Electrolyte-gated organic field-effect transistors with high operational stability and lifetime in practical electrolytes

Dimitrios Simatos , Mark Nikolka , Jérôme Charmet , Leszek J. Spalek , Zenon Toprakcioglu , Ian E. Jacobs , Ivan B. Dimov , Guillaume Schweicher , Mi Jung Lee , Carmen M. Fernández-Posada , Duncan J. Howe , Tuuli A. Hakala , Lianne W. Y. Roode , Vincenzo Pecunia , Thomas P. Sharp , Weimin Zhang , Maryam Alsufyani , Iain McCulloch , Tuomas P. J. Knowles , Henning Sirringhaus

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1291

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1291 DOI: 10.1002/smm2.1291
RESEARCH ARTICLE

Electrolyte-gated organic field-effect transistors with high operational stability and lifetime in practical electrolytes

Author information +
History +
PDF

Abstract

A key component of organic bioelectronics is electrolyte-gated organic field-effect transistors (EG-OFETs), which have recently been used as sensors to demonstrate label-free, single-molecule detection. However, these devices exhibit limited stability when operated in direct contact with aqueous electrolytes. Ultrahigh stability is demonstrated to be achievable through the utilization of a systematic multifactorial approach in this study. EG-OFETs with operational stability and lifetime several orders of magnitude higher than the state of the art have been fabricated by carefully controlling a set of intricate stability-limiting factors, including contamination and corrosion. The indacenodithiophene-co-benzothiadiazole (IDTBT) EG-OFETs exhibit operational stability that exceeds 900 min in a variety of widely used electrolytes, with an overall lifetime exceeding 2 months in ultrapure water and 1 month in various electrolytes. The devices were not affected by electrical stress-induced trap states and can remain stable even in voltage ranges where electrochemical doping occurs. To validate the applicability of our stabilized device for biosensing applications, the reliable detection of the protein lysozyme in ultrapure water and in a physiological sodium phosphate buffer solution for 1500 min was demonstrated. The results show that polymer-based EG-OFETs are a viable architecture not only for short-term but also for long-term biosensing applications.

Keywords

contaminants / galvanic corrosion / long-term sensing / organic electronics / organic field-effect transistors / water stability

Cite this article

Download citation ▾
Dimitrios Simatos, Mark Nikolka, Jérôme Charmet, Leszek J. Spalek, Zenon Toprakcioglu, Ian E. Jacobs, Ivan B. Dimov, Guillaume Schweicher, Mi Jung Lee, Carmen M. Fernández-Posada, Duncan J. Howe, Tuuli A. Hakala, Lianne W. Y. Roode, Vincenzo Pecunia, Thomas P. Sharp, Weimin Zhang, Maryam Alsufyani, Iain McCulloch, Tuomas P. J. Knowles, Henning Sirringhaus. Electrolyte-gated organic field-effect transistors with high operational stability and lifetime in practical electrolytes. SmartMat, 2024, 5(6): e1291 DOI:10.1002/smm2.1291

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kergoat L, Herlogsson L, Braga D, et al. A water-gate organic field-effect transistor. Adv Mater. 2010; 22(23): 2565-2569.

[2]

Cramer T, Campana A, Leonardi F, et al. Water-gated organic field effect transistors-opportunities for biochemical sensing and extracellular signal transduction. J Mater Chem B. 2013; 1(31): 3728-3741.

[3]

Herlogsson L, Crispin X, Robinson ND, et al. Low-voltage polymer field-effect transistors gated via a proton conductor. Adv Mater. 2007; 19(1): 97-101.

[4]

Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016; 60(1): 1-8.

[5]

Clarke GA, Hartse BX, Niaraki Asli AE, et al. Advancement of sensor integrated organ-on-chip devices. Sensors. 2021; 21(4): 1367.

[6]

Fuchs S, Johansson S, Tjell , Werr G, Mayr T, Tenje M. In-line analysis of organ-on-chip systems with sensors: integration, fabrication, challenges, and potential. ACS Biomater Sci Eng. 2021; 7(7): 2926-2948.

[7]

Zhu Y, Mandal K, Hernandez AL, et al. State of the art in integrated biosensors for organ-on-a-chip applications. Curr Opin Biomed Eng. 2021; 19: 100309.

