Delivery and utilization of photo-energy for temperature control using a light-driven microfluidic control device at –40 °C

Jing Ge , Mengmeng Qin , Xu Zhang , Xiaoyu Yang , Ping Yang , Hui Wang , Gejun Liu , Xinlei Zhou , Bo Zhang , Zhiguo Qu , Yiyu Feng , Wei Feng

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1300

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1300 DOI: 10.1002/smm2.1300
RESEARCH ARTICLE

Delivery and utilization of photo-energy for temperature control using a light-driven microfluidic control device at –40 °C

Author information +
History +
PDF

Abstract

Low-temperature energy harvest, delivery, and utilization pose significant challenges for thermal management in extreme environments owing to heat loss during transport and difficulty in temperature control. Herein, we propose a light-driven photo-energy delivery device with a series of photo-responsive alkoxy-grafted azobenzene-based phase-change materials (a-g-Azo PCMs). These a-g-Azo PCMs store and release crystallization and isomerization enthalpies, reaching a high energy density of 380.76 J/g even at a low temperature of –63.92 °C. On this basis, we fabricate a novel three-branch light-driven microfluidic control device for distributed energy recycling that achieves light absorption, energy storage, controlled movement, and selective release cyclically over a wide range of temperatures. The a-g-Azo PCMs move remote-controllably in the microfluidic device at an average velocity of 0.11–0.53 cm/s owing to the asymmetric thermal expansion effect controlled by the temperature difference. During movement, the optically triggered heat release of a-g-Azo PCMs achieves a temperature difference of 6.6 °C even at a low temperature of –40 °C. These results provide a new technology for energy harvest, delivery, and utilization in low-temperature environments via a remote manipulator.

Keywords

a-g-Azo PCMs / high-energy storage / light-driven microfluidic control device / optically triggered heat release / ultralow temperature

Cite this article

Download citation ▾
Jing Ge, Mengmeng Qin, Xu Zhang, Xiaoyu Yang, Ping Yang, Hui Wang, Gejun Liu, Xinlei Zhou, Bo Zhang, Zhiguo Qu, Yiyu Feng, Wei Feng. Delivery and utilization of photo-energy for temperature control using a light-driven microfluidic control device at –40 °C. SmartMat, 2024, 5(6): e1300 DOI:10.1002/smm2.1300

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gerkman MA, Han GGD. Toward controlled thermal energy storage and release in organic phase change materials. Joule. 2020; 4(8): 1621-1625.

[2]

Gerkman MA, Gibson RSL, Calbo J, Shi Y, Fuchter MJ, Han GGD. Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0 °C. J Am Chem Soc. 2020; 142(19): 8688-8695.

[3]

Liu H, Tang J, Dong L, et al. Optically triggered synchronous heat release of phase-change enthalpy and photo-thermal energy in phase-change materials at low temperatures. Adv Funct Mater. 2021; 31(6): 2008496.

[4]

Zhou H, Xue C, Weis P, et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat Chem. 2017; 9(2): 145-151.

[5]

Usman A, Xiong F, Aftab W, Qin M, Zou R. Emerging solid-to-solid phase-change materials for thermal-energy harvesting, storage, and utilization. Adv Mater. 2022; 34(41): 2202457.

[6]

Alva G, Liu L, Huang X, Fang G. Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev. 2017; 68(1): 693-706.

[7]

Ge J, Wang Y, Wang H, Mao H, Li J, Shi H. Thermal properties and shape stabilization of epoxidized methoxy polyethylene glycol composite PCMs tailored by polydopamine-functionalized graphene oxide. Sol Energy Mater Sol Cells. 2020; 208: 110388.

[8]

Wang G, Tang Z, Gao Y, et al. Phase change thermal storage materials for interdisciplinary applications. Chem Rev. 2023; 123(11): 6953-7024.

[9]

Shen Z, Qin M, Xiong F, Zou R, Zhang J. Nanocellulose-based composite phase change materials for thermal energy storage: status and challenges. Energy Environ Sci. 2023; 16(3): 830-861.

[10]

Soo XYD, Muiruri JK, Yeo JCC, et al. Polyethylene glycol/polylactic acid block co-polymers as solid-solid phase change materials. SmartMat. 2023; 4(3): e1188.

[11]

Matuszek K, Kar M, Pringle JM, MacFarlane DR. Phase change materials for renewable energy storage at intermediate temperatures. Chem Rev. 2022; 123(1): 491-514.

[12]

Han GGD, Li H, Grossman JC. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat Commun. 2017; 8(1): 1446.

[13]

Zhang ZY, He Y, Wang Z, et al. Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J Am Chem Soc. 2020; 142(28): 12256-12264.

[14]

Shangguan Z, Sun W, Zhang ZY, et al. A rechargeable molecular solar thermal system below 0 °C. Chem Sci. 2022; 13(23): 6950-6958.

[15]

Goulet HA, Eisenreich F, Hecht S. Enlightening materials with photoswitches. Adv Mater. 2020; 32(20): 1905966.

[16]

Gonzalez A, Odaybat M, Le M, et al. Photocontrolled energy storage in azobispyrazoles with exceptionally large light penetration depths. J Am Chem Soc. 2022; 144(42): 19430-19436.

[17]

Dong L, Feng Y, Wang L, Feng W. Azobenzene-based solar thermal fuels: design, properties, and applications. Chem Soc Rev. 2018; 47(19): 7339-7368.

