Flexible Complementary Circuits Operating at sub-0.5 V via Hybrid Organic-Inorganic Electrolyte-Gated Transistors,” Proceedings of the National Academy of Sciences 118, no. 44 (2021): e2111790118.

[131]

S. S. Awate, B. Mostek, S. Kumari, et al., “Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors,” ACS Applied Materials & Interfaces 15, no. 12 (2023): 15785–15796.

[132]

R. Ahmadi, A. Abnavi, A. Hasani, et al., “Pseudocapacitance-Induced Synaptic Plasticity of Tribo-Phototronic Effect Between Ionic Liquid and 2D MoS2,” Small 20, no. 11 (2023): 2304988.

[133]

X. Yang, J. Yu, J. Zhao, et al., “Mechanoplastic Tribotronic Floating-Gate Neuromorphic Transistor,” Advanced Functional Materials 30, no. 34 (2020): 2002506.

[134]

W. C. Yang, Y. C. Lin, M. Y. Liao, et al., “Comprehensive Non-Volatile Photo-Programming Transistor Memory via a Dual-Functional Perovskite-Based Floating Gate,” ACS Applied Materials & Interfaces 13, no. 17 (2021): 20417–20426.

[135]

J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of Floating-Gate Interference on NAND Flash Memory Cell Operation,” IEEE Electron Device Letters 23, no. 5 (2002): 264–266.

[136]

K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, “Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory,” Advanced Functional Materials 20, no. 2 (2010): 224–230.

[137]

Y. Sun, M. Li, Y. Ding, et al., “Programmable van-der-Waals Heterostructure-Enabled Optoelectronic Synaptic Floating-Gate Transistors With Ultra-Low Energy Consumption,” InfoMat 4, no. 10 (2022): e12317.

[138]

E. Lee, J. Kim, S. Bhoyate, K. Cho, and W. Choi, “Realizing Scalable Two-Dimensional MoS2 Synaptic Devices for Neuromorphic Computing,” Chemistry of Materials 32, no. 24 (2020): 10447–10455.

[139]

L. Sun, X. Yan, J. Zheng, et al., “Layer-Dependent Chemically Induced Phase Transition of Two-Dimensional MoS2,” Nano Letters 18, no. 6 (2018): 3435–3440.

[140]

T. Patel, J. Okamoto, T. Dekker, et al., “Photocurrent Imaging of Multi-Memristive Charge Density Wave Switching in Two-Dimensional 1T-TaS2,” Nano Letters 20, no. 10 (2020): 7200–7206.

[141]

X. Zhu, D. Li, X. Liang, and W. D. Lu, “Ionic Modulation and Ionic Coupling Effects in MoS2 Devices for Neuromorphic Computing,” Nature Materials 18, no. 2 (2019): 141–148.

[142]

L. Lee, C. H. Chiang, Y. C. Shen, et al., “Rational Design on Polymorphous Phase Switching in Molybdenum Diselenide-Based Memristor Assisted by All-Solid-State Reversible Intercalation Toward Neuromorphic Application,” ACS Nano 17, no. 1 (2022): 84–93.

[143]

F. Liu, L. You, K. L. Seyler, et al., “Room-Temperature Ferroelectricity in CuInP2S6 Ultrathin Flakes,” Nature Communications 7, no. 1 (2016): 12357.

[144]

Y. T. Huang, N. K. Chen, Z. Z. Li, et al., “Two-Dimensional In2Se3: A Rising Advanced Material for Ferroelectric Data Storage,” InfoMat 4, no. 8 (2022): e12341.

[145]

R. Guo, L. You, Y. Zhou, et al., “Non-Volatile Memory Based on the Ferroelectric Photovoltaic Effect,” Nature Communications 4, no. 1 (2013): 1990.

[146]

A. I. Khan, A. Keshavarzi, and S. Datta, “The Future of Ferroelectric Field-Effect Transistor Technology,” Nature Electronics 3, no. 10 (2020): 588–597.

