Imine-linked covalent organic frameworks: Recent advances in design, synthesis, and application

Tianhong Huang , Weifeng Zhang , Shuai Yang , Liping Wang , Gui Yu

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1309

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1309 DOI: 10.1002/smm2.1309
REVIEW

Imine-linked covalent organic frameworks: Recent advances in design, synthesis, and application

Author information +
History +
PDF

Abstract

Covalent organic frameworks (COFs) are new porous organic materials made of organic building blocks precisely constructed by strong covalent bonds. These new materials feature tunable structure, permanent porosity, high crystallinity, high specific surface area, and excellent stability, which enable COFs to be used in many applications. Linkage chemistry is a key factor in the synthesis of COFs and the control of their physicochemical properties. The boroxine, boronate-ester, imine, hydrazone, imide, and C=C linkages have been widely used in the construction of COFs. Among the various linkages, imine has become the most important linkage for the COFs due to the easy formation of imine linkage with structural and functional diversity. Over the past decade, imine-linked COFs have made significant progress and become an indispensable part of various applications of COFs. Here, we aim to provide a comprehensive review of the research progress in the field of imine-linked COFs, especially the advances in topology design and COF powder and film preparation, and their important advances in gas adsorption, catalysis, and optoelectronic devices. Finally, we discuss the challenges in the design, synthesis, and application of imine-linked COFs, and present our views on the further development of imine-linked COFs.

Keywords

chemical catalysis / covalent organic frameworks / donor-acceptor structure / electronic devices / imine linkages

Cite this article

Download citation ▾
Tianhong Huang, Weifeng Zhang, Shuai Yang, Liping Wang, Gui Yu. Imine-linked covalent organic frameworks: Recent advances in design, synthesis, and application. SmartMat, 2024, 5(6): e1309 DOI:10.1002/smm2.1309

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev. 2020; 120(16): 8814-8933.

[2]

Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005; 310(5751): 1166-1170.

[3]

Wan S, Guo J, Kim J, Ihee H, Jiang D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew Chem Int Ed. 2008; 47(46): 8826-8830.

[4]

Spitler EL, Dichtel WR. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem. 2010; 2(8): 672-677.

[5]

Qian C, Feng L, Teo WL, et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat Rev Chem. 2022; 6(12): 881-898.

[6]

Huang N, Chen X, Krishna R, Jiang D. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew Chem Int Ed. 2015; 54(10): 2986-2990.

[7]

Zeng Y, Zou R, Zhao Y. Covalent organic frameworks for CO2 capture. Adv Mater. 2016; 28(15): 2855-2873.

[8]

Han SS, Furukawa H, Yaghi OM, Goddard, III WA. Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc. 2008; 130(35): 11580-11581.

[9]

Fan H, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. J Am Chem Soc. 2018; 140(32): 10094-10098.

[10]

Fan H, Gu J, Meng H, Knebel A, Caro J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew Chem Int Ed. 2018; 57(15): 4083-4087.

[11]

Xu F, Xu H, Chen X, et al. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew Chem Int Ed. 2015; 54(23): 6814-6818.

[12]

Sun J, Klechikov A, Moise C, Prodana M, Enachescu M, Talyzin AV. A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage. Angew Chem Int Ed. 2018; 57(4): 1034-1038.

[13]

Bai L, Gao Q, Zhao Y. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J Mater Chem A. 2016; 4(37): 14106-14110.

[14]

Keller N, Bein T. Optoelectronic processes in covalent organic frameworks. Chem Soc Rev. 2021; 50(3): 1813-1845.

[15]

Vyas VS, Haase F, Stegbauer L, et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun. 2015; 6(1): 8508.

[16]

Lin G, Ding H, Chen R, Peng Z, Wang B, Wang C. 3D porphyrin-based covalent organic frameworks. J Am Chem Soc. 2017; 139(25): 8705-8709.

[17]

Pachfule P, Acharjya A, Roeser J, et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J Am Chem Soc. 2018; 140(4): 1423-1427.

[18]

Medina DD, Petrus ML, Jumabekov AN, et al. Directional charge-carrier transport in oriented benzodithiophene covalent organic framework thin films. ACS Nano. 2017; 11(3): 2706-2713.

