Toward highly sensitive, selective, and stable palladium-based MEMS gas sensors for hydrogen energy security

Yuxin Zhao , Yanli Zhao

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1303

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1303 DOI: 10.1002/smm2.1303
PERSPECTIVE

Toward highly sensitive, selective, and stable palladium-based MEMS gas sensors for hydrogen energy security

Author information +
History +
PDF

Cite this article

Download citation ▾
Yuxin Zhao, Yanli Zhao. Toward highly sensitive, selective, and stable palladium-based MEMS gas sensors for hydrogen energy security. SmartMat, 2024, 5(6): e1303 DOI:10.1002/smm2.1303

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chauhan PS, Bhattacharya S. Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: a review. Int J Hydrogen Energy. 2019; 44(47): 26076-26099.

[2]

Guo M, Brewster II JT, Zhang H, Zhao Y, Zhao Y. Challenges and opportunities of chemiresistors based on microelectromechanical systems for chemical olfaction. ACS Nano. 2022; 16(11): 17778-17801.

[3]

Mirzaei A, Yousefi HR, Falsafi F, et al. An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int J Hydrogen Energy. 2019; 44(36): 20552-20571.

[4]

Lee J, Shim W, Noh J-S, Lee W. Design rules for nanogap-based hydrogen gas sensors. ChemPhysChem. 2012; 13(6): 1395-1403.

[5]

Jo M-S, Kim K-H, Choi K-W. et al. Wireless and linear hydrogen detection up to 4% with high sensitivity through phase-transition-inhibited Pd nanowires. ACS Nano. 2022; 16(8): 11957-11967.

[6]

Hughes RC, Schubert WK. Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J Appl Phys. 1992; 71(1): 542-544.

[7]

Rumiche F, Wang HH, Hu WS, Indacochea JE, Wang ML. Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection. Sens Actuators B Chem. 2008; 134(2): 869-877.

[8]

Kaltenpoth G, Schnabel P, Menke E, Walter EC, Grunze M, Penner RM. Multimode detection of hydrogen gas using palladium-covered silicon µ-channels. Anal Chem. 2003; 75(18): 4756-4765.

[9]

Xu T, Zach MP, Xiao ZL, et al. Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl Phys Lett. 2005; 86(20): 203104.

[10]

Ramanathan M, Skudlarek G, Wang HH, Darling SB. Crossover behavior in the hydrogen sensing mechanism for palladium ultrathin films. Nanotechnology. 2010; 21(12): 125501.

[11]

Favier F, Walter EC, Zach MP, Benter T, Penner RM. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science. 2001; 293(5538): 2227-2231.

[12]

Yang F, Taggart DK, Penner RM. Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture. Nano Lett. 2009; 9(5): 2177-2182.

[13]

Im Y, Lee C, Vasquez RP, et al. Investigation of a single Pd nanowire for use as a hydrogen sensor. Small. 2006; 2(3): 356-358.

[14]

Yang F, Taggart DK, Penner RM. Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas. Small. 2010; 6(13): 1422-1429.

[15]

Offermans P, Tong HD, van Rijn CJM, Merken P, Brongersma SH, Crego-Calama M. Ultralow-power hydrogen sensing with single palladium nanowires. Appl Phys Lett. 2009; 94(22): 223110.

[16]

Cho S-Y, Ahn H, Park K, Choi J, Kang H, Jung H-T. Ultrasmall grained Pd nanopattern H2 sensor. ACS Sens. 2018; 3(9): 1876-1883.

[17]

Lim MA, Kim DH, Park C-O, et al. A new route toward ultrasensitive, flexible chemical sensors: metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates. ACS Nano. 2012; 6(1): 598-608.

[18]

Kim D-H, Kim S-J, Shin H, et al. High-resolution, fast, and shape-conformabl. hydrogen sensor platform: polymer nanofiber yarn coupled with nanograined Pd@Pt. ACS Nano. 2019; 13(5): 6071-6082.

