Intrinsic charge manipulation for solution-processed organic photodetectors with high sensitivity and fast response

Tingbin Yang , Jun Yan , Li Gong , Wentao Zhong , Bulin Chen , Liang Shen , Jisheng Pan , Jenny Nelson , Yongye Liang

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1310

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1310 DOI: 10.1002/smm2.1310
RESEARCH ARTICLE

Intrinsic charge manipulation for solution-processed organic photodetectors with high sensitivity and fast response

Author information +
History +
PDF

Abstract

Charge manipulation is crucial in optoelectronic devices. The unoptimized interfacial charge injection/extraction in solution-processed bulk-heterojunction (BHJ) organic photodetectors (OPDs) presents significant challenges in achieving high detectivity and fast response speed. Here, we first develop an approach for intrinsic charge manipulation induced by molecularly engineered donors to block electron injection and facilitate hole extraction between the indium tin oxide (ITO) transparent anode and the photoactive layer. By utilizing a polymer donor with 3,4-ethylenedioxythiophene (EDOT) as the conjugated side chain, a polymer-rich layer forms spontaneously on the ITO substrate due to the increased oxygen interactions between ITO and EDOT. This results in electron-blocking-layer (EBL)-free devices with lower dark current and noise without a reduction in responsivity compared to control devices. As a result, the EBL-free devices exhibit a peak specific detectivity of 2.36 × 1013 Jones at 950 nm and achieve a –3 dB bandwidth of 30 MHz under –1 V. Enhanced stability is also observed compared to the devices with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). This work demonstrates a new method to intrinsically manipulate charge injection in BHJ photoactive layers, enabling the fabrication of solution-processed EBL-free OPDs with high sensitivity, rapid response, and good stability.

Keywords

bulk-heterojunction / electron blocking layer / fast response / high sensitivity / organic photodetectors

Cite this article

Download citation ▾
Tingbin Yang, Jun Yan, Li Gong, Wentao Zhong, Bulin Chen, Liang Shen, Jisheng Pan, Jenny Nelson, Yongye Liang. Intrinsic charge manipulation for solution-processed organic photodetectors with high sensitivity and fast response. SmartMat, 2024, 5(6): e1310 DOI:10.1002/smm2.1310

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995; 270(5243): 1789-1791.

[2]

Halls JJM, Walsh CA, Greenham NC, et al. Efficient photodiodes from interpenetrating polymer networks. Nature. 1995; 376(6540): 498-500.

[3]

Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature. 2012; 492(7428): 234-238.

[4]

Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science. 2018; 361(6407): 1094-1098.

[5]

Shirota Y, Kageyama H. Charge carrier transporting molecular materials and their applications in devices. Chem Rev. 2007; 107(4): 953-1010.

[6]

Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Charge transport in organic semiconductors. Chem Rev. 2007; 107(4): 926-952.

[7]

Baeg KJ, Binda M, Natali D, Caironi M, Noh YY. Organic light detectors: photodiodes and phototransistors. Adv Mater. 2013; 25(31): 4267-4295.

[8]

García De Arquer FP, Armin A, Meredith P, Sargent EH. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater. 2017; 2(3): 16100.

[9]

Brabec CJ, Heeney M, McCulloch I, Nelson J. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem Soc Rev. 2011; 40(3): 1185-1199.

[10]

Ye L, Hu H, Ghasemi M, et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat Mater. 2018; 17(3): 253-260.

[11]

Müller-Buschbaum P. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv Mater. 2014; 26(46): 7692-7709.

[12]

Simone G, Dyson MJ, Meskers SCJ, Janssen RAJ, Gelinck GH. Organic photodetectors and their application in large area and flexible image sensors: the role of dark current. Adv Funct Mater. 2020; 30(20): 1904205.

[13]

Jansen-van Vuuren RD, Armin A, Pandey AK, Burn PL, Meredith P. Organic photodiodes: the future of full color detection and image sensing. Adv Mater. 2016; 28(24): 4766-4802.

[14]

Venkateshvaran D, Nikolka M, Sadhanala A, et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature. 2014; 515(7527): 384-388.

[15]

Fahlman M, Fabiano S, Gueskine V, Simon D, Berggren M, Crispin X. Interfaces in organic electronics. Nat Rev Mater. 2019; 4(10): 627-650.

[16]

Xu K, Sun H, Ruoko TP, et al. Ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Nat Mater. 2020; 19(7): 738-744.

[17]

Saracco E, Bouthinon B, Verilhac JM, et al. Work function tuning for high-performance solution-processed organic photodetectors with inverted structure. Adv Mater. 2013; 25(45): 6534-6538.

[18]

Sandberg OJ, Kaiser C, Zeiske S, et al. Mid-gap trap state-mediated dark current in organic photodiodes. Nat Photonics. 2023; 17(4): 368-374.

[19]

Armin A, Hambsch M, Kim IK, Burn PL, Meredith P, Namdas EB. Thick junction broadband organic photodiodes. Laser Photonics Rev. 2014; 8(6): 924-932.