[19]

Ascherl L, Evans EW, Hennemann M, et al. Solvatochromic covalent organic frameworks. Nat Commun. 2018; 9(1): 3802.

[20]

Ding H, Li J, Xie G, et al. An aiegen-based 3D covalent organic framework for white light-emitting diodes. Nat Commun. 2018; 9(1): 5234.

[21]

Jiang J, Zhao Y, Yaghi OM. Covalent chemistry beyond molecules. J Am Chem Soc. 2016; 138(10): 3255-3265.

[22]

Medina DD, Sick T, Bein T. Photoactive and conducting covalent organic frameworks. Adv Energy Mater. 2017; 7(16): 1700387-1700395.

[23]

Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc. 2009; 131(13): 4570-4571.

[24]

Li X, Cai S, Sun B, Yang C, Zhang J, Liu Y. Chemically robust covalent organic frameworks: progress and perspective. Matter. 2020; 3(5): 1507-1540.

[25]

Cusin L, Peng H, Ciesielski A, Samorì P. Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. Angew Chem Int Ed. 2021; 60(26): 14236-14250.

[26]

Kim S, Choi HC. Light-promoted synthesis of highly-conjugated crystalline covalent organic framework. Commun Chem. 2019; 2(1): 60-68.

[27]

Peng H, Raya J, Richard F, et al. Synthesis of robust MOFs@COFs porous hybrid materials via an aza-diels-alder reaction: towards high-performance supercapacitor materials. Angew Chem Int Ed. 2020; 59(44): 19602-19609.

[28]

Yusran Y, Fang Q, Valtchev V. Electroactive covalent organic frameworks: design, synthesis, and applications. Adv Mater. 2020; 32(44): e2002038.

[29]

Zhang Q, Dong S, Shao P, et al. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science. 2022; 378(6616): 181-186.

[30]

Zhao S, Jiang C, Fan J, et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat Mater. 2021; 20(11): 1551-1558.

[31]

Zhang W, Chen L, Dai S, et al. Reconstructed covalent organic frameworks. Nature. 2022; 604(7904): 72-79.

[32]

Yang J, Tu B, Zhang G, et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat Nanotechnol. 2022; 17(6): 622-628.

[33]

Guan X, Chen F, Fang Q, Qiu S. Design and applications of three dimensional covalent organic frameworks. Chem Soc Rev. 2020; 49(5): 1357-1384.

[34]

Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science. 2017; 355(6328): 923-931.

[35]

Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013; 42(2): 548-568.

[36]

Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev. 2012; 41(18): 6010-6022.

[37]

O’Keeffe M, Yaghi OM. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev. 2012; 112(2): 675-702.

[38]

Liu R, Tan KT, Gong Y, et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem Soc Rev. 2021; 50(1): 120-242.

[39]

Ding SY, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J Am Chem Soc. 2011; 133(49): 19816-19822.

[40]

Biswal BP, Valligatla S, Wang M, et al. Nonlinear optical switching in regioregular porphyrin covalent organic frameworks. Angew Chem Int Ed. 2019; 58(21): 6896-6900.

[41]

Li Y, Guo L, Lv Y, et al. Polymorphism of 2D imine covalent organic frameworks. Angew Chem Int Ed. 2021; 60(10): 5363-5369.

[42]

Zhao Y, Dai W, Peng Y, et al. A corrole-based covalent organic framework featuring desymmetrized topology. Angew Chem Int Ed. 2020; 59(11): 4354-4359.

[43]

Lyle SJ, Waller PJ, Yaghi OM. Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem. 2019; 1(2): 172-184.

[44]

Dalapati S, Addicoat M, Jin S, et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat Commun. 2015; 6(1): 7786.

[45]

Cai SL, He ZH, Li XL, et al. An unprecedented 2D covalent organic framework with an htb net topology. Chem Commun. 2019; 55(89): 13454-13457.

[46]

Jin Y, Hu Y, Zhang W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat Rev Chem. 2017; 1(7): 0056.

[47]

Zhu D, Alemany LB, Guo W, Verduzco R. Enhancement of crystallinity of imine-linked covalent organic frameworks via aldehyde modulators. Polym Chem. 2020; 11(27): 4464-4468.