[19]

Jung W-B, Cho S-Y, Suh BL, et al. Polyelemental nanolithography via plasma ion bombardment: from fabrication to superior H2 sensing application. Adv Mater. 2019; 31(6): 1805343.

[20]

Koo W-T, Kim Y, Kim S, et al. Hydrogen sensors from composites of ultra-small bimetallic nanoparticles and porous ion-exchange polymers. Chem. 2020; 6(10): 2746-2758.

[21]

Li X, Liu Y, Hemminger JC, Penner RM. Catalytically activated palladium@platinum nanowires for accelerated hydrogen gas detection. ACS Nano. 2015; 9(3): 3215-3225.

[22]

Hassan K, Chung G-S. Fast and reversible hydrogen sensing properties of Pd-capped Mg ultra-thin films modified by hydrophobic alumina substrates. Sens Actuators B Chem. 2017; 242: 450-460.

[23]

Shim Y-S, Jang B, Suh JM, et al. Nanogap-controlled Pd coating for hydrogen sensitive switches and hydrogen sensors. Sens Actuators B Chem. 2018; 255(Part 2): 1841-1848.

[24]

Sun Y, Wang HH. High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles. Adv Mater. 2007; 19(19): 2818-2823.

[25]

Hong J, Lee S, Seo J, Pyo S, Kim J, Lee T. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl Mater Interfaces. 2015; 7(6): 3554-3561.

[26]

Baek D-H, Kim J. MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens Actuators B Chem. 2017; 250: 686-691.

[27]

Hao L, Liu H, Xu H, et al. Flexible Pd-WS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature. Sens Actuators B Chem. 2019; 283: 740-748.

[28]

Yang F, Kung S-C, Cheng M, Hemminger JC, Penner RM. Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano. 2010; 4(9): 5233-5244.

[29]

Baldi A, Narayan TC, Koh AL, Dionne JA. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat Mater. 2014; 13(12): 1143-1148.

[30]

Zeng X-Q, Wang Y-L, Deng H, et al. Networks of ultrasmall Pd/Cr nanowires as high performance hydrogen sensors. ACS Nano. 2011; 5(9): 7443-7452.

[31]

Fisser M, Badcock RA, Teal PD, Hunze A. Optimizing the sensitivity of palladium based hydrogen sensors. Sens Actuators B Chem. 2018; 259: 10-19.

[32]

Suleiman M, Jisrawi NM, Dankert O, et al. Phase transition and lattice expansion during hydrogen loading of nanometer sized palladium clusters. J Alloys Compd. 2003; 356-357: 644-648.

[33]

Dekura S, Kobayashi H, Kusada K, Kitagawa H. Hydrogen in palladium and storage properties of related nanomaterials: size, shape, alloying, and metal-organi. framework coating effects. ChemPhysChem. 2019; 20(10): 1158-1176.

[34]

Gao J, Zhang W-S, Zhang J-J. An explanation of hysteresis of electrical resistance–composition relationship in the Pd–H(D) and Pd alloy–H(D) systems measured by a gas phase method. Int J Hydrogen Energy. 2014; 39(36): 21328-21334.

[35]

Yin S, Cheng G, Chang T-H, Richter G, Zhu Y, Gao H. Hydrogen embrittlement in metallic nanowires. Nat Commun. 2019; 10(1): 2004.

[36]

Walter EC, Favier F, Penner RM. Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal Chem. 2002; 74(7): 1546-1553.

[37]

Li J, Ren G-K, Tian Y, et al. Boosting room temperature response of Pd-based hydrogen sensor by constructing in situ nanoparticles. Phys E. 2022; 144: 115464.

[38]

Darmadi I, Nugroho FAA, Langhammer C. High-performance nanostructured palladium-based hydrogen sensors—current limitations and strategies for their mitigation. ACS Sens. 2020; 5(11): 3306-3327.

