A novel Fe2O3@CeO2 heterojunction substrate with high surface-enhanced Raman scattering performance

Mingjian Zhang , Xiangyu Meng , Jian Yu , Yujiao Xie , Lexuan Liu , Yuening Wang , Xiaoyu Song , Guoxin Chen , Wenzhi Ren , Lin Qiu , Aiguo Wu , Xiaotian Wang , Jie Lin

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1301

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1301 DOI: 10.1002/smm2.1301
RESEARCH ARTICLE

A novel Fe2O3@CeO2 heterojunction substrate with high surface-enhanced Raman scattering performance

Author information +
History +
PDF

Abstract

Surface-enhanced Raman scattering (SERS) has been applied in many fields due to its advantages of fast and nondestructive detection. For semiconductors, the large-scale electron-hole pair separation of heterojunction is conducive to efficient charge transfer, which is a promising SERS substrate. Here, we designed a Fe2O3@CeO2 heterojunction substrate by hydrothermal method and explored its enhancement mechanism in detail. α-Fe2O3 is a promising semiconductor with a narrow bandgap, and CeO2 has adequate oxygen vacancies on the surface. Combing α-Fe2O3 and CeO2 into a shell-core structure, Fe2O3@CeO2 heterojunction presents higher SERS performance than pure Fe2O3 and CeO2 for methyl orange (MO) molecule with a limit of detection (LOD) of 5 × 10–8 mol/L. Under the excitation of 514 nm, Fe2O3 can produce an effective exciton resonance due to its narrow bandgap (2.01 eV). The oxygen vacancy in CeO2 acts as the active site to promote the adsorption of molecules and facilitate the photo-induced charge transfer (PICT) between the substrate and MO molecules. Therefore, the high SERS performance of Fe2O3@CeO2 heterojunction is achieved due to the coupling effect of excitons resonance, molecular resonance, and PICT resonance. It is found that Fe2O3@CeO2 has good SERS performance and stability to organic pesticides, especially metamitron (LOD = 5 × 10–9 mol/L). This work combines the advantages of Fe2O3 being prone to producing photoelectrons and abundant oxygen vacancies of CeO2, providing a reference for designing semiconductor SERS.

Keywords

Fe 2O 3@CeO 2 heterojunction / oxygen vacancy / photo-induced charge transfer / SERS

Cite this article

Download citation ▾
Mingjian Zhang, Xiangyu Meng, Jian Yu, Yujiao Xie, Lexuan Liu, Yuening Wang, Xiaoyu Song, Guoxin Chen, Wenzhi Ren, Lin Qiu, Aiguo Wu, Xiaotian Wang, Jie Lin. A novel Fe2O3@CeO2 heterojunction substrate with high surface-enhanced Raman scattering performance. SmartMat, 2024, 5(6): e1301 DOI:10.1002/smm2.1301

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blackie EJ, Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc. 2009; 131(40): 14466-14472.

[2]

Guarrotxena N, Bazan GC. Antitags: SERS-encoded nanoparticle assemblies that enable single-spot multiplex protein detection. Adv Mater. 2013; 26(12): 1941-1946.

[3]

Huang F, Ma G, Liu J, Lin J, Wang X, Guo L. High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application. Small. 2016; 12(39): 5442-5448.

[4]

Meng X, Qiu L, Xi G, Wang X, Guo L. Smart design of high-performance surface-enhanced Raman scattering substrates. SmartMat. 2021; 2(4): 466-487.

[5]

Krajczewski J, Kudelski A. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Front Chem. 2019; 7: 410.

[6]

Musumeci A, Gosztola D, Schiller T, et al. SERS of semiconducting nanoparticles (TiO2 hybrid composites). J Am Chem Soc. 2009; 131(17): 6040-6041.

[7]

Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett. 2005; 94(1): 017402.

[8]

Wang X, Ma G, Li A, et al. Composition-adjustable Ag–Au substitutional alloy microcages enabling tunable plasmon resonance for ultrasensitive SERS. Chem Sci. 2018; 9(16): 4009-4015.

[9]

Ding Q, Zhou Z, Wang H, et al Self-healable, recyclable, ultrastretchable, and high-performanc. NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMat. 2022; 4(1): e1141.

[10]

Yang S, Dai X, Stogin BB, Wong T-S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci USA. 2015; 113(2): 268-273.

[11]

Lu T, Li T, Shi D, et al. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbo. hollow nanospheres: interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat. 2021; 2(4): 591-602.

[12]

Khan J, Ahmad RTM, Tan J, et al Recent advances in 2D organic–inorganic heterostructures for electronics and optoelectronics. SmartMat. 2022; 4(2): e1156.

[13]

Li A, Lin J, Huang Z, Wang X, Guo L. Surface-enhanced raman spectroscopy on amorphous semiconducting rhodium sulfide microbowl substrates. iScience. 2018; 10: 1-10.