[8]

Macchia E, Manoli K, Holzer B, et al. Single-molecule detection with a millimetre-sized transistor. Nat Commun. 2018; 9(1): 3223.

[9]

Nikolka M. A perspective on overcoming water-related stability challenges in molecular and hybrid semiconductors. MRS Commun. 2020; 10(1): 98-111.

[10]

Knopfmacher O, Hammock ML, Appleton AL, et al. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat Commun. 2014; 5(1): 2954.

[11]

Torricelli F, Adrahtas DZ, Bao Z, et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat Rev Methods Primers. 2021; 1(1): 66.

[12]

Zhang Q, Leonardi F, Casalini S, Temiño I, Mas-Torrent M. High performing solution-coated electrolyte-gated organic field-effect transistors for aqueous media operation. Sci Rep. 2016; 6(1): 39623.

[13]

Wang D, Noël V, Piro B. Electrolytic gated organic field-effect transistors for application in biosensors—a review. Electronics. 2016; 5(1): 9.

[14]

Picca RA, Manoli K, Macchia E, et al. A study on the stability of water-gated organic field-effect-transistors based on a commercial p-type polymer. Front Chem. 2019; 7: 667.

[15]

Nikolka M, Nasrallah I, Rose B, et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat Mater. 2017; 16(3): 356-362.

[16]

Schmoltner K. Environmentally Stable Organic Field-Effect Transistor Based Sensor Devices. Doctor of Philosophy. Graz University of Technology; 2014.

[17]

Schmoltner K, Kofler J, Klug A, List-Kratochvil EJW. Electrolyte-gated organic field-effect transistors for sensing in aqueous media. In: SPIE Proceedings, San Diego, United States, 18th September 2013. International Society for Optics and Photonics; 2013.

[18]

Kofler J, Schmoltner K, Klug A, List-Kratochvil EJW. Hydrogen ion-selective electrolyte-gated organic field-effect transistor for pH sensing. Appl Phys Lett. 2014; 104(19): 193305.

[19]

Thomas EM, Brady MA, Nakayama H, Popere BC, Segalman RA, Chabinyc ML. X-ray scattering reveals ion-induced microstructural changes during electrochemical gating of poly(3-hexylthiophene). Adv Funct Mater. 2018; 28(44): 1803687.

[20]

Guardado JO, Salleo A. Structural effects of gating poly(3-hexylthiophene) through an ionic liquid. Adv Funct Mater. 2017; 27(32): 1701791.

[21]

Robinson L, Isaksson J, Robinson ND, Berggren M. Electrochemical control of surface wettability of poly(3-alkylthiophenes). Surf Sci. 2006; 600(11): L148-L152.

[22]

Robinson L, Hentzell A, Robinson ND, Isaksson J, Berggren M. Electrochemical wettability switches gate aqueous liquids in microfluidic systems. Lab Chip. 2006; 6(10): 1277-1278.

[23]

Laiho A, Herlogsson L, Forchheimer R, Crispin X, Berggren M. Controlling the dimensionality of charge transport in organic thin-film transistors. Proc Natl Acad Sci USA. 2011; 108(37): 15069-15073.

[24]

Larsson O, Laiho A, Schmickler W, Berggren M, Crispin X. Controlling the dimensionality of charge transport in an organic electrochemical transistor by capacitive coupling. Adv Mater. 2011; 23(41): 4764-4769.

[25]

de Leeuw DM, Simenon MMJ, Brown AR, Einerhand REF. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Met. 1997; 87(1): 53-59.

[26]

Porrazzo R, Bellani S, Luzio A, Lanzarini E, Caironi M, Antognazza MR. Improving mobility and electrochemical stability of a water-gated polymer field-effect transistor. Org Electron. 2014; 15(9): 2126-2134.

[27]

Rainbolt JE, Koech PK, Polikarpov E, et al. Synthesis and characterization of p-type conductivity dopant 2-(3-(adamantan-1-yl)propyl)-3, 5, 6-trifluoro-7, 7, 8, 8-tetracyanoquinodimethane. J Mater Chem C. 2013; 1(9): 1876-1884.

[28]

Mello HJNPD, Dalgleish S, Ligorio G, Mulato M, List-Kratochvil EJW. Stability evaluation and gate-distance effects on electrolyte-gated organic field-effect transistor based on organic semiconductors. In: SPIE Proceedings, San Diego, United States, 10th October 2018. International Society for Optics and Photonics; 2018.