[147]

K. H. Kim, I. Karpov, R. H. Olsson, III, and D. Jariwala, “Wurtzite and Fluorite Ferroelectric Materials for Electronic Memory,” Nature Nanotechnology 18, no. 5 (2023): 422–441.

[148]

J. Wu, H. Y. Chen, N. Yang, et al., “High Tunnelling Electroresistance in a Ferroelectric van der Waals Heterojunction via Giant Barrier Height Modulation,” Nature Electronics 3, no. 8 (2020): 466–472.

[149]

S. K. Thirumala and S. K. Gunta, “Gate Leakage in Non-Volatile Ferroelectric Transistors: Device-Circuit Implications,” in 2018 76th Device Research Conference (DRC) (2018), 1-2.

[150]

J. Y. Kim, M. J. Choi, and H. W. Jang, “Ferroelectric Field Effect Transistors: Progress and Perspective,” APL Materials 9, no. 2 (2021): 021102.

[151]

S. Baek, H. H. Yoo, J. H. Ju, et al., “Ferroelectric Field-Effect-Transistor Integrated With Ferroelectrics Heterostructure,” Advanced Science 9, no. 21 (2022): 2200566.

[152]

L. Zhang, J. Zhou, H. Li, L. Shen, and Y. P. Feng, “Recent Progress and Challenges in Magnetic Tunnel Junctions With 2D Materials for Spintronic Applications,” Applied Physics Reviews 8, no. 2 (2021): 021308.

[153]

X. Zhang, W. Cai, X. Zhang, et al., “Skyrmions in Magnetic Tunnel Junctions,” ACS Applied Materials & Interfaces 10, no. 19 (2018): 16887–16892.

[154]

I. I. Oleynik and E. Y. Tsymbal, “Metal-Oxide Interfaces in Magnetic Tunnel Junctions,” Interface Science 12, no. 1 (2004): 105–116.

[155]

S. Li, A. Du, Y. Wang, et al., “Experimental Demonstration of Skyrmionic Magnetic Tunnel Junction at Room Temperature,” Science Bulletin 67, no. 7 (2022): 691–699.

[156]

Z. Peng, Z. Cheng, S. Ke, et al., “Flexible Memristor Constructed by 2D Cadmium Phosphorus Trichalcogenide for Artificial Synapse and Logic Operation,” Advanced Functional Materials 33, no. 9 (2023): 2211269.

[157]

G. Shen, C. Zhuge, J. Jiang, et al., “Defective Engineering Tuning the Analog Switching Linearity and Symmetry of Two-Terminal Artificial Synapse for Neuromorphic Systems,” Advanced Functional Materials 34, no. 1 (2024): 2309054.

[158]

T. Li, H. Yu, Z. Xiong, Z. Gao, Y. Zhou, and S. T. Han, “2D Oriented Covalent Organic Frameworks for Alcohol-Sensory Synapses,” Materials Horizons 8, no. 7 (2021): 2041–2049.

[159]

Y. Liu, Y. Wei, M. Liu, et al., “Two-Dimensional Metal-Organic Framework Film for Realizing Optoelectronic Synaptic Plasticity,” Angewandte Chemie International Edition 60, no. 32 (2021): 17440–17445.

[160]

T. Zhao, C. Zhao, W. Xu, et al., “Bio-Inspired Photoelectric Artificial Synapse Based on Two-Dimensional Ti3C2Tx MXenes Floating Gate,” Advanced Functional Materials 31, no. 45 (2021): 2106000.

[161]

K. C. Kwon, J. H. Baek, K. Hong, S. Y. Kim, and H. W. Jang, “Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing,” Nano-Micro Letters 14, no. 1 (2022): 58.

[162]

F. Zhang, Y. Zhang, L. Li, et al., “Nanoscale Multistate Resistive Switching in WO3 Through Scanning Probe Induced Proton Evolution,” Nature Communications 14, no. 1 (2023): 3950.

[163]

F. Hui, C. Zhang, H. Yu, et al., “Self-Assembly of Janus Graphene Oxide via Chemical Breakdown for Scalable High-Performance Memristors,” Advanced Functional Materials 34, no. 15 (2023): 2302073.

