Terminal Passivation–Induced Interface Decoupling for High-Stability Two-Dimensional Semiconductors

Jinbo He , Jinjian Yan , Tao Xue , Liqian Yuan , Yongxu Hu , Zhongwu Wang , Xiaosong Chen , Yinan Huang , Cheng Han , Liqiang Li , Wenping Hu

SmartMat ›› 2025, Vol. 6 ›› Issue (2) : e1318

PDF
SmartMat ›› 2025, Vol. 6 ›› Issue (2) : e1318 DOI: 10.1002/smm2.1318
RESEARCH ARTICLE

Terminal Passivation–Induced Interface Decoupling for High-Stability Two-Dimensional Semiconductors

Author information +
History +
PDF

Abstract

Two-dimensional (2D) materials, such as MoS2, show exceptional potential for next-generation electronics. However, the poor stability of these materials, particularly under long-term operations and high temperature, impedes their practical applications. Here, we develop a terminal passivation interface decoupling (TPID) strategy to significantly improve the stability of MoS2, by mitigating the interaction between the substrate and the 2D material within the in-situ growth process. Specifically, the strong electron-withdrawing terminal group hydroxyl, prevalent on the oxide substrate, is passivated by carbon groups. Due to this, the structure of MoS2 materials remains stable during long-term storage, and its electronic devices, field-effect transistors (FETs), show remarkable operational and high-temperature (400°C) stability over 60 days, with much-improved performance. For example, mobility increases from 9.69 to 85 cm2/(V·s), the highest value for bottom-up transfer-free single crystal MoS2 FETs. This work provides a new avenue to solve reliability issues of 2D materials and devices, laying a foundation for their applications in the electronic industry.

Keywords

2D materials / high temperature / interface decoupling / stability / terminal passivation / transistors

Cite this article

Download citation ▾
Jinbo He, Jinjian Yan, Tao Xue, Liqian Yuan, Yongxu Hu, Zhongwu Wang, Xiaosong Chen, Yinan Huang, Cheng Han, Liqiang Li, Wenping Hu. Terminal Passivation–Induced Interface Decoupling for High-Stability Two-Dimensional Semiconductors. SmartMat, 2025, 6(2): e1318 DOI:10.1002/smm2.1318

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Wu, H. Tian, Y. Shen, et al., “Vertical MoS2 Transistors With Sub-1-nm Gate Lengths,” Nature 603, no. 7900 (2022): 259–264.

[2]

H. Qiu, X. Qu, Y. Zhang, S. Chen, and Y. Shen, “Robust PANI@MXene/GQDs-Based Fiber Fabric Electrodes Via Microfluidic Wet-Fusing Spinning Chemistry,” Advanced Materials 35, no. 38 (2023): 2302326.

[3]

Z. Cheng, J. Backman, H. Zhang, et al., “Distinct Contact Scaling Effects in MoS2 Transistors Revealed With Asymmetrical Contact Measurements,” Advanced Materials 35, no. 21 (2023): 2210916.

[4]

Y. Wang, J. C. Kim, R. J. Wu, et al., “Van Der Waals Contacts Between Three-Dimensional Metals and Two-Dimensional Semiconductors,” Nature 568, no. 7750 (2019): 70–74.

[5]

L. Liu, T. Li, L. Ma, et al., “Uniform Nucleation and Epitaxy of Bilayer Molybdenum Disulfide on Sapphire,” Nature 605, no. 7908 (2022): 69–75.

[6]

X. Sun, Y. Liu, J. Shi, et al., “Controllable Synthesis of 2H-1T’ MoxRe(1-x)S2 Lateral Heterostructures and Their Tunable Optoelectronic Properties,” Advanced materials (Deerfield Beach, Fla.) 35, no. 38 (2023): 2304171.

[7]

A. J. Yang, L. Wu, Y. Liu, et al., “Multifunctional Magnetic Oxide-MoS2 Heterostructures on Silicon,” Advanced Materials 35, no. 33 (2023): 2302620.

[8]

J. Pető, T. Ollár, P. Vancsó, et al., “Spontaneous Doping of the Basal Plane of MoS2 Single Layers Through Oxygen Substitution Under Ambient Conditions,” Nature Chemistry 10, no. 12 (2018): 1246–1251.