[48]

Niu F, Shao Z-W, Zhu J-L. Tao L-M, Ding Y. Structural evolution of imine-linked covalent organic frameworks and their NH3 sensing performance. J Mater Chem C. 2021; 9(27): 8562-8569.

[49]

Martin-Illan JA, Suarez JA, Gomez-Herrero J. et al. Ultralarge free-standing imine-based covalent organic framework membranes fabricated via compression. Adv Sci. 2022; 9(7): e2104643.

[50]

Joshi T, Chen C, Li H, et al. Local electronic structure of molecular heterojunctions in a single-layer 2D covalent organic framework. Adv Mater. 2019; 31(3): e1805941.

[51]

He H, Fang X, Zhai D, et al. A porphyrin-based covalent organic framework for metal-free photocatalytic aerobic oxidative coupling of amines. Chem Eur J. 2021; 27(58): 14390-14395.

[52]

Hu J, Zanca F, McManus GJ, et al. Catalyst-enabled in situ linkage reduction in imine covalent organic frameworks. ACS Appl Mater Interfaces. 2021; 13(18): 21740-21747.

[53]

Wang P, Chen X, Jiang Q, et al. High-precision size recognition and separation in synthetic 1D nanochannels. Angew Chem Int Ed. 2019; 58(44): 15922-15927.

[54]

Xu S, Wang G, Biswal BP, et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angew Chem Int Ed. 2019; 58(3): 849-853.

[55]

Zhao H, Luo D, Xu H, et al. A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. J Mater Sci. 2022; 57(22): 9980-9991.

[56]

Hao Q, Li ZJ, Bai B, et al. A covalent organic framework film for three-state near-infrared electrochromism and a molecular logic gate. Angew Chem Int Ed. 2021; 60(22): 12498-12503.

[57]

Xing G, Zheng W, Gao L, et al. Nonplanar rhombus and kagome 2D covalent organic frameworks from distorted aromatics for electrical conduction. J Am Chem Soc. 2022; 144(11): 5042-5050.

[58]

Han XH, Gong K, Huang X, et al. Syntheses of covalent organic frameworks via a one-pot Suzuki coupling and Schiff’s base reaction for C2H4/C3H6 separation. Angew Chem Int Ed. 2022; 61(25): e202202912.

[59]

Xu SQ, Liang RR, Zhan TG, Qi QY, Zhao X. Construction of 2D covalent organic frameworks by taking advantage of the variable orientation of imine bonds. Chem Commun. 2017; 53(16): 2431-2434.

[60]

Zhang B, Mao H, Matheu R, et al. Reticular synthesis of multinary covalent organic frameworks. J Am Chem Soc. 2019; 141(29): 11420-11424.

[61]

Nguyen HL, Gropp C, Yaghi OM. Reticulating 1D ribbons into 2D covalent organic frameworks by imine and imide linkages. J Am Chem Soc. 2020; 142(6): 2771-2776.

[62]

Wang X, Han X, Cheng C, Kang X, Liu Y, Cui Y. 2D covalent organic frameworks with cem topology. J Am Chem Soc. 2022; 144(16): 7366-7373.

[63]

Colson JW, Dichtel WR. Rationally synthesized two-dimensional polymers. Nat Chem. 2013; 5(6): 453-465.

[64]

Ma T, Kapustin EA, Yin SX, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science. 2018; 361(6397): 48-52.

[65]

Evans AM, Parent LR, Flanders NC, et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science. 2018; 361(6397): 52-57.

[66]

Waller PJ, Gándara F, Yaghi OM. Chemistry of covalent organic frameworks. Acc Chem Res. 2015; 48(12): 3053-3063.

[67]

Gong C, Wang H, Sheng G, et al. Synthesis and visualization of entangled 3D covalent organic frameworks with high-valency stereoscopic molecular nodes for gas separation. Angew Chem Int Ed. 2022; 61(32): e202204899.

[68]

Chen F, Guan X, Li H, et al. Three-dimensional radical covalent organic frameworks as highly efficient and stable catalysts for selective oxidation of alcohols. Angew Chem Int Ed. 2021; 60(41): 22230-22235.

