Advancements in wearable heart sounds devices for the monitoring of cardiovascular diseases

Rafi u Shan Ahmad , Muhammad Shehzad Khan , Mohamed Elhousseini Hilal , Bangul Khan , Yuanting Zhang , Bee Luan Khoo

SmartMat ›› 2025, Vol. 6 ›› Issue (1) : e1311

PDF
SmartMat ›› 2025, Vol. 6 ›› Issue (1) : e1311 DOI: 10.1002/smm2.1311
REVIEW

Advancements in wearable heart sounds devices for the monitoring of cardiovascular diseases

Author information +
History +
PDF

Abstract

Cardiovascular diseases remain a leading global cause of mortality, underscoring the urgent need for intelligent diagnostic tools to enhance early detection, prediction, diagnosis, prevention, treatment, and recovery. This demand has spurred the advancement of wearable and flexible technologies, revolutionizing continuous, noninvasive, and remote heart sound (HS) monitoring—a vital avenue for assessing heart activity. The conventional stethoscope, used to listen to HSs, has limitations in terms of its physical structure, as it is inflexible and bulky, which restricts its prospective applications. Recently, mechanoacoustic sensors have made remarkable advancements, evolving from primitive forms to soft, flexible, and wearable designs. This article provides an in-depth review of the latest scientific and technological advancements by addressing various topics, including different types of sensors, sensing materials, design principles, denoising techniques, and clinical applications of flexible and wearable HS sensors. This transformative potential lies in the capacity for ongoing, remote, and personalized monitoring, promising enhanced patient outcomes, amplified remote monitoring capabilities, and timely diagnoses. Last, the article highlights current challenges and prospects for the future, suggesting techniques to advance HS sensing technologies for exciting real-time applications.

Keywords

cardiovascular diseases / clinical applications / denoising / heart sound monitoring / wearable technology

Cite this article

Download citation ▾
Rafi u Shan Ahmad, Muhammad Shehzad Khan, Mohamed Elhousseini Hilal, Bangul Khan, Yuanting Zhang, Bee Luan Khoo. Advancements in wearable heart sounds devices for the monitoring of cardiovascular diseases. SmartMat, 2025, 6(1): e1311 DOI:10.1002/smm2.1311

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y, Li G, Yang L, Luo R, Guo G. Development of innovative biomaterials and devices for the treatment of cardiovascular diseases. Adv Mater. 2022; 34(46): 2201971.

[2]

Kosuru R, Cai Y, Tiwari V. Natural products targeting oxidative stress and cell death: treatment potential in metabolic and cardiovascular diseases. Front Pharmacol. 2023; 14: 1141878.

[3]

Aziz S, Khan MU, Alhaisoni M, Akram T, Altaf M. Phonocardiogram signal processing for automatic diagnosis of congenital heart disorders through fusion of temporal and cepstral features. Sensors. 2020; 20(13): 3790.

[4]

Balali P, Rabineau J, Hossein A, Tordeur C, Debeir O, van de Borne P. Investigating cardiorespiratory interaction using ballistocardiography and seismocardiography—a narrative review. Sensors. 2022; 22(23): 9565.

[5]

Chen W, Sun Q, Chen X, Xie G, Wu H, Xu C. Deep learning methods for heart sounds classification: a systematic review. Entropy. 2021; 23(6): 667.

[6]

Chowdhury MEH, Khandakar A, Alzoubi K, et al. Real-time smart-digital stethoscope system for heart diseases monitoring. Sensors. 2019; 19(12): 2781.

[7]

Leng S, Tan RS, Chai K, Wang C, Ghista D, Zhong L. The electronic stethoscope. Biomed Eng Online. 2015; 14(1): 66.

[8]

Ghosh SK, Ponnalagu RN, Tripathy RK, Panda G, Pachori RB. Automated heart sound activity detection from PCG signal using time–frequency-domain deep neural network. IEEE Trans Instrum Meas. 2022; 71: 1-10.

[9]

Gumpangseth T, Lekawanvijit S, Mahakkanukrauh P. Histological assessment of the human heart valves and its relationship with age. Anat Cell Biol. 2020; 53(3): 261-271.

[10]

Zeinali Y, Niaki STA. Heart sound classification using signal processing and machine learning algorithms. Mach Learn Appl. 2022; 7: 100206.

[11]

Milani MGM, Abas PE, De Silva LC. A critical review of heart sound signal segmentation algorithms. Smart Health. 2022; 24: 100283.

[12]

Nguyen MT, Lin WW, Huang JH. Heart sound classification using deep learning techniques based on log-mel spectrogram. Circuits Syst Signal Process. 2023; 42(1): 344-360.

[13]

Milani MM, Abas PE, De Silva LC. A critical review of heart sound signals segmentation algorithms. Smart Health. 2022; 24: 100283.

[14]

Joshi AK, Tomar A, Tomar M. A review paper on analysis ofelectrocardiograph (ECG) signal for thedetection of arrhythmia abnormalities. Int J Adv Res Electr Electron Instrum Eng. 2014; 2014: 12466-12475.

[15]

Roguin A. Rene theophile hyacinthe laënnec (1781–1826): the man behind the stethoscope. Clin Med Res. 2006; 4(3): 230-235.

[16]

Donoso FA, Arriagada SD. René théophile hyacinthe laënnec (1781-1826). two hundred years of the stethoscope. A brief overview. Arch Argent Pediatr. 2020; 118(5): 444-448.