[9]

B. Huang, F. Tian, Y. Shen, et al., “Selective Engineering of Chalcogen Defects in MoS2 by Low-Energy Helium Plasma,” ACS Applied Materials & Interfaces 11, no. 10 (2019): 24404–24411.

[10]

S. Park, A. T Garcia-Esparza, H. Abroshan, et al., “Operando Study of Thermal Oxidation of Monolayer MoS2,” Advanced Science 8, no. 9 (2021): 2002768.

[11]

A. Bano and N. K. Gaur, “Interfacial Coupling Effect on Electron Transport in MoS2/SrTiO3 Heterostructure: An Ab-Initio Study,” Scientific Reports 8 (2018): 714.

[12]

X. Liu, C. Z. Wang, Y. X. Yao, et al., “Bonding and Charge Transfer by Metal Adatom Adsorption on Graphene,” Physical Review B 83, no. 23 (2011): 235411.

[13]

H. Schmidt, F. Giustiniano, and G. Eda, “Electronic Transport Properties of Transition Metal Dichalcogenide Field-Effect Devices: Surface and Interface Effects,” Chemical Society Reviews 44, no. 21 (2015): 7715–7736.

[14]

P. Luo, C. Liu, J. Lin, et al., “Molybdenum Disulfide Transistors With Enlarged Van Der Waals Gaps at Their Dielectric Interface Via Oxygen Accumulation,” Nature Electronics 5, no. 12 (2022): 849–858.

[15]

Y. Wu, Z. Xin, Z. Zhang, et al., “All-Transfer Electrode Interface Engineering Toward Harsh-Environment-Resistant MoS2 Field-Effect Transistors,” Advanced Materials 35, no. 18 (2023): 2210735.

[16]

B. Blülle, R. Häusermann, and B. Batlogg, “Approaching the Trap-Free Limit in Organic Single-Crystal Field-Effect Transistors,” Physical Review Applied 1, no. 3 (2014): 034006.

[17]

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

[18]

H. Liang, M. Xu, Y. Bu, et al., “Confined Interlayer Water Enhances Solid Lubrication Performances of Graphene Oxide Films With Optimized Oxygen Functional Groups,” Applied Surface Science 485 (2019): 64–69.

[19]

L. Zhang, Z. Bai, and L. Liu, “Exceptional Thermal Conductance Across Hydrogen-Bonded Graphene/Polymer Interfaces,” Advanced Materials Interfaces 3, no. 13 (2016): 1600211.

[20]

B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, and I. Visoly-Fisher, “Role of Oxygen Functional Groups in Reduced Graphene Oxide for Lubrication,” Scientific Reports 7 (2017): 45030.

[21]

Y. Park, C. Ahn, J. G. Ahn, et al., “Critical Role of Surface Termination of Sapphire Substrates in Crystallographic Epitaxial Growth of MoS2 Using Inorganic Molecular Precursors,” ACS Nano 17, no. 2 (2023): 1196–1205.

[22]

Z. Liu, M. Amani, S. Najmaei, et al., “Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition,” Nature Communications 5 (2014): 5246.

[23]

S. Kobayashi, T. Nishikawa, T. Takenobu, et al., “Control of Carrier Density by Self-Assembled Monolayers in Organic Field-Effect Transistors,” Nature Materials 3, no. 5 (2004): 317–322.

[24]

H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, and K. Cho, “Effect of the Phase States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistor Characteristics,” Journal of the American Chemical Society 130, no. 32 (2008): 10556–10564.

[25]

X. Wang, J. B. Xu, C. Wang, J. Du, and W. Xie, “High-Performance Graphene Devices on SiO2/Si Substrate Modified by Highly Ordered Self-Assembled Monolayers,” Advanced Materials 23, no. 21 (2011): 2464–2468.

[26]

J. F. Martínez Hardigree, T. J. Dawidczyk, R. M. Ireland, et al., “Reducing Leakage Currents in N-Channel Organic Field-Effect Transistors Using Molecular Dipole Monolayers on Nanoscale Oxides,” ACS Applied Materials & Interfaces 5, no. 15 (2013): 7025–7032.