[164]

R. D. Nikam, K. G. Rajput, and H. Hwang, “Single-Atom Quantum-Point Contact Switch Using Atomically Thin Hexagonal Boron Nitride,” Small 17, no. 7 (2021): 2006760.

[165]

R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, “A Consistent Model for the Thickness Dependence of Intrinsic Breakdown in Ultra-Thin Oxides,” in Proceedings of the International Electron Devices Meeting (1995), 863–866.

[166]

E. F. Runnion, S. M. Gladstone, R. S. Scott, D. J. Dumin, L. Lie, and J. C. Mitros, “Thickness Dependence of Stress-Induced Leakage Currents in Silicon Oxide,” IEEE Transactions on Electron Devices 44, no. 6 (1997): 993–1001.

[167]

F. Palumbo, C. Wen, S. Lombardo, et al., “A Review on Dielectric Breakdown in Thin Dielectrics: Silicon Dioxide, High-k, and Layered Dielectrics,” Advanced Functional Materials 30, no. 18 (2020): 1900657.

[168]

J. Hu, S. Zhang, and B. Tang, “2D Filler-Reinforced Polymer Nanocomposite Dielectrics for High-k Dielectric and Energy Storage Applications,” Energy Storage Materials 34, no. 1 (2021): 260–281.

[169]

R. Han, J. Ren, Z. Zhou, G. X. Chen, and Q. Li, “Preparation of High-k Polymeric Composites Based on Low-k Boron Nitride Nanosheets With High-Connectivity Lamellar Structure,” ACS Applied Materials & Interfaces 15, no. 28 (2023): 34064–34074.

[170]

Q. Liu, C. Zhao, T. Zhao, et al., “Ecofriendly Solution-Combustion-Processed Thin-Film Transistors for Synaptic Emulation and Neuromorphic Computing,” ACS Applied Materials & Interfaces 13, no. 16 (2021): 18961–18973.

[171]

C. M. Lin, Y. T. Lee, S. R. Yeh, and W. Fang, “Flexible Carbon Nanotubes Electrode for Neural Recording,” Biosensors and Bioelectronics 24, no. 9 (2009): 2791–2797.

[172]

D. Kuzum, H. Takano, E. Shim, et al., “Transparent and Flexible Low Noise Graphene Electrodes for Simultaneous Electrophysiology and Neuroimaging,” Nature Communications 5, no. 1 (2014): 5259.

[173]

M. Kumar, S. Abbas, and J. Kim, “All-Oxide-Based Highly Transparent Photonic Synapse for Neuromorphic Computing,” ACS Applied Materials & Interfaces 10, no. 40 (2018): 34370–34376.

[174]

K. A. Nirmal, W. Ren, A. C. Khot, D. Y. Kang, T. D. Dongale, and T. G. Kim, “Flexible Memristive Organic Solar Cell Using Multilayer 2D Titanium Carbide MXene Electrodes,” Advanced Science 10, no. 19 (2023): 2300433.

[175]

Y. Qi, Z. Shen, C. Zhao, and C. Z. Zhao, “Effect of Electrode Area on Resistive Switching Behavior in Translucent Solution-Processed AlOx Based Memory Device,” Journal of Alloys and Compounds 822, no. 11 (2020): 153603.

[176]

C. Mahata, J. Pyo, B. Jeon, M. Ismail, J. Moon, and S. Kim, “Improved Synaptic Performances With Tungsten-Doped Indium-Tin-Oxide Alloy Electrode for Tantalum Oxide-Based Resistive Random-Access Memory Devices,” Advanced Composites and Hybrid Materials 6, no. 4 (2023): 144.

[177]

Y. Abate, D. Akinwande, S. Gamage, et al., “Recent Progress on Stability and Passivation of Black Phosphorus,” Advanced Materials 30, no. 29 (2018): 1704749.

[178]

J. T. Gish, D. Lebedev, T. K. Stanev, et al., “Ambient-Stable Two-Dimensional CrI3 via Organic-Inorganic Encapsulation,” ACS Nano 15, no. 6 (2021): 10659–10667.