[17]

Dudik JM, Coyle JL, Sejdic E. Dysphagia screening: contributions of cervical auscultation signals and modern Signal-Processing techniques. IEEE Trans Hum Mach. 2015; 45(4): 465-477.

[18]

Chamberlain D, Mofor J, Fletcher R, Kodgule R. Mobile stethoscope and signal processing algorithms for pulmonary screening and diagnostics. In: 2015 IEEE Global Humanitarian Technology Conference. 8-11 Oct 2015: 85-392. Seattle, WA, USA.

[19]

Seah JJ, Zhao J, Wang DY, Lee HP. Review on the advancements of stethoscope types in chest auscultation. Diagnostics. 2023; 13(9): 1545.

[20]

https://pdf.medicalexpo.com/pdf/3m-littmann-stethoscopes/littmann-3100-3200-brochure/70648-98443-_4.html.

[21]

https://www.littmann.com/3M/en_US/littmann-stethoscopes/products/∼/3M-Littmann-CORE-Digital-Stethoscope-8890-Mirror-Chestpiece-Black-Tube-Stem-and-Headset-27-inch/?N=5932256+8711017+3288508928+3294857497&preselect=8779523+3293786499&rt=rud.

[22]

Pennisi S. The integrated circuit industry at a crossroads: threats and opportunities. Chips. 2022; 1(3): 150-171.

[23]

Lowe SA, ÓLaighin G. Monitoring human health behaviour in one’s living environment: a technological review. Med Eng Phys. 2014; 36(2): 147-168.

[24]

Arun Faisal I, Waluyo Purboyo T, Siswo Raharjo Ansori A. A review of accelerometer sensor and gyroscope sensor in IMU sensors on motion capture. J Appl Eng Sci. 2019; 15(3): 826-829.

[25]

Liu Y, Norton J, Qazi R, et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci Adv. 2016; 2(11): e1601185.

[26]

Zavanelli N, Kim H, Kim J, et al. At-home wireless monitoring of acute hemodynamic disturbances to detect sleep apnea and sleep stages via a soft sternal patch. Sci Adv. 2021; 7(52): eabl4146.

[27]

Anumukonda M, Chowdhury SR. Heart sound sensing through MEMS microphone. Sensors for Everyday Life: Healthcare Settings. In: Springer International Publishing; 2017: 121-134.

[28]

Etemadi M, Inan OT, Heller JA, Hersek S, Klein L, Roy S. A wearable patch to enable long-term monitoring of environmental, activity and hemodynamics variables. IEEE Trans Biomed Circuits Syst. 2016; 10(2): 280-288.

[29]

D’Mello Y, Skoric J, Xu S, et al. Real-time cardiac beat detection and heart rate monitoring from combined seismocardiography and gyrocardiography. Sensors. 2019; 19(16): 3472.

[30]

Yang C, Tang S, Tavassolian N. Utilizing gyroscopes towards the automatic annotation of seismocardiograms. IEEE Sens J. 2017; 17(7): 2129-2136.

[31]

Shah MA, Shah IA, Lee DG, Hur S. Design approaches of MEMS microphones for enhanced performance. J Sens. 2019; 2019: 1-26.

[32]

Arnau A, Soares D. Fundamentals of piezoelectricity. Piezoelectric transducers and applications. Springer; 2008: 1-38.

[33]

Park H, Wei Q, Lee S, Lee M. Novel design of a multimodal technology-based smart stethoscope for personal cardiovascular health monitoring. Sensors. 2022; 22(17): 6465.

[34]

Guo B, Tang H, Xia S, Xia M, Hu Y, Zhao Z. Development of a multi-channel wearable heart sound visualization system. J Pers Med. 2011; 12(12): 2022.

[35]

Wang T, Gong M, Yu X, Lan G, Shi Y. Acoustic-pressure sensor array system for cardiac-sound acquisition. Biomed Signal Process Control. 2021; 69: 102836.

[36]

Andreozzi E, Gargiulo GD, Esposito D, Bifulco P. A novel broadband forcecardiography sensor for simultaneous monitoring of respiration, infrasonic cardiac vibrations and heart sounds. Front Physiol. 2021; 12: 725716.

[37]

McMechan C, So P, Design and implementation of a low cost electronic stethoscope. In: Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. 2011:714-718.

[38]

Malik B, Eya N, Migdadi H, Ngala M, Abd-Alhameed R. Noras J. Design and development of an electronic stethoscope. In: 2017 Internet Technologies and Applications (ITA). 2017: 324-328.

[39]

Wu Y-C, Han CC, Chang CS, et al. Development of an electronic stethoscope and a classification algorithm for cardiopulmonary sounds. Sensors. 2022; 22(11): 4263.

[40]

Lee SH, Kim YS, Yeo MK, et al. Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis. Sci Adv. 2022; 8(21): eabo5867.

[41]

Lee SH, Lee YJ, Kwon K, et al. Soft smart biopatch for continuous Authentication-Enabled cardiac biometric systems. Adv Sens Res. 2023; 2: 2300074.

[42]

Mohamed N, Kim HS, Mohamed M, Kang KM, Kim SH, Kim J. Tablet-based wearable patch sensor design for continuous cardiovascular system monitoring in postoperative settings. Biosensors. 2023; 13(6): 615.

[43]

Ren H, Jin H, Chen C, Ghayvat H, Chen W. A novel cardiac auscultation monitoring system based on wireless sensing for healthcare. IEEE J Transl Eng Health Med. 2018; 6: 1-12.

