PDF
Abstract
Inducing a reversible structural transformation in organic photochromophores under the effect of a magnetic field is challenging owing to their poor magnetic properties. Compared with common azobenzene materials, bridged azobenzene materials exhibit a considerable potential for rapid trans-cis isomerization induced by an external magnetic field because of the restricted torsion of N=N bonds during the transformation. Herein, we designed and synthesized pentenyl-grafted bridged azobenzene (BA-X5), hexenyl-grafted bridged azobenzene (BA-X6), and pentynyl-grafted bridged azobenzene (BA-Q5). Density functional theory calculations indicate that the activation energy for the trans-cis transition of BA-X5 and BA-X6 is ∼18.0 kcal/mol, which is 8.2% lower than that of BA-Q5 (19.6 kcal/mol). The results obtained using EPR and a superconducting quantum interference device demonstrate that during the isomerization process, a net spin reduction of bridged azobenzene occurred because of the aggregation of the electron cloud toward the C–N bond, leading to a reduction in the paramagnetism of the materials. BA-X5 and BA-X6 exhibit a clear and rapid magnetically induced trans-cis isomerization with short half-lives, which are 10.4% and 16.9%, respectively, lower than those obtained under dark conditions. In contrast, the isomerization of BA-Q5 under the effect of the same magnetic field does not change. Magnetically induced isomerization might be attributed to the combined effect of the magnetothermal effect, changes in the net spin density of the electron cloud, and regularity of molecular arrangement under the effect of the magnetic field. These results provide a basis for exploring the design and research of magnetically controlled azobenzene derivatives.
Keywords
bridged azobenzene
/
heat release
/
isomerization
/
magnetic field induction
Cite this article
Download citation ▾
Bo Zhang, Wenyu Fang, Jing Ge, Xiaoyu Yang, Shuo Wang, Yiyu Feng, Wei Feng.
Magnetic-induced isomerization of paramagnetic bridged azobenzene derivatives with conjugated alkyl chains.
SmartMat, 2025, 6(1): e1313 DOI:10.1002/smm2.1313
| [1] |
Zhang B, Feng Y, Feng W. Azobenzene-based solar thermal fuels: a review. Nano Micro Lett. 2022; 14(1): 138.
|
| [2] |
Bie C, Yu H, Cheng B, Ho W, Fan J, Yu J. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv Mater. 2021; 33(9): 2003521.
|
| [3] |
Nozik AJ, Miller J. Introduction to solar photon conversion. Chem Rev. 2010; 110(11): 6443-6445.
|
| [4] |
Bonke SA, Wiechen M, MacFarlan DR, Spiccia L. Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ Sci. 2015; 8: 2791-2796.
|
| [5] |
Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater. 2016; 15(6): 611-615.
|
| [6] |
Kucharski TJ, Ferralis N, Kolpak AM, Zheng JO, Nocera DG, Grossman JC. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nat Chem. 2014; 6(5): 441-447.
|
| [7] |
Luo W, Feng Y, Cao C, et al. A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage. J Mater Chem A. 2015; 3(22): 11787-11795.
|
| [8] |
Feng Y, Liu H, Luo W, et al. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci Rep. 2013; 3(1): 3260.
|
| [9] |
Luo W, Feng Y, Qin C, et al. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds. Nanoscale. 2015; 7(39): 16214-16221.
|
| [10] |
Feng W, Li S, Li M, Qin C, Feng Y. An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel. J Mater Chem A. 2016; 4(21): 8020-8028.
|
| [11] |
Zhao X, Feng Y, Qin C, Yang W, Si Q, Feng W. Controlling heat release from a close-packed bisazobenzene-reduced-graphene-oxide assembly film for high-energy solid-state photothermal fuels. ChemSusChem. 2017; 10(7): 1395-1404.
|
| [12] |
Liang Y, Wu D, Feng X, Müllen K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv Mater. 2009; 21(17): 1679-1683.
|
| [13] |
Dong L, Feng Y, Wang L, Feng W. Azobenzene-based solar thermal fuels: design, properties, and applications. Chem Soc Rev. 2018; 47(19): 7339-7368.
|
| [14] |
Qin C, Feng Y, Luo W, Cao C, Hu W, Feng W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J Mater Chem A. 2015; 3(32): 16453-16460.
|
| [15] |
Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev. 2016; 116(24): 15089-15166.
|
| [16] |
Hagen R, Bieringer T. Photoaddressable polymers for optical data storage. Adv Mater. 2001; 13(23): 1805-1810.