[69]

Gui B, Liu X, Cheng Y, et al. Tailoring the pore surface of 3D covalent organic frameworks via post-synthetic click chemistry. Angew Chem Int Ed. 2022; 61(2): e202113852.

[70]

Yu C, Li H, Wang Y, et al. Three-dimensional triptycene-functionalized covalent organic frameworks with hea net for hydrogen adsorption. Angew Chem Int Ed. 2022; 61(13): e202117101.

[71]

Mohammed AK, Al Khoori AA, Addicoat MA, et al. Cover picture: solvent-influenced fragmentations in free-standing three-dimensional covalent organic framework membranes for hydrophobicity switching. Angew Chem Int Ed. 2022; 61(13): e202200905.

[72]

El-Kaderi HM, Hunt JR, Mendoza-Cortés L, et al. Designed synthesis of 3D covalent organic frameworks. Science. 2007; 316(5822): 268-272.

[73]

Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem Int Ed. 2014; 53(11): 2878-2882.

[74]

Yan S, Guan X, Li H, et al. Three-dimensional Salphen-based covalent-organic frameworks as catalytic antioxidants. J Am Chem Soc. 2019; 141(7): 2920-2924.

[75]

Li H, Chang J, Li S, et al. Three-dimensional tetrathiafulvalene-based covalent organic frameworks for tunable electrical conductivity. J Am Chem Soc. 2019; 141(34): 13324-13329.

[76]

Liu X, Li J, Gui B, et al. A crystalline three-dimensional covalent organic framework with flexible building blocks. J Am Chem Soc. 2021; 143(4): 2123-2129.

[77]

Li H, Ding J, Guan X, et al. Three-dimensional large-pore covalent organic framework with stp topology. J Am Chem Soc. 2020; 142(31): 13334-13338.

[78]

Zhu Q, Wang X, Clowes R, et al. 3D cage COFs: a dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes. J Am Chem Soc. 2020; 142(39): 16842-16848.

[79]

Kang X, Han X, Yuan C, Cheng C, Liu Y, Cui Y. Reticular synthesis of tbo topology covalent organic frameworks. J Am Chem Soc. 2020; 142(38): 16346-16356.

[80]

Nguyen HL, Gropp C, Ma Y, Zhu C, Yaghi OM. 3D covalent organic frameworks selectively crystallized through conformational design. J Am Chem Soc. 2020; 142(48): 20335-20339.

[81]

Lu HS, Han WK, Yan X, Chen CJ, Niu T, Gu ZG. A 3D anionic metal covalent organic framework with soc topology built from an octahedral TiIV complex for photocatalytic reactions. Angew Chem Int Ed. 2021; 60(33): 17881-17886.

[82]

Xie Y, Li J, Lin C, et al. Tuning the topology of three-dimensional covalent organic frameworks via steric control: from pts to unprecedented ljh. J Am Chem Soc. 2021; 143(19): 7279-7284.

[83]

Li Z, Sheng L, Wang H, et al. Three-dimensional covalent organic framework with ceq topology. J Am Chem Soc. 2021; 143(1): 92-96.

[84]

Liu W, Gong L, Liu Z, et al. Conjugated three-dimensional high-connected covalent organic frameworks for lithium-sulfur batteries. J Am Chem Soc. 2022; 144(37): 17209-17218.

[85]

Chen H, Liu W, Laemont A, et al. A visible-light-harvesting covalent organic framework bearing single nickel sites as a highly efficient sulfur-carbon cross-coupling dual catalyst. Angew Chem Int Ed. 2021; 60(19): 10820-10827.

[86]

Li Z, Zhang Z, Nie R, et al. Construction of stable donor-acceptor type covalent organic frameworks as functional platform for effective perovskite solar cell enhancement. Adv Funct Mater. 2022; 32(21): 2112553-2112562.

[87]

Ma Y, Wang Y, Li H, et al. Three-dimensional chemically stable covalent organic frameworks through hydrophobic engineering. Angew Chem Int Ed. 2020; 59(44): 19633-19638.

[88]

Wang S, Da L, Hao J, et al. A fully conjugated 3D covalent organic framework exhibiting band-like transport with ultrahigh electron mobility. Angew Chem Int Ed. 2021; 60(17): 9321-9325.