[44]

Giordano N, Rosati S, Balestra G, Knaflitz M. A wearable multi-sensor array enables the recording of heart sounds in homecare. Sensors. 2023; 23(13): 6241.

[45]

Yang K, Jiang H, Yang W, et al. Lifetime tracing of cardiopulmonary sounds with low-power sound sensor stick connected to wireless mobile network. Analog Integr Circuits Signal Process. 2014; 81(3): 623-634.

[46]

Andreozzi E, Fratini A, Esposito D, et al. Forcecardiography: a novel technique to measure heart mechanical vibrations onto the chest wall. Sensors. 2020; 20(14): 3885.

[47]

Lo Presti D, Santucci F, Massaroni C, Formica D, Setola R, Schena E. A multi-point heart rate monitoring using a soft wearable system based on fiber optic technology. Sci Rep. 2021; 11(1): 21162.

[48]

Will C, Shi K, Schellenberger S, et al. Radar-based heart sound detection. Sci Rep. 2018; 8(1): 11551.

[49]

Rong Y, Mishra KV, Bliss DW. Wireless sensing for simultaneous human vocal sound and heart sound recognition. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2023: 1-5.

[50]

Arif RE, Horng T-S. Chest-worn self-injection-locked oscillator tag for monitoring heart sounds. IEEE Microw Wirel Compon Lett. 2023; 33(4): 483-486.

[51]

Hui X, Sharma P, Kan EC. Microwave stethoscope for heart sound by near-field coherent sensing. In: 2019 IEEE MTT-S International Microwave Symposium (IMS). 2019: 365-368.

[52]

Xia Z, Shandhi M, Inan OT, Zhang Y. Non-contact sensing of seismocardiogram signals using microwave Doppler radar. IEEE Sens J. 2018; 18(14): 5956-5964.

[53]

Sahoo PK, Thakkar HK, Lin WY, Chang PC, Lee MY. On the design of an efficient cardiac health monitoring system through combined analysis of ECG and SCG signals. Sensors. 2018; 18(2): 379.

[54]

Duanmu Z, Kong C, Guo Y, et al. Design and implementation of an acoustic-vibration capacitive MEMS microphone. AIP Adv. 2022; 12(6): 065309.

[55]

Klum M, Urban M, Tigges T, et al. Wearable cardiorespiratory monitoring employing a multimodal digital patch stethoscope: estimation of ECG, PEP, LVET and respiration using a 55 mm single-lead ECG and phonocardiogram. Sensors. 2033; 20(7): 2020.

[56]

Crone WC, Sharpe W. A brief introduction to MEMS and NEMS. In Springer handbook of experimental solid mechanics. Springer New York; 2008: 203-228.

[57]

Fedder GK. MEMS fabrication. Name of Conference. IEEE Computer Society 2003.

[58]

Gad-el-Hak M. MEMS: design and fabrication. CRC press; 2005.

[59]

Trolier-McKinstry S, Muralt P. Thin film piezoelectrics for MEMS. J Electroceram. 2004; 12(1/2): 7-17.

[60]

Li H, Ren Y, Zhang G, et al. Design of a high SNR electronic heart sound sensor based on a MEMS bionic hydrophone. AIP Adv. 2019; 9(1): 015005.

[61]

Duan S, Wang W, Zhang S, Yang X, Zhang Y, Zhang G. A bionic MEMS electronic stethoscope with double-sided diaphragm packaging. IEEE Access. 2021; 9: 27122-27129.

[62]

Shi P, Li Y, Zhang W, et al. Design and implementation of bionic MEMS electronic heart sound stethoscope. IEEE Sens J. 2022; 22(2): 1163-1172.

[63]

Pei Y, Wang W, Zhang G, et al. Design and implementation of t-type MEMS heart sound sensor. Sens Actuators, A. 2019; 285: 308-318.

[64]

Yang Y, Wang B, Cui J, et al. Design and realization of MEMS heart sound sensor with concave, Racket-Shaped cilium. Biosensors. 2022; 12(7): 534.

[65]

Gupta P, Moghimi MJ, Jeong Y, Gupta D, Inan OT, Ayazi F. Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. NPJ Digit Med. 2020; 3(1): 19.

[66]

Zhang G, Liu M, Guo N, Zhang W. Design of the MEMS piezoresistive electronic heart sound sensor. Sensors. 2016; 16(11): 1728.

[67]

Okamoto Y, Nguyen TV, Takahashi H, Takei Y, Okada H, Ichiki M. Highly sensitive low-frequency-detectable acoustic sensor using a piezoresistive cantilever for health monitoring applications. Sci Rep. 2023; 13(1): 6503.

[68]

Qu M, Chen X, Yang D, et al. Monitoring of physiological sounds with wearable device based on piezoelectric MEMS acoustic sensor. J Micromech Microeng. 2021; 32(1): 014001.

[69]

Jia L, Shi L, Liu C, et al. Piezoelectric micromachined ultrasonic transducer array-based electronic stethoscope for Internet of medical things. IEEE Internet Things J. 2022; 9(12): 9766-9774.

[70]

Ning Y, Zhang M, Lang Y, Gong Y, Yang X, Pang W. Electronic stethoscope based on triangular cantilever piezoelectric bimorph MEMS transducers. J Microelectromech Syst. 2022; 31(3): 450-456.