[179]

H. Kim, K. Lee, J. W. Oh, et al., “Shape-Deformable and Locomotive MXene (Ti3C2Tx)-Encapsulated Magnetic Liquid Metal for 3D-Motion-Adaptive Synapses,” Advanced Functional Materials 33, no. 5 (2023): 2210385.

[180]

N. B. Mullani, D. D. Kumbhar, D. H. Lee, et al., “Surface Modification of a Titanium Carbide MXene Memristor to Enhance Memory Window and Low-Power Operation,” Advanced Functional Materials 33, no. 26 (2023): 2300343.

[181]

Z. Lin, A. McCreary, N. Briggs, et al., “2D Materials Advances: From Large Scale Synthesis and Controlled Heterostructures to Improved Characterization Techniques, Defects and Applications,” 2D Materials 3, no. 4 (2016): 042001.

[182]

Y. Shi, X. Liang, B. Yuan, et al., “Electronic Synapses Made of Layered Two-Dimensional Materials,” Nature Electronics 1, no. 8 (2018): 458–465.

[183]

J. Jiang, T. Xu, J. Lu, L. Sun, and Z. Ni, “Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities,” Research 2019, no. 1 (2019): 4641739.

[184]

A. C. Khot, T. D. Dongale, K. A. Nirmal, J. K. Deepthi, S. S. Sutar, and T. G. Kim, “2D Ti3C2Tx MXene-Derived Self-Assembled 3D TiO2 Nanoflowers for Nonvolatile Memory and Synaptic Learning Applications,” Journal of Materials Science & Technology 150, no. 19 (2023): 1–10.

[185]

Y. B. Liu, D. Cai, T. C. Zhao, et al., “Monolayer MoS2 Synaptic Devices Synergistically Modulated by Na+ Ions and Sulfur Vacancies for Neuromorphic Computing and Pain Perception Stimulation,” Journal of Materials Science & Technology 163, no. 32 (2023): 121–131.

[186]

Z. Dong, Q. Hua, J. Xi, et al., “Ultrafast and Low-Power 2D Bi2O2Se Memristors for Neuromorphic Computing Applications,” Nano Letters 23, no. 9 (2023): 3842–3850.

[187]

J. Bak, S. Kim, K. Park, et al., “Reinforcing Synaptic Plasticity of Defect-Tolerant States in Alloyed 2D Artificial Transistors,” ACS Applied Materials & Interfaces 15, no. 33 (2023): 39539–39549.

[188]

Y. Wang, K. Wang, X. Hu, et al., “Optogenetics-Inspired Fluorescent Synaptic Devices With Nonvolatility,” ACS Nano 17, no. 4 (2023): 3696–3704.

[189]

M. E. Pam, S. Li, T. Su, et al., “Interface-Modulated Resistive Switching in Mo-Irradiated ReS2 for Neuromorphic Computing,” Advanced Materials 34, no. 30 (2022): 2202722.

[190]

E. Lee, J. Kim, J. Park, et al., “Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing,” ACS Applied Materials & Interfaces 15, no. 12 (2023): 15839–15847.

[191]

F. Huang, C. Ke, J. Li, et al., “Controllable Resistive Switching in ReS2/WS2 Heterostructure for Nonvolatile Memory and Synaptic Simulation,” Advanced Science 10, no. 28 (2023): 2302813.

[192]

W. Jie, Z. Yang, G. Bai, and J. Hao, “Luminescence in 2D Materials and van der Waals Heterostructures,” Advanced Optical Materials 6, no. 10 (2018): 1701296.

[193]

P. Wang, C. Jia, Y. Huang, and X. Duan, “Van der Waals Heterostructures by Design: From 1D and 2D to 3D,” Matter 4, no. 2 (2021): 552–581.

[194]

A. Castellanos-Gomez, X. Duan, Z. Fei, et al., “Van der Waals Heterostructures,” Nature Reviews Methods Primers 2, no. 1 (2022): 58.