[39]

Palmisano V, Weidner E, Boon-Brett L. et al. Selectivity and resistance to poisons of commercial hydrogen sensors. Int J Hydrogen Energy. 2015; 40(35): 11740-11747.

[40]

Clerbaux C, Edwards DP, Deeter M, et al. Carbon monoxide pollution from cities and urban areas observed by the Terra/MOPITT mission. Geophys Res Lett. 2008; 35(3): L03817.

[41]

Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. J Am Chem Soc. 2020; 142(15): 6872-6877.

[42]

Ngene P, Westerwaal RJ, Sachdeva S, Haije W, de Smet LCPM, Dam B. Polymer-induced surface modifications of Pd-based thin films leading to improved kinetics in hydrogen sensing and energy storage applications. Angew Chem, Int Ed. 2014; 53(45): 12081-12085.

[43]

Wang S, Li H, Huang H, Cao X, Chen X, Cao D. Porous organic polymers as a platform for sensing applications. Chem Soc Rev. 2022; 51(6): 2031-2080.

[44]

Liu W, Xu L, Sheng K, et al. A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. NPG Asia Mater. 2018; 10(4): 293-308.

[45]

Jang J-S, Winter LR, Kim C, Fortner JD, Elimelech M. Selective and sensitive environmental gas sensors enabled by membrane overlayers. Trends Chem. 2021; 3(7): 547-560.

[46]

Yao M-S, Tang W-X, Wang G-E. Nath B, Xu G. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv Mater. 2016; 28(26): 5229-5234.

[47]

Koo W-T, Qiao S, Ogata AF, et al. Accelerating palladium nanowire H2 sensors using engineered nanofiltration. ACS Nano. 2017; 11(9): 9276-9285.

[48]

Krishnaveni V, Esclance Dmello M, Sahoo P, et al. Palladium-nanoparticle-decorated covalent organic framework nanosheets for effective hydrogen gas sensors. ACS Appl Nano Mater. 2023; 6(13): 10960-10966.

[49]

Jo Y-M, Jo YK, Lee J-H, Jang HW, Hwang I-S, Yoo DJ. MOF-based chemiresistive gas sensors: toward new functionalities. Adv Mater. 2023; 35(43): 2206842.

[50]

Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-organic framework based gas sensors. Adv Sci. 2022; 9(6): 2104374.

[51]

Zhang T, Tan R, Shen W, et al. Inkjet-printed ZnO-based MEMS sensor array combined with feature selection algorithm for VOCs gas analysis. Sens Actuators B Chem. 2023; 382: 133555.

[52]

Sempels W, De Dier R, Mizuno H, Hofkens J, Vermant J. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nat Commun. 2013; 4(1): 1757.

[53]

Wu T-C, De Luca A, Zhong Q, et al. Inkjet-printed CMOS-integrated graphene–metal oxide sensors for breath analysis. npj 2D Mater Appl. 2019; 3(1): 42.

[54]

Majewski PW, Yager KG. Millisecond ordering of block copolymer films via photothermal gradients. ACS Nano. 2015; 9(4): 3896-3906.

[55]

Yong D, Jin HM, Kim SO, Kim JU. Laser-directed self-assembly of highly aligned lamellar and cylindrical block copolymer nanostructures: experiment and simulation. Macromolecules. 2018; 51(4): 1418-1426.

[56]

Majewski PW, Rahman A, Black CT, Yager KG. Arbitrary lattice symmetries via block copolymer nanomeshes. Nat Commun. 2015; 6(1): 7448.

[57]

Niu G, Wang F. A review of MEMS-based metal oxide semiconductors gas sensor in mainland China. J Micromech Microeng. 2022; 32(5): 054003.

[58]

Vasiliev AA, Sokolov AV, Legin AV, et al. Additive technologies for ceramic MEMS sensors. Procedia Eng. 2015; 120: 1087-1090.