[71]

Jia L, Shi L, Sun C, Liu S, Wu G. AlN based piezoelectric micromachined ultrasonic transducers for continuous monitoring of the mechano-acoustic cardiopulmonary signals. In: 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). 2021: 426-429.

[72]

Ha T, Tran J, Liu S, et al. A chest-laminated ultrathin and stretchable e-tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals. Adv Sci. 2019; 6(14): 1900290.

[73]

Eyvazi Hesar M, Khan D, Seyedsadrkhani NS, Ingebrandt S. Contactless, battery-free, and stretchable wearable for continuous recording of seismocardiograms. ACS Appl Electron Mater. 2020; 3(1): 11-20.

[74]

Katzir S. The discovery of the piezoelectric effect. The beginnings of piezoelectricity: a study in Mundane physics. Springer; 2006: 15-64.

[75]

Farzin MA, Naghib SM, Rabiee N. Advancements in bio-inspired self-powered wireless sensors: materials, mechanisms, and biomedical applications. ACS Biomater Sci Eng. 2024; 10: 1262-1301.

[76]

Wu Y, Ma Y, Zheng H, Ramakrishna S. Piezoelectric materials for flexible and wearable electronics: a review. Mater Des. 2021; 211: 110164.

[77]

Fiorillo AS, Critello CD, Pullano SA. Theory, technology and applications of piezoresistive sensors: a review. Sens Actuators, A. 2018; 281: 156-175.

[78]

Duan L, D’hooge DR, Cardon L. Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog Mater Sci. 2020; 114: 100617.

[79]

Nguyen T, Dinh T, Phan HP, et al. Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications. Materials Horizons. 2021; 8(8): 2123-2150.

[80]

Niu S, Wang ZL. Theoretical systems of triboelectric nanogenerators. Nano Energy. 2015; 14: 161-192.

[81]

Kim W-G, Kim DW, Tcho IW, Kim JK, Kim MS, Choi YK. Triboelectric nanogenerator: structure, mechanism, and applications. ACS Nano. 2021; 15(1): 258-287.

[82]

Tichý J, Erhart J, Kittinger E, Přívratská J. Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media; 2010.

[83]

Hollander LE, Vick GL, Diesel TJ. The piezoresistive effect and its applications. Rev Sci Instrum. 1960; 31(3): 323-327.

[84]

Zhang Z, Xu Z, Chen W, Gao S. Comparison between piezoelectric and piezoresistive wearable gait monitoring techniques. Materials. 2022; 15(14): 4837.

[85]

Khan B, Riaz Z, Ahmad R, Khoo BL. Advancements in wearable sensors for cardiovascular disease detection for health monitoring. Mater Sci Eng R: Rep. 2024; 159: 100804.

[86]

Dineva P, Gross D, Muller R, Rangelov T. Piezoelectric materials. Dynamic Fracture of Piezoelectric Materials: Solution of Time-Harmonic Problems via BIEM. Springer International Publishing; 2014: 7-32.

[87]

Chen H, Yu S, Liu H, et al. A two-stage amplified PZT sensor for monitoring lung and heart sounds in discharged pneumonia patients. Microsystems & Nanoengineering. 2021; 7(1): 55.

[88]

Kawai H. The piezoelectricity of poly (vinylidene Fluoride). Jpn J Appl Phys. 1969; 8(7): 975.

[89]

Ji Z, Zhang M. Highly sensitive and stretchable piezoelectric strain sensor enabled wearable devices for real-time monitoring of respiratory and heartbeat simultaneously. Nanotechnol Precis Eng. 2022; 5(1): 013002.

[90]

Liu B, Han L, Pan L, et al. Flexible multiscale pore hybrid self-powered sensor for heart sound detection. Sensors. 2021; 21(13): 4508.

[91]

Luo Y, Liu J, Zhang J, Xiao Y, Wu Y, Zhao Z. A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection. Beilstein J Nanotechnol. 2023; 14: 819-833.

[92]

Li Y, Huang Y, Zhao N. Low-intensity sensitive and high stability flexible heart sound sensor enabled by hybrid near-field/far-field electrospinning. Adv Funct Mater. 2023; 33(29): 2300666.

[93]

Liu Y, Li H, Zhang M. Wireless battery-free broad-band sensor for wearable multiple physiological measurement. ACS Applied Electronic Materials. 2021; 3(4): 1681-1690.

[94]

Guess M, Soltis I, Rigo B, et al. Wireless batteryless soft sensors for ambulatory cardiovascular health monitoring. Soft Science. 2023; 3(3): 24.

[95]

Yan W, Noel G, Loke G, et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature. 2022; 603(7902): 616-623.

[96]

Lang C, Fang J, Shao H, Ding X, Lin T. High-sensitivity acoustic sensors from nanofibre webs. Nat Commun. 2016; 7(1): 11108.

[97]

Nayeem MOG, Lee S, Jin H, et al. All-nanofiber–based, ultrasensitive, gas-permeable mechanoacousti. sensors for continuous long-term heart monitoring. Proc Natl Acad Sci USA. 2020; 117(13): 7063-7070.

[98]

Luo Y, Liu J, Zhang J, Xiao Y, Wu Y, Zhao Z. Design of a wearable flexible nano-heart sound sensor based on P (VDF-TrFE)/ZnO/GR and its application in cardiac disease detection. Beilstein Arch. 2023; 2023(1): 22.

[99]

Al Abdullah K, Batal MA, Hamdan R, et al. The enhancement of PVDF pyroelectricity (pyroelectric coefficient and dipole moment) by inclusions. Energy Procedia. 2017; 119: 545-555.