[195]

H. L. Hou, C. Anichini, P. Samorì, A. Criado, and M. Prato, “2D van der Waals Heterostructures for Chemical Sensing,” Advanced Functional Materials 32, no. 49 (2022): 2207065.

[196]

S. Lee, J. Choi, J. B. Jeon, et al., “Conducting Bridge Resistive Switching Behaviors in Cubic MAPbI3, Orthorhombic RbPbI3, and Their Mixtures,” Advanced Electronic Materials 5, no. 2 (2019): 1800586.

[197]

S. Lee, H. Kim, D. H. Kim, et al., “Tailored 2D/3D Halide Perovskite Heterointerface for Substantially Enhanced Endurance in Conducting Bridge Resistive Switching Memory,” ACS Applied Materials & Interfaces 12, no. 14 (2020): 17039–17045.

[198]

Y. C. Shen, C. Y. Chen, L. Lee, et al., “Two-Dimensional (2D) Materials-Inserted Conductive Bridge Random Access Memory: Controllable Injection of Cations in Vertical Stacking Alignment of MoSe2 Layers Prepared by Plasma-Assisted Chemical Vapor Reaction,” ACS Materials Letters 5, no. 5 (2023): 1401–1410.

[199]

X. Liu, S. Wang, Z. Di, H. Wu, C. Liu, and P. Zhou, “An Optoelectronic Synapse Based on Two-Dimensional Violet Phosphorus Heterostructure,” Advanced Science 10, no. 22 (2023): 2301851.

[200]

L. Liu, Y. Ni, J. Liu, Y. Wang, C. Jiang, and W. Xu, “An Artificial Autonomic Nervous System That Implements Heart and Pupil as Controlled by Artificial Sympathetic and Parasympathetic Nerves,” Advanced Functional Materials 33, no. 9 (2023): 2210119.

[201]

S. Fan, W. Shen, C. An, et al., “Implementing Lateral MoSe2 p-n Homojunction by Efficient Carrier-Type Modulation,” ACS Applied Materials & Interfaces 10, no. 31 (2018): 26533–26538.

[202]

C. Li, R. Tian, X. Chen, et al., “Waveguide-Integrated MoTe2 p-i-n Homojunction Photodetector,” ACS Nano 16, no. 12 (2022): 20946–20955.

[203]

Y. Lu, Z. Zhan, J. Tan, et al., “High-Performance MoS2 Homojunction Photodiode Enabled by Facile van der Waals Contacts With 2D Perovskite,” Laser & Photonics Reviews 18, no. 3 (2024): 2300941.

[204]

C. Zhang, J. Ning, W. Lu, et al., “Reversible Diode With Tunable Band Alignment for Photoelectricity-Induced Artificial Synapse,” Small 19, no. 34 (2023): 2300468.

[205]

S. Aftab, M. Z. Iqbal, M. W. Iqbal, M. Asghar, and H. Ullah, “Recent Advances in TMD Interfaces With Seamless Contacts,” Journal of Materials Chemistry C 10, no. 40 (2022): 14795–14811.

[206]

S. Chen, S. Wang, C. Wang, Z. Wang, and Q. Liu, “Latest Advance on Seamless Metal-Semiconductor Contact With Ultralow Schottky Barrier in 2D-Material-Based Devices,” Nano Today 42, no. 1 (2022): 101372.

[207]

Y. Zhou, L. Tong, Z. Chen, et al., “Vertical Nonvolatile Schottky-Barrier-Field-Effect Transistor With Self-Gating Semimetal Contact,” Advanced Functional Materials 33, no. 19 (2023): 2213254.

[208]

H. Jiang, L. Zheng, Z. Liu, and X. Wang, “Two-Dimensional Materials: From Mechanical Properties to Flexible Mechanical Sensors,” InfoMat 2, no. 6 (2020): 1077–1094.

[209]

J. Kim, Y. Lee, M. Kang, L. Hu, S. Zhao, and J. H. Ahn, “2D Materials for Skin-Mountable Electronic Devices,” Advanced Materials 33, no. 47 (2021): 2005858.

