Benzotrithiophene-sulfonate covalent-organic frameworks: Supramolecular proton pumps for high-rate aqueous zinc-ion energy storage systems

Haijun Peng , Verónica Montes-García , Kaiyue Jiang , Dawid Pakulski , Shunqi Xu , Michał Bielejewski , Fanny Richard , Xiaodong Zhuang , Paolo Samorì , Artur Ciesielski

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1312

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1312 DOI: 10.1002/smm2.1312
RESEARCH ARTICLE

Benzotrithiophene-sulfonate covalent-organic frameworks: Supramolecular proton pumps for high-rate aqueous zinc-ion energy storage systems

Author information +
History +
PDF

Abstract

Proton chemistry is becoming a focal point in the development of zinc-ion energy storage devices due to its swift H+ insertion/extraction kinetics. This characteristic feature confers to electrodes a remarkable power density, rate capability, and prolonged cycling durability. However, the storage mechanism of H+ in electrodes based on covalent-organic frameworks (COFs) has not been thoroughly investigated. In this work, we introduce an unprecedented concept involving a supramolecular approach based on the design of a benzotrithiophene-sulfonate COF (COF-BTT-SO3H) with remarkable storage capacity for simultaneous insertion and extraction of H+ and Zn2+. The ad hoc positioning of the -SO3H groups within the COF-BTT-SO3H structure facilitates the formation of a robust H-bonded network. Through density functional theory calculations and employing in situ and ex situ analyses, we demonstrate that this network functions as a spontaneous proton ion pump leading to enhanced ion-diffusion kinetics and exceptional rate performance in zinc-ion energy storage devices. COF-BTT-SO3H reveals a high capacity of 294.7 mA h/g (0.1 A/g), a remarkable maximum energy density of 182.5 W h/kg, and power density of 14.8 kW/kg, which are superior to most of the reported COF-based electrodes or other organic and inorganic electrode materials in Zn2+ energy storage devices.

Keywords

charge storage mechanism / covalent-organic frameworks / functional porous materials / proton pump / zinc-ion energy storage devices

Cite this article

Download citation ▾
Haijun Peng, Verónica Montes-García, Kaiyue Jiang, Dawid Pakulski, Shunqi Xu, Michał Bielejewski, Fanny Richard, Xiaodong Zhuang, Paolo Samorì, Artur Ciesielski. Benzotrithiophene-sulfonate covalent-organic frameworks: Supramolecular proton pumps for high-rate aqueous zinc-ion energy storage systems. SmartMat, 2024, 5(6): e1312 DOI:10.1002/smm2.1312

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science. 2019; 366(6465): 645-648.

[2]

Tie Z, Liu L, Deng S, Zhao D, Niu Z. Proton insertion chemistry of a zinc–organic battery. Angew Chem Int Ed. 2020; 59(12): 4920-4924.

[3]

Ruan P, Liang S, Lu B, Fan HJ, Zhou J. Design strategies for high-energy-density aqueous zinc batteries. Angew Chem Int Ed. 2022; 61(17): e202200598.

[4]

Li M, Wang X, Hu J, et al. Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew Chem Int Ed. 2023; 62(8): e202215552.

[5]

Ding J, Du Z, Gu L, et al. Ultrafast Zn2+i ntercalation and deintercalation in vanadium dioxide. Adv Mater. 2018; 30(26): 1800762.

[6]

Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed. 2018; 57(15): 3943-3948.

[7]

Ma X, Cao X, Yao M, et al. Organic–inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv Mater. 2022; 34(6): 2105452.

[8]

Zhang Q, Zhi P, Zhang J, et al. Engineering covalent organic frameworks toward advanced zinc-based batteries. Adv Mater. 2024; 36(24): 2313152.

[9]

Yang S, Du H, Li Y, et al. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy & Environment. 2023; 8(6): 1531-1552.

[10]

Geng Y, Pan L, Peng Z, et al. Electrolyte additive engineering for aqueous zn ion batteries. Energy Storage Mater. 2022; 51: 733-755.

[11]

Yu M, Dong R, Feng X. Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications. J Am Chem Soc. 2020; 142(30): 12903-12915.