[100]

Chen GW, Majid WHA. Pyroelectric properties of polyvinylidene fluoride (PVDF) by Quasi Static method. In: 2006 IEEE International Conference on Semiconductor Electronics. 2006: 468-471.

[101]

Tian J, Jiang F, Zeng Q, PourhosseiniAsl M, Han C, Ren K. Biocompatible piezoelectric polymer poly (Lactic Acid)-Based stethoscope for wearable health monitoring devices. IEEE Sens J. 2023; 23(6): 6264-6271.

[102]

Lang SB, Muensit S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Applied Physics A. 2006; 85(2): 125-134.

[103]

Curry EJ, Le TT, Das R, et al. Biodegradable nanofiber-based piezoelectric transducer. Proc Natl Acad Sci USA. 2020; 117(1): 214-220.

[104]

Mo X, Zhou H, Li W, et al. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy. 2019; 65: 104033.

[105]

Han L, Liang W, Xie Q, et al. Health monitoring via heart, breath, and korotkoff sounds by wearable piezoelectret patches. Adv Sci. 2023; 10(28): 2301180.

[106]

Ma Z, Hua H, You C, et al. FlexiPulse: a machine-learning-enabled flexible pulse sensor for cardiovascular disease diagnostics. Cell Rep Phys Sci. 2023; 4(12): 101690.

[107]

Irani FS, Shafaghi AH, Tasdelen MC, et al. Graphene as a piezoresistive material in strain sensing applications. Micromachines. 2022; 13(1): 119.

[108]

Geim AK. Graphene: status and prospects. Science. 2009; 324(5934): 1530-1534.

[109]

Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011; 10(6): 424-428.

[110]

Choi BG, Yang M, Hong WH, Choi JW, Huh YS. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano. 2012; 6(5): 4020-4028.

[111]

Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010; 4(7): 4324-4330.

[112]

Ye R, James DK, Tour JM. Laser-induced graphene. Acc Chem Res. 2018; 51(7): 1609-1620.

[113]

Sha J, Li Y, Villegas Salvatierra R, et al. Three-dimensional printed graphene foams. ACS Nano. 2017; 11(7): 6860-6867.

[114]

Chen K, Shi L, Zhang Y, Liu Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem Soc Rev. 2018; 47(9): 3018-3036.

[115]

Kondapalli VKR, He X, Khosravifar M, et al. CVD synthesis of 3D-Shaped 3D graphene using a 3D-printed nickel–PLGA catalyst precursor. ACS Omega. 2021; 6(43): 29009-29021.

[116]

Ye R, James DK, Tour JM. Laser-induced graphene: from discovery to translation. Adv Mater. 2019; 31(1): 1803621.

[117]

Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun. 2014; 5(1): 5714.

[118]

Yang S, Ling Y, Wu Q, et al. Lignin-derived porous graphene for wearable and ultrasensitive strain sensors. J Mater Chem C. 2022; 10(32): 11730-11738.

[119]

Jalilinejad N, Rabiee M, Baheiraei N, et al. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioeng Transl Med. 2023; 8(1): e10347.

[120]

Shuvo SB, Ali SN, Swapnil SI, Al-Rakhami MS. Gumaei A. CardioXNet: a novel lightweight deep learning framework for cardiovascular disease classification using heart sound recordings. IEEE Access. 2021; 9: 36955-36967.

[121]

Antoniou A. Digital filters: analysis, design, and signal processing applications. McGraw-Hill Education; 2018.

[122]

Rao KD, Swamy MN. Digital signal processing: theory and practice. Springer; 2018.

[123]

Yang C, Tavassolian N. Motion artifact cancellation of seismocardiographic recording from moving subjects. IEEE Sens J. 2016; 16(14): 5702-5708.

[124]

Cotur Y, Kasimatis M, Kaisti M, Olenik S, Georgiou C, Güder F. Stretchable composite acoustic transducer for wearable monitoring of vital signs. Adv Funct Mater. 2020; 30(16): 1910288.

[125]

Zhang S, Zhang R, Chang S, Liu C, Sha X. A low-noise-level heart sound system based on novel thorax-integration head design and wavelet denoising algorithm. Micromachines. 2019; 10(12): 885.

[126]

Shandhi MMH, Semiz B, Hersek S, Goller N, Ayazi F, Inan OT. Performance analysis of gyroscope and accelerometer sensors for seismocardiography-based wearable pre-ejection period estimation. IEEE J Biomed Health Inform. 2019; 23(6): 2365-2374.

[127]

Semiz B, Carek AM, Johnson JC, et al. Non-invasive wearable patch utilizing seismocardiography for peri-operative use in surgical patients. IEEE J Biomed Health Inform. 2021; 25(5): 1572-1582.

[128]

Ashouri H, Hersek S, Inan OT. Universal pre-ejection period estimation using seismocardiography: quantifying the effects of sensor placement and regression algorithms. IEEE Sens J. 2018; 18(4): 1665-1674.

[129]

Pham D-H, Meignen S, Dia N, Fontecave-Jallon J. Rivet B. Phonocardiogram signal denoising based on nonnegative matrix factorization and adaptive contour representation computation. IEEE Signal Process Lett. 2018; 25(10): 1475-1479.

[130]

Cheema A, Singh M, Kumar M, Setia G. Combined empirical mode decomposition and phase space reconstruction based psychologically stressed and non-stressed state classification from cardiac sound signals. Biomed Signal Process Control. 2023; 82: 104585.