[89]

Ebner C, Bodner T, Stelzer F, Wiesbrock F. One decade of microwave-assisted polymerizations: quo vadis? Macromol Rapid Commun. 2011; 32(3): 254-288.

[90]

Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev. 2015; 285(15): 11-23.

[91]

Campbell NL, Clowes R, Ritchie LK, Cooper AI. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater. 2009; 21(2): 204-206.

[92]

Wei H, Chai S, Hu N, Yang Z, Wei L, Wang L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem Commun. 2015; 51(61): 12178-12181.

[93]

Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc. 2013; 135(14): 5328-5331.

[94]

He J, Jiang X, Xu F, et al. Low power, low temperature and atmospheric pressure plasma-induced polymerization: facile synthesis and crystal regulation of covalent organic frameworks. Angew Chem Int Ed. 2021; 60(18): 9984-9989.

[95]

Zhao W, Yan P, Yang H, et al. Using sound to synthesize covalent organic frameworks in water. Nat Synth. 2022; 1(1): 87-95.

[96]

Das G, Balaji Shinde D, Kandambeth S, Biswal BP, Banerjee R. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonde. imine-linked covalent organic frameworks using liquid-assisted grinding. Chem Commun. 2014; 50(84): 12615-12618.

[97]

Kong X, Wu Z, Strømme M, Xu C. Ambient aqueous synthesis of imine-linked covalent organic frameworks (COFs) and fabrication of freestanding cellulose nanofiber@COF nanopapers. J Am Chem Soc. 2023; 146(1): 742-751.

[98]

Zhang J, Cheng C, Guan L, Jiang HL, Jin S. Rapid synthesis of covalent organic frameworks with a controlled morphology: an emulsion polymerization approach via the phase transfer catalysis mechanism. J Am Chem Soc. 2023; 145(40): 21974-21982.

[99]

Wu CJ, Li XY, Li TR, et al. Natural sunlight photocatalytic synthesis of benzoxazole-bridged covalent organic framework for photocatalysis. J Am Chem Soc. 2022; 144(41): 18750-18755.

[100]

Peng Y, Huang Y, Zhu Y, et al. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J Am Chem Soc. 2017; 139(25): 8698-8704.

[101]

Mu X, Zhan J, Feng X, Cai W, Song L, Hu Y. Exfoliation and modification of covalent organic frameworks by a green one-step strategy: enhanced thermal, mechanical and flame retardant performances of biopolymer nanocomposite film. Compos Part A. 2018; 110(4): 162-171.

[102]

Das G, Biswal BP, Kandambeth S, et al. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem Sci. 2015; 6(7): 3931-3939.

[103]

Bunck DN, Dichtel WR. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J Am Chem Soc. 2013; 135(40): 14952-14955.

[104]

Chandra S, Kandambeth S, Biswal BP, et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J Am Chem Soc. 2013; 135(47): 17853-17861.

[105]

Chen X, Li Y, Wang L, et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv Mater. 2019; 31(29): e1901640.

[106]

Mitra S, Kandambeth S, Biswal BP, et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J Am Chem Soc. 2016; 138(8): 2823-2828.

[107]

Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci. 2005; 102(30): 10451-10453.

[108]

Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017; 117(9): 6225-6331.

[109]

Wang S, Wang Q, Shao P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc. 2017; 139(12): 4258-4261.

[110]

Khayum MA, Kandambeth S, Mitra S, et al. Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew Chem Int Ed. 2016; 55(50): 15604-15608.

[111]

Haldar S, Roy K, Kushwaha R, Ogale S, Vaidhyanathan R. Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv Energy Mater. 2019; 9(48): 1902428.

[112]

Haldar S, Roy K, Nandi S, et al. High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv Energy Mater. 2018; 8(8): 1702170.

[113]

Liu X, Li H, Zhang W, et al. Magnetoresistance in organic spin valves based on acid-exfoliated 2D covalent organic frameworks thin films. Angew Chem. 2023; 135(44): e202308921.

[114]

Sasmal HS, Halder A, Kunjattu HS, et al. Covalent self-assembly in two dimensions: connecting covalent organic framework nanospheres into crystalline and porous thin films. J Am Chem Soc. 2019; 141(51): 20371-20379.