[12]

Zheng S, Shi D, Yan D, et al. Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew Chem Int Ed. 2022; 61(12): e202117511.

[13]

Peng H, Huang S, Montes-García V, et al. Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: novel benzothiadiazole functionalized two-dimensional olefin-linked cofs. Angew Chem Int Ed. 2023; 62(10): e202216136.

[14]

Vitaku E, Gannett CN, Carpenter KL, Shen L, Abruña HD, Dichtel WR. Phenazine-based covalent organic framework cathode materials with high energy and power densities. J Am Chem Soc. 2020; 142(1): 16-20.

[15]

Khayum MA, Ghosh M, Vijayakumar V, et al. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem Sci. 2019; 10(38): 8889-8894.

[16]

Lin Z, Lin L, Zhu J, Wu W, Yang X, Sun X. An anti-aromatic covalent organic framework cathode with dual-redox centers for rechargeable aqueous zinc batteries. ACS Appl Mater Interfaces. 2022; 14(34): 38689-38695.

[17]

Wang M, Wang G, Naisa C, et al. Poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated covalent organic framework for fast proton storage. Angew Chem Int Ed. 2023; 62(46): e202310937.

[18]

Liang G, Mo F, Ji X, Zhi C. Non-metallic charge carriers for aqueous batteries. Nat Rev Mater. 2021; 6(2): 109-123.

[19]

Wang W, Kale VS, Cao Z, et al. Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv Mater. 2021; 33(39): 2103617.

[20]

Sun T, Zhang W, Nian Q, Tao Z. Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem Eng J. 2023; 452: 139324.

[21]

Nam KW, Park SS, dos Reis R, et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat Commun. 2019; 10(1): 4948.

[22]

Guo X, Puniredd SR, Baumgarten M, Pisula W, Müllen K. Benzotrithiophene-based donor–acceptor copolymers with distinct supramolecular organizations. J Am Chem Soc. 2012; 134(20): 8404-8407.

[23]

Tuckerman ME, Marx D, Parrinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature. 2002; 417(6892): 925-929.

[24]

Wang Y, Wang X, Tang J, Tang W. A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. J Mater Chem A. 2022; 10(26): 13868-13875.

[25]

Liu L, Yin L, Cheng D, et al. Surface-mediated construction of an ultrathin free-standing covalent organic framework membrane for efficient proton conduction. Angew Chem Int Ed. 2021; 60(27): 14875-14880.

[26]

Chandra S, Kundu T, Dey K, Addicoat M, Heine T, Banerjee R. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem Mater. 2016; 28(5): 1489-1494.

[27]

Wei H, Ning J, Cao X, Li X, Hao L. Benzotrithiophene-based covalent organic frameworks: construction and structure transformation under ionothermal condition. J Am Chem Soc. 2018; 140(37): 11618-11622.

[28]

Li Z, Zhang Z, Nie R, et al. Construction of stable donor–acceptor type covalent organic frameworks as functional platform for effective perovskite solar cell enhancement. Adv Funct Mater. 2022; 32(21): 2112553.

[29]

Cao DX, Leifert D, Brus VV, et al. The importance of sulfonate to the self-doping mechanism of the water-soluble conjugated polyelectrolyte PCPDTBT-SO3k. Mater Chem Fron. 2020; 4(12): 3556-3566.

[30]

Zheng W, Li A, Wang X, et al. Construction of hydrophilic covalent organic frameworks and their fast and efficient adsorption of cationic dyes from aqueous solution. New J Chem. 2022; 46(46): 22185-22194.

[31]

Zotti G, Zecchin S, Schiavon G, et al. Electrochemical and xps studies toward the role of monomeric and polymeric sulfonate counterions in the synthesis, composition, and properties of poly(3, 4-ethylenedioxythiophene). Macromolecules. 2003; 36(9): 3337-3344.

[32]

Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3, 4-ethylenedioxythiophene). Nat Mater. 2011; 10(6): 429-433.