[27]

V. L. Nguyen, M. Seol, J. Kwon, et al., “Wafer-Scale Integration of Transition Metal Dichalcogenide Field-Effect Transistors Using Adhesion Lithography,” Nature Electronics 6, no. 2 (2023): 146–153.

[28]

Z. Wang, H. Lin, X. Zhang, et al., “Revealing Molecular Conformation–Induced Stress at Embedded Interfaces of Organic Optoelectronic Devices by Sum Frequency Generation Spectroscopy,” Science Advances 7, no. 16 (2021): 8555.

[29]

C. P. Tripp and M. L. Hair, “An Infrared Study of the Reaction of Octadecyltrichlorosilane With Silica,” Langmuir 8, no. 4 (1992): 1120–1126.

[30]

S. Kim, P. P. Chen, K. N. Houk, and R. R. Knowles, “Reversible Homolysis of a Carbon–Carbon σ-Bond Enabled by Complexation-Induced Bond-Weakening,” Journal of the American Chemical Society 144, no. 34 (2022): 15488–15496.

[31]

F. Tao, Z. H. Wang, M. H. Qiao, Q. Liu, W. S. Sim, and G. Q. Xu, “Covalent Attachment of Acetonitrile on Si(100) through Si–C and Si–N Linkages,” The Journal of Chemical Physics 115, no. 18 (2001): 8563–8569.

[32]

V. L. Nguyen, D. L. Duong, S. H. Lee, et al., “Layer-Controlled Single-Crystalline Graphene Film With Stacking Order Via Cu–Si Alloy Formation,” Nature Nanotechnology 16, no. 1 (2020): 861–867.

[33]

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap Engineering of Strained Monolayer and Bilayer MoS2,” Nano Letters 13, no. 8 (2013): 3626–3630.

[34]

M. Xu, H. Ji, L. Zheng, et al., “Reconfiguring Nucleation for CVD Growth of Twisted Bilayer MoS2 With a Wide Range of Twist Angles,” Nature Communications 15, no. 1 (2024): 562.

[35]

S. Golovynskyi, D. Dong, Y. Lin, O. I. Datsenko, and B. Li, “Hexagram Bi-Layer MoS2 Flake: The Impact of Polycrystallinity and Strains on the Exciton and Trion Photoluminescence,” Surfaces and Interfaces 26 (2021): 101343.

[36]

S. A. Han, T. H. Kim, S. K. Kim, et al., “Point-Defect-Passivated MoS2 Nanosheet-Based High Performance Piezoelectric Nanogenerator,” Advanced Materials 30, no. 21 (2018): 1800342.

[37]

P. Li, J. Guo, X. Ji, et al., “Construction of Direct Z-Scheme Photocatalyst by the Interfacial Interaction of WO3 and SiC to Enhance the Redox Activity of Electrons and Holes,” Chemosphere 282 (2021): 130866.

[38]

L. L. Chua, J. Zaumseil, J. F. Chang, et al., “General Observation of n-Type Field-Effect Behaviour in Organic Semiconductors,” Nature 434, no. 7030 (2005): 194–199.

[39]

X. Liu, X. Zhou, Y. Pan, et al., “Charge–Ferroelectric Transition in Ultrathin Na0.5Bi4.5Ti4O15 Flakes Probed Via a Dual-Gated Full Van Der Waals Transistor,” Advanced Materials 32, no. 49 (2020): 2004813.

[40]

W. Li, X. Gong, Z. Yu, et al., “Approaching the Quantum Limit in Two-Dimensional Semiconductor Contacts,” Nature 613, no. 7943 (2023): 274–279.

[41]

J. Miao, L. Wu, Z. Bian, et al., “A ’Click’ Reaction to Engineer MoS2 Field-Effect Transistors With Low Contact Resistance,” ACS Nano 16, no. 12 (2022): 20647–20655.

[42]

T. Sakanoue and H. Sirringhaus, “Band-Like Temperature Dependence of Mobility in a Solution-Processed Organic Semiconductor,” Nature Materials 9, no. 9 (2010): 736–740.

[43]

Y. Krupskaya, M. Gibertini, N. Marzari, and A. F. Morpurgo, “Band-Like Electron Transport With Record-High Mobility in the TCNQ Family,” Advanced Materials 27, no. 15 (2015): 2453–2458.

RIGHTS & PERMISSIONS

2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/