[20]

Park S, Fukuda K, Wang M, et al. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv Mater. 2018; 30(34): 1-8.

[21]

Yan H, Lee P, Armstrong NR, et al. High-performance hole-transport layers for polymer light-emitting diodes. implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. J Am Chem Soc. 2005; 127(9): 3172-3183.

[22]

Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci USA. 2008; 105(8): 2783-2787.

[23]

Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater. 2012; 24(40): 5408-5427.

[24]

Chen L, Degenaar P, Bradley DDC. Polymer transfer printing: application to layer coating, pattern definition, and diode dark current blocking. Adv Mater. 2008; 20(9): 1679-1683.

[25]

Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science. 2009; 325(5948): 1665-1667.

[26]

Keivanidis PE, Khong SH, Ho PKH, Greenham NC, Friend RH. All-solution based device engineering of multilayer polymeric photodiodes: minimizing dark current. Appl Phys Lett. 2009; 94(17): 1-4.

[27]

Braun S, Salaneck WR, Fahlman M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater. 2009; 21(14-15): 1450-1472.

[28]

Ma H, Yip HL, Huang F, Jen AKY. Interface engineering for organic electronics. Adv Funct Mater. 2010; 20(9): 1371-1388.

[29]

Agostinelli T, Campoy-Quiles M. Blakesley JC, Speller R, Bradley DDC, Nelson J. A polymer/fullerene based photodetector with extremely low dark current for X-ray medical imaging applications. Appl Phys Lett. 2008; 93(20): 203305-203307.

[30]

Song Y, Zhong Z, He P, et al. Doping compensation enables high-detectivity infrared organic photodiodes for image sensing. Adv Mater. 2022; 34(29): 1-9.

[31]

Li Q, Guo Y, Liu Y. Exploration of near-infrared organic photodetectors. Chem Mater. 2019; 31(17): 6359-6379.

[32]

Yin B, Zhou X, Li Y, et al. Sensitive organic photodetectors with spectral response up to 1.3 µm using a quinoidal molecular semiconductor. Adv Mater. 2024; 36(19): 2310811.

[33]

Jacoutot P, Scaccabarozzi AD, Nodari D, et al. Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure. Sci Adv. 2023; 9(23): 1-10.

[34]

Fuentes-Hernandez C, Chou WF, Khan TM, et al. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science. 2020; 370(6517): 698-701.

[35]

Zhang L, Yang T, Shen L, et al. Toward highly sensitive polymer photodetectors by molecular engineering. Adv Mater. 2015; 27(41): 6496-6503.

[36]

Clifford JP, Johnston KW, Levina L, Sargent EH. Schottky barriers to colloidal quantum dot films. Appl Phys Lett. 2007; 91(25): 253117.

[37]

Green MA, Ho-Baillie A. Snaith HJ. The emergence of perovskite solar cells. Nat Photonics. 2014; 8(7): 506-514.

[38]

Zhang T, Wang F, Zhang P, et al. Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale. 2019; 11(6): 2871-2877.

[39]

Zhang T, Wu J, Zhang P, et al. High speed and stable solution-processed triple cation perovskite photodetectors. Adv Opt Mater. 2018; 6(13): 1-8.

[40]

Chen H, Wang H, Wu J, et al. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020; 13(8): 1997-2018.

[41]

Zimmerman JD, Diev VV, Hanson K, et al. Porphyrin-tape/C60 Organic photodetectors with 6.5% external quantum efficiency in the near infrared. Adv Mater. 2010; 22(25): 2780-2783.

[42]

Shen L, Fang Y, Wang D, et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv Mater. 2016; 28(48): 10794-10800.

[43]

Kung PK, Li MH, Lin PY, et al. A review of inorganic hole transport materials for perovskite solar cells. Adv Mater Interfaces. 2018; 5(22): 1-35.

[44]

Morteza Najarian A, Vafaie M, Johnston A, et al. Sub-millimetre light detection and ranging using perovskites. Nat Electronics. 2022; 5(8): 511-518.

[45]

De Jong MP, Van Ijzendoorn LJ, De Voigt MJA. Stability of the interface between indium-tin-oxide and poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett. 2000; 77(14): 2255-2257.

[46]

Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley DDC, Durrant JR. Degradation of organic solar cells due to air exposure. Sol Energy Mater Sol Cells. 2006; 90(20): 3520-3530.

[47]

Jørgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells. 2008; 92(7): 686-714.

[48]

MacKenzie RCI. OghmaNano-Organic and hybrid Material Nano Simulation tool. Accessed July 28, 2024. https://www.oghma-nano.com/

[49]

MacKenzie RCI, Shuttle CG, Chabinyc ML, Nelson J. Extracting microscopic device parameters from transient photocurrent measurements of P3HT:PCBM solar cells. Adv Energy Mater. 2012; 2(6): 662-669.

RIGHTS & PERMISSIONS

2024 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/