[33]

Shao Z, Xue X, Gao K, et al. Sulfonated covalent organic framework packed nafion membrane with high proton conductivity for H2/O2 fuel cell applications. J Mater Chem A. 2023; 11(7): 3446-3453.

[34]

Xing G, Yan T, Das S, Ben T, Qiu S. Synthesis of crystalline porous organic salts with high proton conductivity. Angew Chem Int Ed. 2018; 57(19): 5345-5349.

[35]

Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc. 2016; 138(39): 12894-12901.

[36]

He P, Quan Y, Xu X, et al. High-performance aqueous zinc–ion battery based on layered H2V3O8 nanowire cathode. Small. 2017; 13(47): 1702551.

[37]

Guo J, Ming J, Lei Y, et al. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett. 2019; 4(12): 2776-2781.

[38]

Liu P, Liu W, Huang Y, Li P, Yan J, Liu K. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous zn-ion energy storage. Energy Storage Mater. 2020; 25: 858-865.

[39]

Shi M, Wang B, Shen Y, et al. 3D assembly of Mxene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem Eng J. 2020; 399: 125627.

[40]

Zhao Q, Huang W, Luo Z, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci Adv. 2018; 4(3): eaao1761.

[41]

Kundu D, Oberholzer P, Glaros C, et al. Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem Mater. 2018; 30(11): 3874-3881.

[42]

Nam KW, Kim H, Beldjoudi Y, Kwon T, Kim DJ, Stoddart JF. Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J Am Chem Soc. 2020; 142(5): 2541-2548.

[43]

Wang Y, Wang C, Ni Z, et al. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries. Adv Mater. 2020; 32(16): 2000338.

[44]

Wang N, Guo Z, Ni Z, et al. Molecular tailoring of an n/p-type phenothiazine organic scaffold for zinc batteries. Angew Chem Int Ed. 2021; 60(38): 20826-20832.

[45]

Yu M, Chandrasekhar N, Raghupathy RKM, et al. A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-ion energy storage devices. J Am Chem Soc. 2020; 142(46): 19570-19578.

[46]

Wang W, Kale VS, Cao Z, et al. Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery. ACS Energy Lett. 2020; 5(7): 2256-2264.

[47]

Ma D, Zhao H, Cao F, et al. A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chem Sci. 2022; 13(8): 2385-2390.

[48]

Guo Z, Ma Y, Dong X, Huang J, Wang Y, Xia Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem Int Ed. 2018; 57(36): 11737-11741.

[49]

Wu X, Hong JJ, Shin W, et al. Diffusion-free grotthuss topochemistry for high-rate and long-life proton batteries. Nat Energy. 2019; 4(2): 123-130.

[50]

Gao H, Zhu Q, Neale AR, et al. Integrated covalent organic framework/carbon nanotube composite as Li-ion positive electrode with ultra-high rate performance. Adv Energy Mater. 2021; 11(39): 2101880.

[51]

Wang Y, Wang Y, Chen C, et al. Optimizing the sulfonic groups of a polymer to coat the zinc anode for dendrite suppression. Chem Commun. 2021; 57(43): 5326-5329.

[52]

Song T-B, Huang Z-H, Zhang X-R. Ni J-W, Xiong H-M. Nitrogen-doped and sulfonated carbon dots as a multifunctional additive to realize highly reversible aqueous zinc-ion batteries. Small. 2023; 19(31): 2205558.

[53]

Kim H-S, Cook JB, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3–x. Nat Mater. 2017; 16(4): 454-460.

[54]

Wang N, Dong X, Wang B, et al. Zinc–organic battery with a wide operation-temperature window from –70 to 150 °C. Angew Chem Int Ed. 2020; 59(34): 14577-14583.

[55]

Hao J, Yuan L, Ye C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed. 2021; 60(13): 7366-7375.

[56]

Li M, Li Z, Wang X, et al. Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ Sci. 2021; 14(7): 3796-3839.

[57]

Liu L, Miao L, Li L, et al. Molecular electrostatic potential: a new tool to predict the lithiation process of organic battery materials. J Phys Chem Lett. 2018; 9(13): 3573-3579.

RIGHTS & PERMISSIONS

2024 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/