[115]

Yu F, Liu W, Li B, Tian D, Zuo JL, Zhang Q. Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew Chem Int Ed. 2019; 58(45): 16101-16104.

[116]

Wang H, Zhao J, Li Y, et al. Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano Micro Lett. 2022; 14(1): 216-230.

[117]

Hao Q, Zhao C, Sun B, et al. Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J Am Chem Soc. 2018; 140(38): 12152-12158.

[118]

Shinde DB, Sheng G, Li X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J Am Chem Soc. 2018; 140(43): 14342-14349.

[119]

Sahabudeen H, Qi H, Ballabio M, et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew Chem Int Ed. 2020; 59(15): 6028-6036.

[120]

Veber G, Diercks CS, Rogers C, et al. Reticular growth of graphene nanoribbon 2D covalent organic frameworks. Chem. 2020; 6(5): 1125-1133.

[121]

Li Y, Wu Q, Guo X, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat Commun. 2020; 11(1): 599.

[122]

Gadwal I, Sheng G, Thankamony RL, Liu Y, Li H, Lai Z. Synthesis of sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving nanofiltration. ACS Appl Mater Interfaces. 2018; 10(15): 12295-12299.

[123]

Xu X, Xiong R, Zhang Z, et al. Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm3 energy density for flexible in-plane micro-supercapacitors. Chem Eng J. 2022; 447(13): 137447-137455.

[124]

Chen C, Joshi T, Li H, et al. Local electronic structure of a single-layer porphyrin-containing covalent organic framework. ACS Nano. 2018; 12(1): 385-391.

[125]

Chen D, Huang S, Zhong L, et al. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv Funct Mater. 2019; 30(7): 1907717-1907726.

[126]

Huang T, Jiang H, Douglin JC, et al. Single solution-phase synthesis of charged covalent organic framework nanosheets with high volume yield. Angew Chem Int Ed. 2022; 62(4): e202209306.

[127]

Liu C, Park E, Jin Y, et al. Separation of arylenevinylene macrocycles with a surface-confined two-dimensional covalent organic framework. Angew Chem Int Ed. 2018; 57(29): 8984-8988.

[128]

Fan C, Wu H, Guan J, et al. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew Chem Int Ed. 2021; 60(33): 18051-18058.

[129]

Yang H, Yang L, Wang H, et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat Commun. 2019; 10(1): 2101.

[130]

Liu M, Liu Y, Dong J, et al. Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion. Nat Commun. 2022; 13(1): 1411.

[131]

Xiong Y, Liao Q, Huang Z, et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv Mater. 2020; 32(9): e1907242.

[132]

Wang H, Zhai Y, Li Y, et al. Covalent organic framework membranes for efficient separation of monovalent cations. Nat Commun. 2022; 13(1): 7123.

[133]

Daum JP, Ajnsztajn A, Iyengar SA, et al. Solutions are the problem: ordered two-dimensional covalent organic framework films by chemical vapor deposition. ACS Nano. 2023; 17(21): 21411-21419.

[134]

Park JH, Kwak MJ, Hwang C, et al. Self-assembling films of covalent organic frameworks enable long-term, efficient cycling of zinc-ion batteries. Adv Mater. 2021; 33(34): e2101726.

[135]

Li C, Li D, Zhang W, Li H, Yu G. Towards high-performance resistive switching behavior through embedding a D-A system into 2D imine-linked covalent organic frameworks. Angew Chem Int Ed. 2021; 60(52): 27135-27143.

[136]

Furukawa H, Yaghi OM. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc. 2009; 131(25): 8875-8883.

[137]

Ying Y, Peh SB, Yang H, Yang Z, Zhao D. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Adv Mater. 2022; 34(25): e2104946.

[138]

Gao C, Li J, Yin S, et al. Isostructural three-dimensional covalent organic frameworks. Angew Chem Int Ed. 2019; 58(29): 9770-9775.

[139]

Jin F, Lin E, Wang T, et al. Bottom-up synthesis of 8-connected three-dimensional covalent organic frameworks for highly efficient ethylene/ethane separation. J Am Chem Soc. 2022; 144(12): 5643-5652.