|
| [17] |
Koo SPS, Junkers T, Barner-Kowollik C. Quantitative product spectrum analysis of poly(butyl acrylate) via electrospray ionization mass spectrometry. Macromolecules. 2009; 42(1): 62-69.
|
| [18] |
Wu S, Zhang Q, Bubeck C. Solvent effects on structure, morphology, and photophysical properties of an azo chromophore-functionalized polydiacetylene. Macromolecules. 2010; 43(14): 6142-6151.
|
| [19] |
Zhang ZY, He Y, Wang Z, et al. Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J Am Chem Soc. 2020; 142(28): 12256-12264.
|
| [20] |
Yang Q, Ge J, Qin M, et al. Controllable heat release of phase-change azobenzenes by optimizing molecular structures for low-temperature energy utilization. Science China Materials. 2023; 66(9): 3609-3620.
|
| [21] |
Yoon JH, Yoon S. Photoisomerization of azobenzene derivatives confined in gold nanoparticle aggregates. Phys Chem Chem Phys. 2011; 13(28): 12900-12905.
|
| [22] |
Nachtigall O, Kördel C, Urner LH, Haag R. Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene-oligoglycerol conjugates. Angew Chem Int Ed. 2014; 53(36): 9669-9673.
|
| [23] |
Hallett-Tapley GL, D’Alfonso C, Pacioni NL, et al. Gold nanoparticle catalysis of the cis-trans isomerization of azobenzene. Chem Commun. 2013; 49(86): 10073-10075.
|
| [24] |
Simoncelli S, Aramendía PF. Mechanistic insight into the Z-E isomerization catalysis of azobenzenes mediated by bare and core-shell gold nanoparticles. Catal Sci Technol. 2015; 5(4): 2110-2116.
|
| [25] |
Hagen S, Kate P, Peters MV, Hecht S, Wolf M, Tegeder P. Kinetic analysis of the photochemically and thermally induced isomerization of an azobenzene derivative on Au(111) probed by two-photon photoemission. Appl Phys A. 2008; 93(2): 253-260.
|
| [26] |
Jung U, Schütt C, Filinova O, Kubitschke J, Herges R, Magnussen O. Photoswitching of azobenzene-functionalized molecular platforms on Au surfaces. J Phys Chem C. 2012; 116(49): 25943-25948.
|
| [27] |
Alemani M, Peters MV, Hecht S, Rieder KH, Moresco F, Grill L. Electric field-induced isomerization of azobenzene by STM. J Am Chem Soc. 2006; 128(45): 14446-14447.
|
| [28] |
Raimondo C, Kenens B, Reinders F, Mayor M, Uji-i H. Samorì P. Au nanoparticle scaffolds modulating intermolecular interactions among the conjugated azobenzenes chemisorbed on curved surfaces: tuning the kinetics of cis-trans isomerisation. Nanoscale. 2015; 7(33): 13836-13839.
|
| [29] |
Titov E, Lysyakova L, Lomadze N, Kabashin AV, Saalfrank P, Santer S. Thermal cis-to-trans isomerization of azobenzene-containing molecules enhanced by gold nanoparticles: an experimental and theoretical study. J Phys Chem C. 2015; 119(30): 17369-17377.
|
| [30] |
Xie Z, Duan S, Wang CK, Luo Y. Finding the true pathway for reversible isomerization of a single azobenzene molecule tumbling on Au(111) surface. Nanoscale. 2020; 12(19): 10474-10479.
|
| [31] |
Gille K, Knoll H, Quitzsch K. Rate constants of the thermal cis-trans isomerization of azobenzene dyes in solvents, acetone/water mixtures, and in microheterogeneous surfactant solutions. Int J Chem Kinet. 1999; 31(5): 337-350.
|
| [32] |
Corchado JC, Sánchez ML, Fdez. Galván I, et al. Theoretical study of solvent effects on the ground and low-lying excited free energy surfaces of a push-pull substituted azobenzene. J Phys Chem B. 2014; 118(43): 12518-12530.
|
| [33] |
Comstock MJ, Cho J, Kirakosian A, Crommie MF. Manipulation of azobenzene molecules on Au(111) using scanning tunneling microscopy. Phys Rev B: Condens Matter Mater Phys. 2005; 72(15): 153414.
|
| [34] |
Dąbrowa K, Niedbała P, Jurczak J. Anion-tunable control of thermal Z→E isomerisation in basic azobenzene receptors. Chem Commun. 2014; 50(99): 15748-15751.