[14]

Wang X, Shi W, Jin Z, et al. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew Chem Int Ed. 2017; 56(33): 9851-9855.

[15]

Wang X, Shi W, Wang S, et al. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J Am Chem Soc. 2019; 141(14): 5856-5862.

[16]

Zheng G, Pastoriza-Santos I. Pérez-Juste J, Liz-Marzán LM. Plasmonic metal-organic frameworks. SmartMat. 2021; 2(4): 446-465.

[17]

Liu J, Lee C, Hu Y, et al. Recent progress in intermetallic nanocrystals for electrocatalysis: from binary to ternary to high-entropy intermetallics. SmartMat. 2023; 4(4): e1210.

[18]

Cong S, Yuan Y, Chen Z, et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun. 2015; 6(1): 7800.

[19]

Lin J, Shang Y, Li X, et al Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv Mater. 2016; 29(5): 1604797.

[20]

Li M, Fan X, Gao Y, Qiu T. W18O49/monolayer MoS2 heterojunction-enhanced Raman scattering. J Phys Chem Lett. 2019; 10(14): 4038-4044.

[21]

Xie S, Chen D, Gu C, et al. Molybdenum oxide/tungsten oxide nano-heterojunction with improved surface-enhanced Raman scattering performance. ACS Appl Mater Interfaces. 2021; 13(28): 33345-33353.

[22]

Xie S, Lai K, Gu C, et al. Fine fabrication of TiO2/MoOx nano-heterojunctions and investigating on the improved charge transfer for SERS application. Materials Today Nano. 2022; 18: 100179.

[23]

Cheng W, He J, Yao T, et al. Half-unit-cell α-Fe2O3 semiconductor nanosheets with intrinsic and robust ferromagnetism. J Am Chem Soc. 2014; 136(29): 10393-10398.

[24]

Mishra M, Chun D-M. α-Fe2O3 as a photocatalytic material: a review. Appl Catal A. 2015; 498: 126-141.

[25]

Shao P, Ren Z, Tian J, et al. Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3 nanosheets with highly exposed (110) facets: a superior photocatalyst for degradation of bisphenol S. Chem Eng J. 2017; 323: 64-73.

[26]

Sun T-W, Zhu Y-J, Qi C, Ding GJ, Chen F, Wu J. α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: microwave-assisted solvothermal synthesis and application in photocatalysis. J Colloid Interface Sci. 2016; 463: 107-117.

[27]

Wang J-C, Ren J, Yao H-C, et al. Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. J Hazard Mater. 2016; 311: 11-19.

[28]

Yamada K, Mukaihata N, Kawahara T, Tada H. Electrochemically assisted visible light photocatalysis in a heterosupramolecular system consisting of α-Fe2O3 and surfactant molecular assembly. Langmuir. 2007; 23(16): 8593-8596.

[29]

Bokare AD, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater. 2014; 275: 121-135.

[30]

Ghasemi E, Ziyadi H, Afshar AM, Sillanpää M. Iron oxide nanofibers: a new magnetic catalyst for azo dyes degradation in aqueous solution. Chem Eng J. 2015; 264: 146-151.

[31]

Marques RG, Ferrari-Lima AM. Slusarski-Santana V, Fernandes-Machado NRC. Ag2O and Fe2O3 modified oxides on the photocatalytic treatment of pulp and paper wastewater. J Environ Manage. 2017; 195: 242-248.

[32]

Satheesh R, Vignesh K, Suganthi A, Rajarajan M. Visible light responsive photocatalytic applications of transition metal (M=Cu, Ni and Co) doped α-Fe2O3 nanoparticles. J Environ Chem Eng. 2014; 2(4): 1956-1968.

[33]

Wang YL, Li YH, Wang XL, Hou Y, Chen AP, Yang HG. Effects of redox mediators on α-Fe2O3 exposed by {012} and {104} facets for photocatalytic water oxidation. Appl Catal B. 2017; 206: 216-220.

[34]

Cheng X-L, Jiang J-S, Jin C-Y. Lin CC, Zeng Y, Zhang QH. Cauliflower-like α-Fe2O3 microstructures: toluene–water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis. Chem Eng J. 2014; 236: 139-148.

[35]

Mehraj O, Pirzada BM, Mir NA, Khan MZ, Sabir S. A highly efficient visible-light-driven novel p-n junction Fe2O3/BiOI photocatalyst: surface decoration of BiOI nanosheets with Fe2O3 nanoparticles. Appl Surf Sci. 2016; 387: 642-651.

[36]

Ma R, Jahurul Islam M, Amaranatha Reddy D, Kim TK. Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern. Ceram Int. 2016; 42(16): 18495-18502.

[37]

Zhang Y-C, Li Z, Zhang L, et al. Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: experiment and DFT studies. Appl Catal B. 2018; 224: 101-108.

