Core-shell structured P2-type layered cathode materials for long-life sodium-ion batteries

Huili Wang , Jianing Qi , Peixin Jiao , Zhonghan Wu , Ziheng Zhang , Na Jiang , Dongjie Shi , Geng Li , Zhenhua Yan , Kai Zhang , Jun Chen

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1306

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1306 DOI: 10.1002/smm2.1306
RESEARCH ARTICLE

Core-shell structured P2-type layered cathode materials for long-life sodium-ion batteries

Author information +
History +
PDF

Abstract

P2-type layered Ni–Mn-based oxides are vital cathode materials for sodium-ion batteries (SIBs) due to their high discharge capacity and working voltage. However, they suffer from the detrimental P2 → O2 phase transition induced by the O2––O2– electrostatic repulsion upon high-voltage charge, which leads to rapid capacity fade. Herein, we construct a P2-type Ni–Mn-based layered oxide cathode with a core-shell structure (labeled as NM–Mg–CS). The P2-Na0.67[Ni0.25Mn0.75]O2 (NM) core is enclosed by the robust P2-Na0.67[Ni0.21Mn0.71Mg0.08]O2 (NM–Mg) shell. The NM–Mg–CS exhibits the phase-transition-free character with mitigated volume change because the confinement effect of shell is conductive to inhibit the irreversible phase transition of the core material. As a result, it drives a high capacity retention of 81% after 1000 cycles at 5 C with an initial capacity of 78 mA h/g. And the full cell with the NM–Mg–CS cathode and hard carbon anode delivers stable capacities over 250 cycles. The successful construction of the core-shell structure in P2-type layered oxides sheds light on the development of high-capacity and long-life cathode materials for SIBs.

Keywords

cathode materials / core-shell structure / P2-type layered oxides / phase transition / sodium-ion batteries

Cite this article

Download citation ▾
Huili Wang, Jianing Qi, Peixin Jiao, Zhonghan Wu, Ziheng Zhang, Na Jiang, Dongjie Shi, Geng Li, Zhenhua Yan, Kai Zhang, Jun Chen. Core-shell structured P2-type layered cathode materials for long-life sodium-ion batteries. SmartMat, 2024, 5(6): e1306 DOI:10.1002/smm2.1306

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Usiskin R, Lu Y, Popovic J, et al. Fundamentals, status and promise of sodium-based batteries. Nat Rev Mater. 2021; 6(11): 1020-1035.

[2]

Tarascon J-M. Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule. 2020; 4(8): 1616-1620.

[3]

Kong L, Tang C, Peng H-J, Huang J-Q. Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat. 2020; 1(1): e1007.

[4]

Hwang J-Y, Myung S-T, Sun Y-K. Sodium-ion batteries: present and future. Chem Soc Rev. 2017; 46(12): 3529-3614.

[5]

Sun L, Wu Z, Hou M, et al. Unraveling and suppressing the voltage decay of high-capacity cathode materials for sodium-ion batteries. Energy Environ Sci. 2024; 17(1): 210-218.

[6]

Liu Z, Zheng F, Xiong W, Li X, Yuan A, Pang H. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat. 2021; 2(4): 488-518.

[7]

Lee D-H, Xu J, Meng Y-S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys. 2013; 15(9): 3304.

[8]

Chen M, Hua W, Xiao J, et al. Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries. J Am Chem Soc. 2021; 143(43): 18091-18102.

[9]

Zhou L, Zhang Z, Lv S, et al. SnO2 coating to stabilize Mn-based layered oxide cathode materials for sodium-ion batteries. Mater Today Energy. 2023; 38: 101450.

[10]

Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater. 2010; 10(1): 74-80.

[11]

Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater. 2012; 11(6): 512-517.

[12]

Rong X, Xiao D, Li Q, et al. Boosting reversible anionic redox reaction with Li/Cu dual honeycomb centers. eScience. 2023; 3(5): 100159.

[13]

Wang W, Zhang J, Li C, Kou X, Li B, Yu DYW. P2-Na2/3Ni2/3Te1/3O2 cathode for Na-ion batteries with high voltage and excellent stability. Energy Environ Mater. 2023; 6(2): e12314.

[14]

Zhang K, Kim D, Hu Z, et al. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries. Nat Commun. 2019; 10(1): 5203.

[15]

Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Physica. 1980; 99B(1-4): 81-85.

[16]

Wu Z, Ni Y, Tan S, et al. Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries. J Am Chem Soc. 2023; 145(17): 9596-9606.

[17]

Zhang J, Kim J-B, Zhang J, et al. Regulating Pseudo-Jahn-Teller effect and superstructure in layered cathode materials for reversible alkali-ion intercalation. J Am Chem Soc. 2022; 144(17): 7929-7938.

[18]

Jiang N, Sun L-R, Wang H-L. et al. Recent advances in P2-type Ni-Mn-based layered oxide cathodes for sodium-ion batteries. Chin J Eng. 2023; 45(7): 1071-1085.