[131]

Albiges T, Sabeur Z, Arbab-Zavar B. Compressed sensing data with performing audio signal reconstruction for the intelligent classification of chronic respiratory diseases. Sensors. 2023; 23(3): 1439.

[132]

Ali SN, Shuvo SB, Al-Manzo M. Hasan A, Hasan T. An end-to-end deep learning framework for real-time denoising of heart sounds for cardiac disease detection in unseen noise. IEEE Access. 2023; 11: 87887-87901.

[133]

Al-Zaben A, Al-Fahoum A. Ababneh M, Al-Naami B. Al-Omari G. Improved recovery of cardiac auscultation sounds using modified cosine transform and LSTM-based masking. Med Biol Eng Comput. 2024; 62(8): 2485-2497.

[134]

Wang W, Wang S, Qin D, Fang Y, Zheng Y. Heart-lung sound separation by nonnegative matrix factorization and deep learning. Biomed Signal Process Control. 2023; 79: 104180.

[135]

González-Rodríguez C, Alonso-Arévalo MA, García-Canseco E. Robust denoising of phonocardiogram signals using time-frequency analysis and U-Nets. IEEE Access. 2023; 11: 52466-52479.

[136]

Wang W, Qin D, Wang S, Fang Y, Zheng Y. A multi-channel UNet framework based on SNMF-DCNN for robust heart-lung-sound separation. Comput Biol Med. 2023; 164: 107282.

[137]

Gupta P, Wen H, Di Francesco L, Ayazi F. Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders. Sci Rep. 2021; 11(1): 13427.

[138]

Han C, Wa Y, Su Z, Fei X. Empirical Mode Decomposition and Wavelet Decomposition in Respiratory Sounds Processing. ed. Research Square; 2023.

[139]

Rizal A, Hidayat R, Nugroho HA. Lung sound classification using empirical mode decomposition and the hjorth descriptor. Am J Appl Sci. 2017; 14(1): 166-173.

[140]

Meng F, Shi Y, Wang N, Cai M, Luo Z. Detection of respiratory sounds based on wavelet coefficients and machine learning. IEEE Access. 2020; 8: 155710-155720.

[141]

Naqvi SZH, Choudhry MA. An automated system for classification of chronic obstructive pulmonary disease and pneumonia patients using lung sound analysis. Sensors. 2020; 20(22): 6512.

[142]

Rizal A, Nugroho HA, Hidayat R. Fractal dimension for lung sound classification in multiscale scheme. J Comput Sci. 2018; 14(8): 1081-1096.

[143]

Rizal A, Hidayat R, Nugroho HA. Multiscale tsallis entropy for pulmonary crackle detection. Int J Adv Intell Inform. 2018; 4(3): 192.

[144]

Khosrow-Khavar F, Tavakolian K, Blaber A, Menon C. Automatic and robust delineation of the fiducial points of the seismocardiogram signal for noninvasive estimation of cardiac time intervals. IEEE Trans Biomed Eng. 2017; 64(8): 1701-1710.

[145]

Landreani F, Martin-Yebra A. Casellato C, et al. Beat-to-beat heart rate detection by smartphone’s accelerometers: validation with ECG. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016: 525-528.

[146]

Tadi MJ, Lehtonen E, Koivisto T, Pänkäälä M, Paasio A, Teräs M. Seismocardiography: toward heart rate variability (HRV) estimation. In: 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings. 2015: 261-266.

[147]

Taebi A, Bomar AJ, Sandler RH, Mansy HA. Heart rate monitoring during different lung volume phases using seismocardiography. SoutheastCon. 2018: 1-6.

[148]

Das M, Choudhary T, Sharma LN, Bhuyan MK. Noninvasive accelerometric approach for cuffless continuous blood pressure measurement. IEEE Trans Instrum Meas. 2021; 70: 1-9.

[149]

Ganti VG, Gazi AH, An S, et al. Wearable Seismocardiography-Based assessment of stroke volume in congenital heart disease. J Am Heart Assoc. 2022; 11(18): e026067.

[150]

Lee J, Sohn J, Park J, Yang S, Lee S, Kim HC. Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation. Biomed Eng Online. 2018; 17(1): 81.

[151]

Verma AK, Fazel-Rezai R. Blaber A, Tavakolian K. Pulse transit time extraction from seismocardiogram and its relationship with pulse pressure. In: 2015 Computing in Cardiology Conference (CinC). 2015: 37-40.

[152]

Wick CA, Su J-J, McClellan JH, et al. A system for seismocardiography-based identification of quiescent heart phases: implications for cardiac imaging. IEEE Trans Inf Technol Biomed. 2012; 16(5): 869-877.

[153]

Lahdenoja O, Pankaala M, Koivisto T, et al. Atrial fibrillation detection via accelerometer and gyroscope of a smartphone. IEEE J Biomed Health Inform. 2018; 22(1): 108-118.

[154]

Zakeri V, Akhbardeh A, Alamdari N, Fazel-Rezai R. Paukkunen M, Tavakolian K. Analyzing seismocardiogram cycles to identify the respiratory phases. IEEE Trans Biomed Eng. 2017; 64(8): 1786-1792.

[155]

Strollo PJ Jr., Rogers RM. Obstructive sleep apnea. N Engl J Med. 1996; 334(2): 99-104.