[210]

A. K. Katiyar, A. T. Hoang, D. Xu, et al., “2D Materials in Flexible Electronics: Recent Advances and Future Prospectives,” Chemical Reviews 124, no. 2 (2023): 318–419.

[211]

G. Cao, Y. Liu, and T. Niu, “Indentation Response of Two-Dimensional Materials Mounted on Different Substrates,” International Journal of Mechanical Sciences 137, no. 3 (2018): 96–104.

[212]

W. Yu, K. Gong, Y. Li, et al., “Flexible 2D Materials Beyond Graphene: Synthesis, Properties, and Applications,” Small 18, no. 14 (2022): 2105383.

[213]

I. M. Datye, A. Daus, R. W. Grady, K. Brenner, S. Vaziri, and E. Pop, “Strain-Enhanced Mobility of Monolayer MoS2,” Nano Letters 22, no. 14 (2022): 8052–8059.

[214]

X. Gao, J. Zhu, and J. Yin, “Mechanistic Insights Into Synaptic Plasticity Behaviors of Electrolyte-Gated Flexible Transistor Devices,” ACS Applied Materials & Interfaces 15, no. 33 (2023): 39530–39538.

[215]

Y. Pang, Z. Yang, Y. Yang, and T. L. Ren, “Wearable Electronics Based on 2D Materials for Human Physiological Information Detection,” Small 16, no. 15 (2020): 1901124.

[216]

C. Ma, M. G. Ma, C. Si, X. X. Ji, and P. Wan, “Flexible MXene-Based Composites for Wearable Devices,” Advanced Functional Materials 31, no. 22 (2021): 2009524.

[217]

A. Ahmed, S. Sharma, B. Adak, et al., “Two-Dimensional MXenes: New Frontier of Wearable and Flexible Electronics,” InfoMat 4, no. 4 (2022): e12295.

[218]

Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue, and S. Gao, “A Perceptual and Interactive Integration Strategy Toward Telemedicine Healthcare Based on Electroluminescent Display and Triboelectric Sensing 3D Stacked Device,” Advanced Functional Materials 34, no. 40 (2024): 2402356.

[219]

W. Hou, A. Azizimanesh, A. Dey, et al., “Strain Engineering of Vertical Molybdenum Ditelluride Phase-Change Memristors,” Nature Electronics 7, no. 1 (2024): 8–16.

[220]

J. Wang, L. Li, H. Huyan, X. Pan, and S. S. Nonnenmann, “Highly Uniform Resistive Switching in HfO2 Films Embedded With Ordered Metal Nanoisland Arrays,” Advanced Functional Materials 29, no. 25 (2019): 1808430.

[221]

Y. Li, Y. Zhang, Y. Wang, et al., “Polarization-Sensitive Optoelectronic Synapse Based on 3D Graphene/MoS2 Heterostructure,” Advanced Functional Materials 34, no. 15 (2023): 2302288.

[222]

Z. D. Luo, S. Zhang, Y. Liu, et al., “Dual-Ferroelectric-Coupling-Engineered Two-Dimensional Transistors for Multifunctional In-Memory Computing,” ACS Nano 16, no. 2 (2022): 3362–3372.

[223]

M. Li, Z. Liu, Y. Sun, et al., “Tailoring Neuroplasticity in a Ferroelectric-Gated Multi-Terminal Synaptic Transistor by Bi-Directional Modulation for Improved Pattern Edge Recognition,” Advanced Functional Materials 33, no. 46 (2023): 2307986.

[224]

M. Jia, P. Guo, W. Wang, et al., “Tactile Tribotronic Reconfigurable p-n Junctions for Artificial Synapses,” Science Bulletin 67, no. 8 (2022): 803–812.

[225]

S. Kamaei, X. Liu, A. Saeidi, et al., “Ferroelectric Gating of Two-Dimensional Semiconductors for the Integration of Steep-Slope Logic and Neuromorphic Devices,” Nature Electronics 6, no. 9 (2023): 658–668.