[140]

Li W, Huang X, Zeng T, et al. Thiazolo[5, 4-d]thiazole-based donor-acceptor covalent organic framework for sunlight-driven hydrogen evolution. Angew Chem Int Ed. 2021; 60(4): 1869-1874.

[141]

Ran L, Li Z, Ran B, et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J Am Chem Soc. 2022; 144(37): 17097-17109.

[142]

Chen W, Wang L, Mo D, et al. Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. Angew Chem Int Ed. 2020; 59(39): 16902-16909.

[143]

Yang J, Acharjya A, Ye MY, et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution. Angew Chem Int Ed. 2021; 60(36): 19797-19803.

[144]

Zhou T, Wang L, Huang X, et al. Peg-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nat Commun. 2021; 12(1): 3934.

[145]

Li Y, Yang L, He H, et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nat Commun. 2022; 13(1): 1355.

[146]

Pan Q, Abdellah M, Cao Y, et al. Ultrafast charge transfer dynamics in 2D covalent organic frameworks/re-complex hybrid photocatalyst. Nat Commun. 2022; 13(1): 845.

[147]

Li H, Cheng C, Yang Z, Wei J. Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat Commun. 2022; 13(1): 6466-6477.

[148]

Zhao W, Yan P, Li B, et al. Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production. J Am Chem Soc. 2022; 144(22): 9902-9909.

[149]

Gu Z, Wang J, Shan Z, et al. Modulating electronic structure of triazine-based covalent organic frameworks for photocatalytic organic transformations. J Mater Chem A. 2022; 10(34): 17624-17632.

[150]

Zhu HJ, Lu M, Wang YR, et al. Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat Commun. 2020; 11(1): 497-507.

[151]

Yang YL, Wang YR, Dong LZ, et al. A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction. Adv Mater. 2022; 34(44): e2206706.

[152]

Liu S, Qian T, Wang M, et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat Catal. 2021; 4(4): 322-331.

[153]

You Z, Wang B, Zhao Z, et al Metal-free carbon-based covalent organic frameworks with heteroatom-free units boost efficient oxygen reduction. Adv Mater. 2022; 35(7): e2209129.

[154]

Liu M, Liu S, Cui CX, et al. Construction of catalytic covalent organic frameworks with redox-active sites for the oxygen reduction and the oxygen evolution reaction. Angew Chem Int Ed. 2022; 61(49): e202213522.

[155]

Romero-Muñiz I, Mavrandonakis A, Albacete P, et al. Unveiling the local structure of palladium loaded into imine-linked layered covalent organic frameworks for cross-coupling catalysis. Angew Chem Int Ed. 2020; 59(31): 13013-13020.

[156]

Xu HS, Ding SY, An WK, Wu H, Wang W. Constructing crystalline covalent organic frameworks from chiral building blocks. J Am Chem Soc. 2016; 138(36): 11489-11492.

[157]

Xu H, Gao J, Jiang D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem. 2015; 7(11): 905-912.

[158]

Bhadra M, Kandambeth S, Sahoo MK, Addicoat M, Balaraman E, Banerjee R. Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins. J Am Chem Soc. 2019; 141(15): 6152-6156.

[159]

Li C, Yang J, Pachfule P, et al. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Nat Commun. 2020; 11(1): 4712.

[160]

Jiang Y, Zhang Z, Chen D, et al. Vertical growth of 2D covalent organic framework nanoplatelets on a macroporous scaffold for high-performance electrodes. Adv Mater. 2022; 34(49): e2204250.

[161]

Gao H, Zhu Q, Neale AR, et al. Integrated covalent organic framework/carbon nanotube composite as Li-ion positive electrode with ultra-high rate performance. Adv Energy Mater. 2021; 11(39): 2101880-2101891.

[162]

Wang Q, Tang K, Liao Q, et al. In situ deformation topology of COFs with shortened channels and high redox properties for Li–S batteries. Adv Funct Mater. 2022; 33(6): 22113-22122.

[163]

Peng H, Huang S, Tranca D, et al. Quantum capacitance through molecular infiltration of 7, 7, 8, 8-tetracyanoquinodimethane in metal-organic framework/covalent organic framework hybrids. ACS Nano. 2021; 15(11): 18580-18589.