[156]

Collen J, Lettieri C, Wickwire E, Holley A. Obstructive sleep apnea and cardiovascular disease, a story of confounders! Sleep and Breathing. 2020; 24(4): 1299-1313.

[157]

Schober P, Loer SA, Schwarte LA. Transesophageal Doppler devices: a technical review. J Clin Monit Comput. 2009; 23(6): 391-401.

[158]

Gjoreski M, Simjanoska M, Gradišek A, Peterlin A, Gams M, Poglajen G. Chronic heart failure detection from heart sounds using a stack of machine-learning classifiers. In: 2017 International Conference on Intelligent Environments (IE). 2017: 14-19.

[159]

Stotts C, Corrales-Medina VF. Rayner KJ. Pneumonia-Induced inflammation, resolution and cardiovascular disease: causes, consequences and clinical opportunities. Circ Res. 2023; 132(6): 751-774.

[160]

Gereige RS, Laufer PM. Pneumonia. Pediatr Rev. 2013; 34(10): 438-456.

[161]

Devasahayam S, Gangadharan N, Surekha C, Baskaran B, Mukadam FA, Subramani S. Intra-arterial blood pressure measurement: sources of error and solutions. Med Biol Eng Comput. 2022; 60(4): 1123-1138.

[162]

Littler WA, Komsuoglu B. Which is the most accurate method of measuring blood pressure? Am Heart J. 1989; 117(3): 723-728.

[163]

Perloff D, Grim C, Flack J, et al. Human blood pressure determination by sphygmomanometry. Circulation. 1993; 88(5): 2460-2470.

[164]

Sato T, Nishinaga M, Kawamoto A, Ozawa T, Takatsuji H. Accuracy of a continuous blood pressure monitor based on arterial tonometry. Hypertension. 1993; 21(6_pt_1): 866-874.

[165]

Kemmotsu O, Ueda M, Otsuka H, Yamamura T, Winter D, Eckerle J. Arterial tonometry for noninvasive, continuous blood pressure monitoring during anesthesia. Anesthesiology. 1991; 75(2): 333-340.

[166]

Nelson MR, Stepanek J, Cevette M, Covalciuc M, Hurst RT, Tajik AJ. Noninvasive measurement of central vascular pressures with arterial tonometry: clinical revival of the pulse pressure waveform? Elsevier; 2010: 460-472.

[167]

Yoon Y, Cho JH, Yoon G. Non-constrained blood pressure monitoring using ECG and PPG for personal healthcare. J Med Syst. 2009; 33(4): 261-266.

[168]

Sharifi I, Goudarzi S, Khodabakhshi MB. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals. Artif Intell Med. 2019; 97: 143-151.

[169]

Ghosh S, Banerjee A, Ray N, Wood PW, Boulanger P, Padwal R. Continuous blood pressure prediction from pulse transit time using ECG and PPG signals. In: 2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT). 2016: 188-191.

[170]

Crow RS, Hannan P, Jacobs D, Hedquist L, Salerno DM. Relationship between seismocardiogram and echocardiogram for events in the cardiac cycle. Am J Noninvas Card. 1994; 8(1): 39-46.

[171]

Zanetti JM, Poliac M, Crow RS. Seismocardiography: waveform identification and noise analysis. In: [1991] Proceedings Computers in Cardiology. 1991: 49-52.

[172]

Choudhary T, Sharma LN, Bhuyan MK. Automatic detection of aortic valve opening using seismocardiography in healthy individuals. IEEE J Biomed Health Inform. 2019; 23(3): 1032-1040.

[173]

Tadi MJ, Lehtonen E, Saraste A, et al. Gyrocardiography: a new non-invasive monitoring method for the assessment of cardiac mechanics and the estimation of hemodynamic variables. Sci Rep. 2017; 7(1): 1-11.

[174]

Tadi MJ, Koivisto T, Pänkäälä M, et al. A new algorithm for segmentation of cardiac quiescent phases and cardiac time intervals using seismocardiography. SPIE. 2015: 571-577.

[175]

Tavakolian K, Characterization and analysis of seismocardiogram for estimation of hemodynamic parameters, 2010.

[176]

Wang M, Tang H, Feng T, Guo B. Continuous and noninvasive estimation of right ventricle systolic blood pressure using heart sound signal by deep bidirectional LSTM network. Appl Sci. 2020; 10(16): 5466.

[177]

Gonzalez-Landaeta R, Ramirez B, Mejia J. Estimation of systolic blood pressure by random forest using heart sounds and a ballistocardiogram. Sci Rep. 2022; 12(1): 17196.

[178]

Mukkamala R, Hahn JO, Inan OT, et al. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng. 2015; 62(8): 1879-1901.

[179]

Zhang Q, Shi Y, Teng D, et al. Pulse transit time-based blood pressure estimation using hilbert-huang transform. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2009: 1785-1788.

[180]

Lin W-H, Wang H, Samuel OW, Li G. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2017: 738-741.

[181]

Huynh TH, Jafari R, Chung WY. Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography. IEEE Trans Biomed Eng. 2019; 66(4): 967-976.

[182]

Yang C, Tavassolian N. Pulse transit time measurement using seismocardiogram, photoplethysmogram, and acoustic recordings: evaluation and comparison. IEEE J Biomed Health Inform. 2018; 22(3): 733-740.

[183]

Di Rienzo M, Vaini E, Lombardi P. Use of seismocardiogram for the beat-to-beat assessment of the pulse transit time: A pilot study. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015: 7184-7187.