[19]

Yang L, Chen R, Liu Z, et al. Configuration-dependent anionic redox in cathode materials. Battery Energy. 2022; 1(2): 20210015.

[20]

Qiao R, Wray L-A, Kim J-H. Pieczonka NPW, Harris SJ, Yang W. Direct experimental probe of the Ni(II)/Ni(III)/Ni(IV) redox evolution in LiNi0.5Mn1.5O4 electrodes. J Phys Chem C. 2015; 119(49): 27228-27233.

[21]

Wang P-F, Yao H-R, Liu X-Y. et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci Adv. 2018; 4(3): eaar6018.

[22]

Lu Z, Dahn J-R. In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3O2]. J Electrochem Soc. 2001; 148(11): A1225-A1229.

[23]

Wang K, Zhang Z, Cheng S, et al. Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion battery. eScience. 2022; 2(5): 529-536.

[24]

Sun Y, Guo S, Zhou H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ Sci. 2019; 12(3): 825-840.

[25]

Wang P-F, You Y, Yin Y-X, et al. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed. 2016; 55(26): 7445-7449.

[26]

Zhu Y-F, Xiao Y, Dou S-X, Kang YM, Chou S-L. Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience. 2021; 1(1): 13-27.

[27]

Wang H, Li L, Han W, et al. Tuning the oxygen anionic redox reversibility in Na0.67Mn0.8Fe0.1Co0.1O2 through Sn doping. Renewables. 2023; 1(2): 253-265.

[28]

Xiao J, Xiao Y, Li J, et al. Advanced nanoengineering strategies endow high-performance layered transition-metal oxide cathodes for sodium-ion batteries. SmartMat. 2023; 4(5): e1211.

[29]

Peng B, Chen Y-X, Wang F, et al. Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv Mater. 2021; 34(6): 213210.

[30]

Cheng Z, Zhao B, Guo Y-J, et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv Energy Mater. 2022; 12(14): 2103461.

[31]

Alvarado J, Ma C, Wang S, Nguyen K, Kodur M, Meng YS. Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl Mater Interfaces. 2017; 9(31): 26518-26530.

[32]

Hou Y, Li X, Liu W, et al. Ald derived Fe3+-doping toward high performance P2–Na0.75Ni0.2Co0.2Mn0.6O2 cathode material for sodium ion batteries. Mater Today Energy. 2019; 14(13): 100353.

[33]

George S-M. Atomic layer deposition: an overview. Chem Rev. 2010; 110(1): 111-131.

[34]

Wang H, Ding F, Wang Y, et al. In situ plastic-crystal-coated cathode toward high-performance Na-ion batteries. ACS Energy Lett. 2023; 8(3): 1434-1444.

[35]

Dang R, Chen M, Li Q, et al. Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: suppressing Na+/vacancy ordering and P2-O2 phase transition. ACS Appl Mater Interfaces. 2018; 11(1): 856-864.

[36]

Zhao C, Wang Q, Yao Z, et al. Rational design of layered oxide materials for sodium-ion batteries. Science. 2020; 370(6517): 708-711.

[37]

Wang Q-C, Meng J-K, Yue X-Y. et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc. 2018; 141(2): 840-848.

[38]

Xiao B, Liu X, Chen X, et al. Uncommon behavior of Li doping suppresses oxygen redox in P2-type manganese-rich sodium cathodes. Adv Mater. 2021; 33(52): 2107141.

[39]

Yang J, Liang X, Ryu H-H, Yoon CS, Sun Y-K. Ni-rich layered cathodes for lithium-ion batteries: from challenges to the future. Energy Storage Mater. 2023; 63(13): 102969.

[40]

Park G-T, Namkoong B, Kim S-B, Liu J, Yoon CS, Sun YK. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat Energy. 2022; 7(10): 946-954.

[41]

Lin F, Nordlund D, Markus I-M, Weng TC, Xin HL, Doeff MM. Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries. Energy Environ Sci. 2014; 7(9): 3077-3085.

[42]

Chen C, Han Z, Chen S, et al. Core-shell layered oxide cathode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2020; 12(6): 7144-7152.

[43]

Rathore D, Garayt M, Liu Y, et al. Preventing interdiffusion during synthesis of Ni-rich core-shell cathode materials. ACS Energy Lett. 2022; 7(7): 2189-2195.

[44]

Ryu H-H, Park N-Y, Noh T-C. et al. Microstrain alleviation in high-energy Ni-rich NCMA cathode for long battery life. ACS Energy Lett. 2020; 6(1): 216-223.

[45]

Toby B-H. Expgui, a graphical user interface for GSAS. J Appl Crystal. 2001; 34(2): 210-213.

[46]

Shen Q, Liu Y, Zhao X, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv Funct Mater. 2021; 31(51): 2106923.

RIGHTS & PERMISSIONS

2024 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/