[59]

Samotaev N, Oblov K, Gorshkova A, et al. Ceramic microhotplates for low power metal oxide gas sensors. Mater Today Proc. 2020; 30(Part 3): 448-451.

[60]

Zhao Y, Su Y, Guo M, et al. Schottky contacts regularized linear regression for signal inconsistency circumvent in resistive gas micro-nanosensors. Small Methods. 2021; 5(12): 2101194.

[61]

Demazy N, Cummins C, Aissou K, Fleury G. Non-native block copolymer thin film nanostructures derived from iterative self-assembly processes. Adv Mater Interfaces. 2020; 7(5): 1901747.

[62]

Bates CM, Maher MJ, Janes DW, Ellison CJ, Willson CG. Block copolymer lithography. Macromolecules. 2014; 47(1): 2-12.

[63]

Tang C, Lennon EM, Fredrickson GH, Kramer EJ, Hawker CJ. Evolution of block copolymer lithography to highly ordered square arrays. Science. 2008; 322(5900): 429-432.

[64]

Chen Y, Xiong S. Directed self-assembly of block copolymers for sub-10 nm fabrication. Int J Extreme Manufact. 2020; 2(3): 032006.

[65]

Koo W-T, Cho H-J, Kim D-H. et al. Chemiresistive hydrogen sensors: fundamentals, recent advances, and challenges. ACS Nano. 2020; 14(11): 14284-14322.

[66]

Jeong S-Y, Kim J-S, Lee J-H. Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv Mater. 2020; 32(51): 2002075.

[67]

van Lith J, Lassesson A, Brown SA, Schulze M, Partridge JG, Ayesh A. A hydrogen sensor based on tunneling between palladium clusters. Appl Phys Lett. 2007; 91(18): 181910.

[68]

Mott NF. The effect of electron interaction on variable-range hopping. Phil Mag A J Theor Exp Appl Phys. 1976; 34(4): 643-645.

[69]

Xie B, Mao P, Chen M, et al. A tunable palladium nanoparticle film-based strain sensor in a Mott variable-range hopping regime. Sens Actuator A Phys. 2018; 272: 161-169.

[70]

Sheng P, Klafter J. Hopping conductivity in granular disordered systems. Phys Rev B Condens Matter Mater Phys. 1983; 27(4): 2583-2586.

[71]

Yuksel N, Kose A, Fellah MF. A density functional theory study of molecular hydrogen adsorption on Mg site in OFF type zeolite cluster. Int J Hydrogen Energy. 2020; 45(60): 34983-34992.

[72]

Li B, Wang Z, Gao Z, et al. Self-standing covalent organic framework membranes for H2/CO2 separation. Adv Funct Mater. 2023; 33(16): 2300219.

[73]

Mahdavi-Shakib A, Whittaker TN, Yun TY, et al. The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts. Nat Catal. 2023; 6(8): 710-719.

[74]

Pavlišič A, Huš M, Prašnikar A, Likozar B. Multiscale modelling of CO2 reduction to methanol over industrial Cu/ZnO/Al2O3 heterogeneous catalyst: linking ab initio surface reaction kinetics with reactor fluid dynamics. J Clean Prod. 2020; 275: 122958.

[75]

Xiang Z, Cao D, Lan J, Wang W, Broom DP. Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks. Energy Environ Sci. 2010; 3(10): 1469-1487.

[76]

Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: from molecular simulations to machine learning. Coord Chem Rev. 2023; 484: 215112.

[77]

Daglar H, Keskin S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coord Chem Rev. 2020; 422: 213470.

[78]

Frenkel D, Smit B. Chapter 1 -Introduction. In: Frenkel D, Smit B, eds, Understanding Molecular Simulation. 2nd Edition. Academic Press; 2002: 1-6.

[79]

Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat Commun. 2021; 12(1): 38.

[80]

Smit B, Maesen TLM. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem Rev. 2008; 108(10): 4125-4184.