[184]

Wang EJ, Zhu J, Jain M, et al. Seismo: Blood pressure monitoring using built-in smartphone accelerometer and camera. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 2018; 425: 1-9.

[185]

Dastjerdi AE, Kachuee M, Shabany M. Non-invasive blood pressure estimation using phonocardiogram. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS). 2017: 1-4.

[186]

Carek AM, Conant J, Joshi A, Kang H, Inan OT. SeismoWatch: wearable cuffless blood pressure monitoring using pulse transit time. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017; 1(3): 1-16.

[187]

Ganti VG, Carek AM, Nevius BN, Heller JA, Etemadi M, Inan OT. Wearable cuff-less blood pressure estimation at home via pulse transit time. IEEE J Biomed Health Inform. 2021; 25(6): 1926-1937.

[188]

Zhang G, Cottrell AC, Henry IC, McCombie DB. Assessment of pre-ejection period in ambulatory subjects using seismocardiogram in a wearable blood pressure monitor. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016: 3386-3389.

[189]

https://www.zippia.com/advice/smartphone-usage-statistics/.

[190]

Chandrasekaran V, Dantu R, Jonnada S, Thiyagaraja S, Subbu KP. Cuffless differential blood pressure estimation using smart phones. IEEE Trans Biomed Eng. 2013; 60(4): 1080-1089.

[191]

Castro A, Mattos SS, Coimbra MT. Noninvasive blood pressure and the second heart sound analysis. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014: 5494-5497.

[192]

Peng R-C, Yan WR, Zhang NL, Lin WH, Zhou XL, Zhang YT. Cuffless and continuous blood pressure estimation from the heart sound signals. Sensors. 2015; 15(9): 23653-23666.

[193]

Nagel E, Stuber M, Hess OM. Importance of the right ventricle in valvular heart disease. Eur Heart J. 1996; 17(6): 829-836.

[194]

Hatano S. Primary pulmonary hypertension: report on a WHO meeting, Geneva, 15-17 October 1973. World Health Organization; 1975.

[195]

Hsu P-Y, et al. Motion Artifact Resilient Cuff-Less Blood Pressure Monitoring Using a Fusion of Multi-Dimensional Seismocardiograms, Name of Conference, Location: IEEE2021.

[196]

Gupta GK, De S, Franco A, Balu AM, Luque R. Sustainable biomaterials: current trends, challenges and applications. Molecules. 2015; 21(1): E48.

[197]

Hussain T, Abbas H, Youn C, et al. Cellulose nanocrystal based Bio-Memristor as a Green artificial synaptic device for neuromorphic computing applications. Adv Mater Technol. 2022; 7(2): 2100744.

[198]

Liu X, Fu T, Ward J, et al. Multifunctional protein nanowire humidity sensors for Green wearable electronics. Adv Electron Mater. 2020; 6(9): 2000721.

[199]

Pan H, Lee T-W. Recent progress in development of wearable pressure sensors derived from biological materials. Adv Healthcare Mater. 2021; 10(17): 2100460.

[200]

Han N, Yao X, Wang Y, et al. Recent progress of biomaterials-based epidermal electronics for healthcare monitoring and human–machine interaction. Biosensors. 2023; 13(3): 393.

[201]

Wang R, Sui J, Wang X. Natural piezoelectric biomaterials: a biocompatible and sustainable building block for biomedical devices. ACS Nano. 2022; 16(11): 17708-17728.

[202]

Li J, Long Y, Yang F, Wang X. Degradable piezoelectric biomaterials for wearable and implantable bioelectronics. Curr Opin Solid State Mater Sci. 2020; 24(1): 100806.

[203]

Shi W, Li W, Nguyen W, Chen W, Wang J, Chen M. Advances of metal organic frameworks in analytical applications. Materials Today Advances. 2022; 15: 100273.

[204]

Rebecca PB, Durgalakshmi D, Balakumar S, Rakkesh RA. Advancing healthcare applications: wearable sensors utilizing metal–organic frameworks. Sensors & Diagnostics. 2023; 2(6): 1360-1375.

[205]

Guo W, Ma Z, Chen Z, et al. Thin and soft Ti3C2Tx MXene sponge structure for highly sensitive pressure sensor assisted by deep learning. Chem Eng J. 2024; 485: 149659.

[206]

Xin M, Li J, Ma Z, Pan L, Shi Y. MXenes and their applications in wearable sensors. Front Chem. 2020; 8: 297.

[207]

Yang J, Wang C, Liu L, Zhang H, Ma J. Water-tolerant MXene epidermal sensors with high sensitivity and reliability for healthcare monitoring. ACS Appl Mater Interfaces. 2022; 14(18): 21253-21262.

[208]

Yu Q, Zhao B, Ren X, et al. Porous pure MXene fibrous network for highly sensitive pressure sensors. Langmuir. 2022; 38(18): 5494-5501.

[209]

Chae A, Murali G, Lee S, et al. Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv Funct Mater. 2023; 33(24): 2213382.

[210]

Huang Y, Afolabi MA, Gan L, Liu S, Chen Y. MXene-coated ion-selective electrode sensors for highly stable and selective lithium dynamics monitoring. Environ Sci Technol. 2024; 58(2): 1359-1368.

[211]

Meng Q, Yang C, Tai X, et al. Recent advances in MXenes and their composites for wearable sensors. J Phys Condens Matter. 2022; 34(45): 453001.

RIGHTS & PERMISSIONS

2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/