[226]

C. Zhang, Y. Li, C. Ma, and Q. Zhang, “Recent Progress of Organic-Inorganic Hybrid Perovskites in RRAM, Artificial Synapse, and Logic Operation,” Small Science 2, no. 2 (2022): 2100086.

[227]

L. Jiang, L. Yang, X. Wu, et al., “Helical Nanofiber Photoelectric Synaptic Devices for an Artificial Vision Nervous System,” Nano Letters 23, no. 17 (2023): 8146–8154.

[228]

Y. Wu, W. Deng, K. Li, et al., “A Spiking Artificial Vision Architecture Based on Fully Emulating the Human Vision,” Advanced Materials 36, no. 19 (2024): 2312094.

[229]

L. Yin, R. Cheng, Y. Wen, C. Liu, and J. He, “Emerging 2D Memory Devices for In-Memory Computing,” Advanced Materials 33, no. 29 (2021): 2007081.

[230]

W. Haensch, A. Raghunathan, K. Roy, et al., “Compute In-Memory With Non-Volatile Elements for Neural Networks: A Review From a Co-Design Perspective,” Advanced Materials 35, no. 37 (2023): 2204944.

[231]

B. Chatterjee, D. Das, S. Maity, and S. Sen, “RF-PUF: Enhancing IoT Security Through Authentication of Wireless Nodes Using In-Situ Machine Learning,” IEEE Internet of Things Journal 6, no. 1 (2019): 388–398.

[232]

C. C. Hung, Y. C. Chiang, Y. C. Lin, Y. C. Chiu, and W. C. Chen, “Conception of a Smart Artificial Retina Based on a Dual-Mode Organic Sensing Inverter,” Advanced Science 8, no. 16 (2021): 2100742.

[233]

Y. Lee and J. H. Ahn, “Biomimetic Tactile Sensors Based on Nanomaterials,” ACS Nano 14, no. 2 (2020): 1220–1226.

[234]

A. Mehonic and A. J. Kenyon, “Brain-Inspired Computing Needs a Master Plan,” Nature 604, no. 7905 (2022): 255–260.

[235]

B. Sun, Y. Chen, G. Zhou, et al., “Memristor-Based Artificial Chips,” ACS Nano 18, no. 1 (2023): 14–27.

[236]

Y. Zhu, H. Mao, Y. Zhu, et al., “CMOS-Compatible Neuromorphic Devices for Neuromorphic Perception and Computing: A Review,” International Journal of Extreme Manufacturing 5, no. 4 (2023): 042010.

[237]

C. Chen, Y. Zhou, L. Tong, Y. Pang, and J. Xu, “Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing,” Advanced Materials 37, no. 2 (2024): 2400332.

[238]

H. Ning, Z. Yu, Q. Zhang, et al., “An In-Memory Computing Architecture Based on a Duplex Two-Dimensional Material Structure for In Situ Machine Learning,” Nature Nanotechnology 18, no. 5 (2023): 493–500.

[239]

N. Li, S. Zhang, Y. Peng, et al., “2D Semiconductor-Based Optoelectronics for Artificial Vision,” Advanced Functional Materials 33, no. 52 (2023): 2305589.

[240]

N. P. Shah and E. J. Chichilnisky, “Computational Challenges and Opportunities for a Bi-Directional Artificial Retina,” Journal of neural engineering 17, no. 5 (2020): 055002.

[241]

X. Wang, Y. Zong, D. Liu, J. Yang, and Z. Wei, “Advanced Optoelectronic Devices for Neuromorphic Analog Based on Low-Dimensional Semiconductors,” Advanced Functional Materials 33, no. 15 (2023): 2213894.

[242]

S. Mukherjee, D. Dutta, A. Ghosh, and E. Koren, “Graphene-In2Se3 van der Waals Heterojunction Neuristor for Optical In-Memory Bimodal Operation,” ACS Nano 17, no. 22 (2023): 22287–22298.