[81]

Velioglu S, Keskin S. Simulation of H2/CH4 mixture permeation through MOF membranes using non-equilibrium molecular dynamics. J Mater Chem A. 2019; 7(5): 2301-2314.

[82]

Qian Q, Asinger PA, Lee MJ, et al. MOF-based membranes for gas separations. Chem Rev. 2020; 120(16): 8161-8266.

[83]

Altundal OF, Haslak ZP, Keskin S. Combined GCMC, MD, and DFT approach for unlocking the performances of COFs for methane purification. Ind Eng Chem Res. 2021; 60(35): 12999-13012.

[84]

Lewis F. Hydrogen in palladium and palladium alloys. Int J Hydrogen Energy. 1996; 21(6): 461-464.

[85]

Ekborg-Tanner P, Erhart P. Hydrogen-driven surface segregation in Pd alloys from atomic-scale simulations. J Phys Chem C. 2021; 125(31): 17248-17260.

[86]

Nugroho FAA, Darmadi I, Cusinato L, et al. Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat Mater. 2019; 18(5): 489-495.

[87]

Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B. Covalent organic frameworks for membrane separation. Chem Soc Rev. 2019; 48(10): 2665-2681.

[88]

McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev. 2006; 35(8): 675-683.

[89]

Mahdi M. Ultra-low power MEMS micro-heater device. Microsyst Technol. 2021; 27(8): 2913-2917.

[90]

Ting Y-H, Park S-M, Liu C-C. et al. Plasma etch removal of poly(methyl methacrylate) in block copolymer lithography. J Vacuum Sci Technol B Microelect Nanometer Struct Process Measure Phenomena. 2008; 26(5): 1684-1689.

[91]

Chai J, Wang D, Fan X, Buriak JM. Assembly of aligned linear metallic patterns on silicon. Nat Nanotechnol. 2007; 2(8): 500-506.

[92]

Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Comput Mater. 2019; 5(1): 70.

[93]

Wang X, Li M, Xu P, Chen Y, Yu H, Li X. In situ TEM technique revealing the deactivation mechanism of bimetallic Pd–Ag nanoparticles in hydrogen sensors. Nano Lett. 2022; 22(7): 3157-3164.

[94]

Salmeron M, Eren B. High-pressure scanning tunneling microscopy. Chem Rev. 2021; 121(2): 962-1006.

[95]

Sharma A, Rout CS. Advances in understanding the gas sensing mechanisms by in situ and operando spectroscopy. J Mater Chem A. 2021; 9(34): 18175-18207.

[96]

Markeev PA, Najafidehaghani E, Gan Z, et al. Energy-level alignment at interfaces between transition-metal dichalcogenide monolayers and metal electrodes studied with Kelvin probe force microscopy. J Phys Chem C. 2021; 125(24): 13551-13559.

[97]

Ab Kadir R, Zhang W, Wang Y, et al. Anodized nanoporous WO3 Schottky contact structures for hydrogen and ethanol sensing. J Mater Chem A. 2015; 3(15): 7994-8001.

[98]

Saraiva LR, Riveros-McKay F. Mezzavilla M, et al. A transcriptomic Atlas of mammalian olfactory mucosae reveals an evolutionary influence on food odor detection in humans. Sci Adv. 2019; 5(7): eaax0396.

[99]

Firestein S. How the olfactory system makes sense of scents. Nature. 2001; 413(6852): 211-218.

[100]

Wang C, Chen Z, Chan CLJ, et al. Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat Electronics. 2024; 7(2): 157-167.

[101]

Imam N, Cleland TA. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat Machine Intelligence. 2020; 2(3): 181-191.

[102]

Fang C, Li H-Y, Li L, et al. Smart electronic nose enabled by an all-feature olfactory algorithm. Adv Intelligent Syst. 2022; 4(7): 2200074.

RIGHTS & PERMISSIONS

2024 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/