[38]

Inerbaev TM, Karakoti AS, Kuchibhatla SVNT, Kumar A, Masunov AE, Seal S. Aqueous medium induced optical transitions in cerium oxide nanoparticles. Phys Chem Chem Phys. 2015; 17(9): 6217-6221.

[39]

Hao Y, Li L, Zhang J, Luo H, Zhang X, Chen E. Multilayer and open structure of dendritic crosslinked CeO2-ZrO2 composite: enhanced photocatalytic degradation and water splitting performance. Int J Hydrogen Energy. 2017; 42(9): 5916-5929.

[40]

Liu Y, Zhu G, Gao J, et al. A novel CeO2/Bi4Ti3O12 composite heterojunction structure with an enhanced photocatalytic activity for bisphenol A. J Alloys Compd. 2016; 688: 487-496.

[41]

Tambat S, Umale S, Sontakke S. Photocatalytic degradation of Milling Yellow dye using sol–gel synthesized CeO2. Mater Res Bull. 2016; 76: 466-472.

[42]

Cargnello M, Montini T, Polizzi S, et al. Novel embedded Pd@CeO2 catalysts: a way to active and stable catalysts. Dalton Trans. 2010; 39(8): 2122-2127.

[43]

Wang F, Wang X, Liu D, et al. High-performance ZnCo2O4@CeO2 core@shell microspheres for catalytic CO oxidation. ACS Appl Mater Interfaces. 2014; 6(24): 22216-22223.

[44]

Zhang S, Wang H, Si H, et al. Novel core–shell (ϵ-MnO2/CeO2)@CeO2 composite catalyst with a synergistic effect for efficient formaldehyde oxidation. ACS Appl Mater Interfaces. 2020; 12(36): 40285-40295.

[45]

Sugimoto T, Wang Y, Itoh H, Muramatsu A. Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles. Colloids Surf A. 1998; 134(3): 265-279.

[46]

Zheng X, Huang M, You Y, Peng H, Wen J. Core-shell structured α-Fe2O3@CeO2 heterojunction for the enhanced visible-light photocatalytic activity. Mater Res Bull. 2018; 101: 20-28.

[47]

Zhang X, Si S, Zhang X, Wu W, Xiao X, Jiang C. Improved thermal stability of graphene-veiled noble metal nanoarrays as recyclable SERS substrates. ACS Appl Mater Interfaces. 2017; 9(46): 40726-40733.

[48]

Lou C, Pan H, Mei H, Lu G, Liu X, Zhang J. Low coordination states in Co3O4/NiOx heterostructures by atomic layer deposition for enhanced gas detection. Chem Eng J. 2022; 448: 137641.

[49]

Hussain I, Tanimu G, Ahmed S, Aniz CU, Alasiri H, Alhooshani K. A review of the indispensable role of oxygen vacancies for enhanced CO2 methanation activity over CeO2-based catalysts: uncovering, influencing, and tuning strategies. Int J Hydrogen Energy. 2023; 48(64): 24663-24696.

[50]

Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal. 2021; 11(15): 9618-9678.

[51]

Holgado JP, Alvarez R, Munuera G. Study of CeO2 XPS spectra by factor analysis: reduction of CeO2. Appl Surf Sci. 2000; 161(3-4): 301-315.

[52]

Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf Interface Anal. 2008; 40(3-4): 264-267.

[53]

Holgado JP, Munuera G, Espinós JP, González-Elipe AR. XPS study of oxidation processes of CeOx defective layers. Appl Surf Sci. 2000; 158(1-2): 164-171.

[54]

Yao X, He Y, Fu S, et al. Bimetallic MOF-derived CeO2/Co3O4 microflowers with synergy of oxygen vacancy and p-n heterojunction for high-performance n-butanol sensors. Mater Today Commun. 2022; 33: 104445.

[55]

Han XX, Ji W, Zhao B, Ozaki Y. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale. 2017; 9(15): 4847-4861.

[56]

Farajzadeh MA, Afshar Mogaddam MR, Rezaee Aghdam S, Nouri N, Bamorrowat M. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection. Food Chem. 2016; 212: 198-204.

[57]

Dissanayake NM, Arachchilage JS, Samuels TA, Obare SO. Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta. 2019; 200: 218-227.

[58]

Tankiewicz M, Fenik J, Biziuk M. Determination of organophosphorus and organonitrogen pesticides in water samples. Trends Anal Chem. 2010; 29(9): 1050-1063.

[59]

Pogačnik L, Franko M. Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor. Biosens Bioelectron. 2003; 18(1): 1-9.

[60]

Kaushal J, Khatri M, Arya SK. A treatise on Organophosphate pesticide pollution: current strategies and advancements in their environmental degradation and elimination. Ecotoxicol Environ Safety. 2021; 207: 111483.

RIGHTS & PERMISSIONS

2024 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/