[164]

An N, Guo Z, Guo C, et al. A novel COF/MXene film electrode with fast redox kinetics for high-performance flexible supercapacitor. Chem Eng J. 2023; 458(15): 141434-141446.

[165]

Halder A, Ghosh M, Khayum MA, et al. Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J Am Chem Soc. 2018; 140(35): 10941-10945.

[166]

Gao H, Neale AR, Zhu Q, et al. A pyrene-4, 5, 9, 10-tetraone-based covalent organic framework delivers high specific capacity as a Li-ion positive electrode. J Am Chem Soc. 2022; 144(21): 9434-9442.

[167]

Liu X, Jin Y, Wang H, et al. In situ growth of covalent organic framework nanosheets on graphene as the cathode for long-life high-capacity lithium-ion batteries. Adv Mater. 2022; 34(37): e2203605.

[168]

Yang X, Hu Y, Dunlap N, et al. A truxenone-based covalent organic framework as an all-solid-state lithium-ion battery cathode with high capacity. Angew Chem Int Ed. 2020; 59(46): 20385-20389.

[169]

Zhai L, Li G, Yang X, et al. 30 Li+-accommodating covalent organic frameworks as ultralong cyclable high-capacity Li-ion battery electrodes. Adv Funct Mater. 2021; 32(9): 2108798-2108806.

[170]

Wu M, Zhao Y, Zhao R, et al. Chemical design for both molecular and morphology optimization toward high-performance lithium-ion batteries cathode material based on covalent organic framework. Adv Funct Mater. 2021; 32(11): 2107703-2107711.

[171]

Hu B, Xu J, Fan Z, et al. Covalent organic framework based lithium-sulfur batteries: materials, interfaces, and solid-stat. electrolytes. Adv Energy Mater. 2023; 13(10): 2203540-2203563.

[172]

Jana M, Xu R, Cheng X-B, et al. Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy Environ Sci. 2020; 13(4): 1049-1075.

[173]

Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016; 45(20): 5605-5634.

[174]

Guo C, Liu M, Gao GK, et al. Anthraquinone covalent organic framework hollow tubes as binder microadditives in Li–S batteries. Angew Chem Int Ed. 2022; 61(3): e202113315.

[175]

Xu J, An S, Song X, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv Mater. 2021; 33(49): e2105178.

[176]

Chen S, Liang L, Li Y, et al. Brain capillary-inspired self-assembled covalent organic framework membrane for sodium-sulfur battery separator. Adv Energy Mater. 2023; 13(11): 2204334-2204342.

[177]

Wolfson ER, Schkeryantz L, Moscarello EM, et al. Alkynyl-based covalent organic frameworks as high-performance anode materials for potassium-ion batteries. ACS Appl Mater Interfaces. 2021; 13(35): 41628-41636.

[178]

Sun T, Xie J, Guo W, Li DS, Zhang Q. Covalent organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv Energy Mater. 2020; 10(19): 1904199.

[179]

Chen J, Zhang W, Wang L, Yu G. Recent research progress of organic small-molecule semiconductors with high electron mobilities. Adv Mater. 2023; 35(11): 2210772-2210797.

[180]

Bessinger D, Ascherl L, Auras F, Bein T. Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks. J Am Chem Soc. 2017; 139(34): 12035-12042.

[181]

Bag S, Sasmal HS, Chaudhary SP, et al. Covalent organic framework thin-film photodetectors from solution-processable porous nanospheres. J Am Chem Soc. 2023; 145(3): 1649-1659.

[182]

Tao Y, Liu H, Kong HY, et al. Electrochemical preparation of porous organic polymer films for high-performance memristors. Angew Chem Int Ed. 2022; 61(38): e2022057.

[183]

Liu J, Yang F, Cao L, et al. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv Mater. 2019; 31(28): e1902264.

[184]

Zhao Z, El-Khouly ME. Che Q, et al. Redox-active azulene-based 2D conjugated covalent organic framework for organic memristors. Angew Chem Int Ed. 2023; 62(7): e202217249.

[185]

Yu H, Zhou PK, Chen X. Intramolecular hydrogen bonding interactions induced enhancement in resistive switching memory performance for covalent organic framework-based memristors. Adv Funct Mater. 2023; 33(44): 2308336-2308345.

RIGHTS & PERMISSIONS

2024 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/