[243]

H. Wang, B. Sun, S. S. Ge, J. Su, and M. L. Jin, “On Non-von Neumann Flexible Neuromorphic Vision Sensors,” npj Flexible Electronics 8, no. 1 (2024): 28.

[244]

Y. Gong, P. Xie, X. Xing, et al., “Bioinspired Artificial Visual System Based on 2D WSe2 Synapse Array,” Advanced Functional Materials 33, no. 41 (2023): 2303539.

[245]

R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing—From Humans to Humanoids,” IEEE Transactions on Robotics 26, no. 1 (2010): 1–20.

[246]

V. Amoli, S. Y. Kim, J. S. Kim, H. Choi, J. Koo, and D. H. Kim, “Biomimetics for High-Performance Flexible Tactile Sensors and Advanced Artificial Sensory Systems,” Journal of Materials Chemistry C 7, no. 47 (2019): 14816–14844.

[247]

Y. Guo, F. Yin, Y. Li, G. Shen, and J. C. Lee, “Incorporating Wireless Strategies to Wearable Devices Enabled by a Photocurable Hydrogel for Monitoring Pressure Information,” Advanced Materials 35, no. 29 (2023): 2300855.

[248]

Y. Li, Z. Qiu, H. Kan, et al., “A Human-Computer Interaction Strategy for an FPGA Platform Boosted Integrated ‘Perception-Memory’ System Based on Electronic Tattoos and Memristors,” Advanced Science 11, no. 39 (2024): 2402582.

[249]

L. Chen, M. Ren, J. Zhou, et al., “Bioinspired Iontronic Synapse Fibers for Ultralow-Power Multiplexing Neuromorphic Sensorimotor Textiles,” Proceedings of the National Academy of Sciences 121, no. 33 (2024): e2407971121.

[250]

H. Zhang, H. Li, and Y. Li, “Biomimetic Electronic Skin for Robots Aiming at Superior Dynamic-Static Perception and Material Cognition Based on Triboelectric-Piezoresistive Effects,” Nano Letters 24, no. 13 (2024): 4002–4011.

[251]

K. Wang, Y. Jia, and X. Yan, “A Biomimetic Afferent Nervous System Based on the Flexible Artificial Synapse,” Nano Energy 100, no. 10 (2022): 107486.

[252]

S. O. Park, H. Jeong, J. Park, J. Bae, and S. Choi, “Experimental Demonstration of Highly Reliable Dynamic Memristor for Artificial Neuron and Neuromorphic Computing,” Nature Communications 13, no. 1 (2022): 2888.

[253]

Y. Huang, Y. Gu, S. Mohan, et al., “Reliability Improvement and Effective Switching Layer Model of Thin-Film MoS2 Memristors,” Advanced Functional Materials 34, no. 15 (2024): 2214250.

[254]

Y. Huang, Y. H. Pan, R. Yang, et al., “Universal Mechanical Exfoliation of Large-Area 2D Crystals,” Nature Communications 11, no. 1 (2020): 2453.

[255]

Z. Cai, B. Liu, X. Zou, and H. M. Cheng, “Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures,” Chemical Reviews 118, no. 13 (2018): 6091–6133.

[256]

Z. Y. He, T. Y. Wang, J. L. Meng, et al., “CMOS Back-End Compatible Memristors for In Situ Digital and Neuromorphic Computing Applications,” Materials Horizons 8, no. 12 (2021): 3345–3355.

[257]

J. Cui, F. An, J. Qian, et al., “CMOS-Compatible Electrochemical Synaptic Transistor Arrays for Deep Learning Accelerators,” Nature Electronics 6, no. 4 (2023): 292–300.

[258]

H. S. Lee, V. K. Sangwan, W. A. G. Rojas, et al., “Dual-Gated MoS2 Memtransistor Crossbar Array,” Advanced Functional Materials 30, no. 45 (2020): 2003683.

[259]

Q. Xia and J. J. Yang, “Memristive Crossbar Arrays for Brain-Inspired Computing,” Nature Materials 18, no. 4 (2019): 309–323.

RIGHTS & PERMISSIONS

2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

278

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/