[18]

Broman SL, Petersen , Tortzen CG, Kadziola A, Kilså K, Nielsen MB. Arylethynyl derivatives of the dihydroazulene/vinylheptafulvene photo/thermoswitch: tuning the switching event. J Am Chem Soc. 2010; 132(26): 9165-9174.

[19]

Kanai Y, Srinivasan V, Meier SK, Vollhardt KPC, Grossman JC. Mechanism of thermal reversal of the (fulvalene) tetracarbonyldiruthenium photoisomerization: toward molecular solar-thermal energy storage. Angew Chem Int Ed. 2010; 49(47): 8926-8929.

[20]

Wang Z, Roffey A, Losantos R, et al. Macroscopic heat release in a molecular solar thermal energy storage system. Energy Environ Sci. 2019; 12(1): 187-193.

[21]

Wang Z, Erhart P, Li T, et al. Storing energy with molecular photoisomers. Joule. 2021; 5(12): 3116-3136.

[22]

Kunz A, Wegner HA. 1+1≥2? norbornadiene-azobenzene molecules as multistate photoswitches. ChemSystemsChem. 2021; 3(2): e2000035.

[23]

Chen M, Yao B, Kappl M, et al. Entangled azobenzene-containing polymers with photoinduced reversible solid-to-liquid transitions for healable and reprocessable photoactuators. Adv Funct Mater. 2020; 30(4): 1906752.

[24]

Fang D, Zhang ZY, Shangguan Z, He Y, Yu C, Li T. (Hetero)arylazo-1, 2, 3-triazoles: “clicked” photoswitches for versatile functionalization and electronic decoupling. J Am Chem Soc. 2021; 143(36): 14502-14510.

[25]

Shi CY, Zhang Q, Tian H, Qu DH, et al. Supramolecular adhesive materials from small-molecule self-assembly. SmartMat. 2020; 1(1): e1012.

[26]

Corruccini RJ, Gilbert EC. The heat of combustion of cis-and trans-azobenzene. J Am Chem Soc. 1939; 61(10): 2925-2927.

[27]

Shi Y, Gerkman MA, Qiu Q, Zhang S, Han GGD. Sunlight-activated phase change materials for controlled heat storage and triggered release. J Mater Chem A. 2021; 9(15): 9798-9808.

[28]

Nakatsuji S, Fujino M, Hasegawa S, et al. Azobenzene derivatives carrying a nitroxide radical. J Org Chem. 2007; 72(6): 2021-2029.

[29]

Ishiba K, Morikawa M, Chikara C, et al. Photoliquefiable ionic crystals: a phase crossover approach for photon energy storage materials with functional multiplicity. Angew Chem Int Ed. 2015; 54(5): 1532-1536.

[30]

Hu J, Huang S, Yu M, Yu H. Flexible solar thermal fuel devices: composites of fabric and a photoliquefiable azobenzene derivative. Adv Energy Mater. 2019; 9(37): 1901363.

[31]

Fu L, Yang J, Dong L, et al. Solar thermal storage and room-temperature fast release using a uniform flexible azobenzene-grafted polynorborene film enhanced by stretching. Macromolecules. 2019; 52(11): 4222-4231.

[32]

Yan Q, Zhang Y, Dang Y, Feng Y, Feng W. Solid-state high-power photo heat output of 4-((3, 5-dimethoxyaniline)-diazenyl)-2-imidazole/graphene film for thermally controllable dual data encoding/reading. Energy Storage Mater. 2020; 24: 662-669.

[33]

Elvira KS, i Solvas XC, Wootton RCR, Demello AJ. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem. 2013; 5(11): 905-915.

[34]

Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015; 87(1): 19-41.

[35]

Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A. 3D-printed microfluidic automation. Lab Chip. 2015; 15(8): 1934-1941.

[36]

Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev. 2010; 39(3): 1153-1182.

[37]

Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014; 507(7491): 181-189.

[38]

Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev. 2013; 113(4): 2550-2583.

[39]

Mawatari K, Kubota S, Xu Y, et al. Femtoliter droplet handling in nanofluidic channels: a laplace nanovalve. Anal Chem. 2012; 84(24): 10812-10816.

[40]

Lv J, Liu Y, Wei J, Chen E, Qin L, Yu Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016; 537(7619): 179-184.

[41]

Duford DA, Peng DD, Salin ED. Magnetically driven solid sample preparation for centrifugal microfluidic devices. Anal Chem. 2009; 81(11): 4581-4584.

[42]

Yu H. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J Mater Chem C. 2014; 2(17): 3047-3054.

[43]

Ichimura K, Oh SK, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface. Science. 2000; 288(5471): 1624-1626.

[44]

Yang D, Piech M, Bell NS, et al. Photon control of liquid motion on reversibly photoresponsive surfaces. Langmuir. 2007; 23(21): 10864-10872.

[45]

Grier DG. A revolution in optical manipulation. Nature. 2003; 424(6950): 810-816.

[46]

Diguet A, Guillermic RM, Magome N, et al. Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed. 2009; 48(49): 9281-9284.

[47]

Venancio-Marques A, Barbaud F, Baigl D. Microfluidic mixing triggered by an external LED illumination. J Am Chem Soc. 2013; 135(8): 3218-3223.

[48]

Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009; 13(2): 318-345.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

426

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/