|
| [35] |
Singleton TA, Ramsay KS, Barsan MM, Butler IS, Barrett CJ. Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle. J Phys Chem B. 2012; 116(32): 9860-9865.
|
| [36] |
Li A, Bi C, Xu S, Cui H, Xu W. Structural change of trans-azobenzene crystal and powder under high pressure. J Mol Struct. 2020; 1206: 127745.
|
| [37] |
Fu L, Yang J, Dong L, et al. Solar thermal storage and room-temperature fast release using a uniform flexible azobenzene-grafted polynorborene film enhanced by stretching. Macromolecules. 2019; 52(11): 4222-4231.
|
| [38] |
Fang W, Feng Y, Gao J, et al. Visible light-driven alkyne-grafted ethylene-bridged azobenzene chromophores for photothermal utilization. Molecules. 2022; 27(10): 3296.
|
| [39] |
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994; 98(45): 11623-11627.
|
| [40] |
Becke AD. Density-functional thermochemistry. III. the role of exact exchange. J Chem Phys. 1993; 98(7): 5648-5652.
|
| [41] |
Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. 1980; 58(8): 1200-1211.
|
| [42] |
Hehre WJ, Ditchfield R, Pople JA. Self-consistent molecular orbital methods. XII. further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys. 1972; 56(5): 2257-2261.
|
| [43] |
Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta. 1973; 28(3): 213-222.
|
| [44] |
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010; 132(15): 15.
|
| [45] |
Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys. 1980; 72(1): 650-654.
|
| [46] |
Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR. Efficient diffuse function-augmented basis sets for anion calculations. III. the 3-21+G basis set for first-row elements, Li–F. J Comput Chem. 1983; 4(3): 294-301.
|
| [47] |
Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009; 113(18): 6378-6396.
|
| [48] |
Schmittel M, Ruechardt C. Aliphatic azo compounds. XVI. Stereoisomerization and homolytic decomposition of cis and trans bridgehead diazenes. J Am Chem Soc. 1987; 109(9): 2750-2759.
|
| [49] |
Savitsky AN, Paul H, Shushin AI. Electron spin polarization after photolysis of AIBN in solution: initial spatial radical separation. J Phys Chem A. 2000; 104(40): 9091-9100.
|
| [50] |
Dokić J, Gothe M, Wirth J, et al. Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data. J Phys Chem A. 2009; 113(24): 6763-6773.
|
| [51] |
Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev. 2012; 41(5): 1809-1825.
|
| [52] |
Fujino T, Arzhantsev SY, Tahara T. Femtosecond/picosecond time-resolved spectroscopy of trans-azobenzene: isomerization mechanism following S2(π π*) ← S0 photoexcitation. Bull Chem Soc Japan. 2002; 75(5): 1031-1040.
|
| [53] |
Brown EV, Granneman GR. Cis-trans isomerism in the pyridyl analogs of azobenzene: kinetic and molecular orbital analysis. J Am Chem Soc. 1975; 97(3): 621-627.
|
| [54] |
Talaty ER, Fargo JC. Thermal cis-trans-isomerization of substituted azobenzenes: a correction of the literature. Chem Commun. 1967; 2: 65-66.
|
| [55] |
Kearns DR. The temperature dependence of the cis-trans photoisomerization of azo compounds: theoretical considerations. J Phys Chem. 1965; 69(3): 1062-1065.
|
| [56] |
Brode WR, Gould JH, Wyman GM. The relation between the absorption spectra and the chemical constitution of dyes. XXV. Phototropism and cis-trans isomerism in aromatic azo compounds1. J Am Chem Soc. 1952; 74(18): 4641-4646.
|
| [57] |
Porter NA, Marnett LJ. Photolysis of unsymmetric azo compounds. cis azo compound intermediates. J Am Chem Soc. 1973; 95(13): 4361-4367.
|
| [58] |
Campbell N, Henderson AW, Taylor D. 257. Geometrical isomerism of azo-compounds. J Chem Soc (Resumed). 1953: 1281-1285.
|
| [59] |
Parsaee F, Senarathna MC, Kannangara PB, Alexander SN, Arche PDE, Welin ER. Radical philicity and its role in selective organic transformations. Nat Rev Chem. 2021; 5(7): 486-499.
|
| [60] |
Sheppard CS, Kamath VR. The selection and use of free radical initiators. Polym Eng Sci. 1979; 19: 597-606.
|
RIGHTS & PERMISSIONS
2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.