[29]

Luukkonen A, Tewari A, Björkström K, et al. Long-term electrical characteristics of a poly-3-hexylthiophene water-gated thin-film transistor. Org Electron. 2023; 120: 106844.

[30]

Wuytens R, Santermans S, Gupta M, et al. Two-regime drift in electrolytically gated FETs and bioFETs. In: 2020 IEEE International Reliability Physics Symposium (IRPS). IEEE; 2020: 1-5.

[31]

Zhang W, Smith J, Watkins SE, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J Am Chem Soc. 2010; 132(33): 11437-11439.

[32]

McCulloch I, Ashraf RS, Biniek L, et al. Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc Chem Res. 2012; 45(5): 714-722.

[33]

Venkateshvaran D, Nikolka M, Sadhanala A, et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature. 2014; 515(7527): 384-388.

[34]

Bronstein H, Leem DS, Hamilton R, et al. Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules. 2011; 44(17): 6649-6652.

[35]

Doumbia A, Tong J, Wilson RJ, Turner ML. Investigation of the performance of donor–acceptor conjugated polymers in electrolyte-gated organic field-effect transistors. Adv Electron Mater. 2021; 7(9): 2100071.

[36]

Vasilescu A, Wang Q, Li M, Boukherroub R, Szunerits S. Aptamer-based electrochemical sensing of lysozyme. Chemosensors. 2016; 4(2): 10.

[37]

Ohring M, Kasprzak L. Reliability and Failure of Electronic Materials and Devices. 2nd ed. Elsevier/Academic Press; 2015.

[38]

English AT, Turner PA. Stability of conductor metallizations in corrosive environments. J Electron Mater. 1972; 1(1): 1-15.

[39]

Holloway PH. Gold/chromium metallizations for electronic devices. Gold Bull. 1979; 12(3): 99-106.

[40]

Simatos D, Jacobs IE, Dobryden I, et al. Effects of processing-induced contamination on organic electronic devices. Small Methods. 2023; 7(11): 2300476.

[41]

Yumusak C, Sariciftci NS, Irimia-Vladu M. Purity of organic semiconductors as a key factor for the performance of organic electronic devices. Mater Chem Front. 2020; 4(12): 3678-3689.

[42]

Griggs S, Marks A, Meli D, et al. The effect of residual palladium on the performance of organic electrochemical transistors. Nat Commun. 2022; 13(1): 7964.

[43]

Nikiforov MP, Lai B, Chen W, et al. Detection and role of trace impurities in high-performance organic solar cells. Energy Environ Sci. 2013; 6(5): 1513-1520.

[44]

Jacobs IE, Wang F, Bedolla Valdez ZI, Ayala Oviedo AN, Bilsky DJ, Moulé AJ. Photoinduced degradation from trace 1, 8-diiodooctane in organic photovoltaics. J Mater Chem C. 2018; 6(2): 219-225.

[45]

Chang L, Jacobs IE, Augustine MP, Moulé AJ. Correlating dilute solvent interactions to morphology and OPV device performance. Org Electron. 2013; 14(10): 2431-2443.

[46]

McDonald GR, Hudson AL, Dunn SMJ, et al. Bioactive contaminants leach from disposable laboratory plasticware. Science. 2008; 322(5903): 917.

[47]

Jug U, Naumoska K, Metličar V, et al. Interference of oleamide with analytical and bioassay results. Sci Rep. 2020; 10(1): 2163.

[48]

Olivieri A, Degenhardt OS, McDonald GR, et al. On the disruption of biochemical and biological assays by chemicals leaching from disposable laboratory plasticware. Can J Physiol Pharmacol. 2012; 90(6): 697-703.

[49]

Pereiro I, Fomitcheva Khartchenko A, Petrini L, Kaigala GV. Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics. Lab Chip. 2019; 19(14): 2296-2314.

[50]

Squires TM, Messinger RJ, Manalis SR. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol. 2008; 26(4): 417-426.

[51]

Tahvildari R, Beamish E, Briggs K, et al. Manipulating electrical and fluidic access in integrated nanopore-microfluidic arrays using microvalves. Small. 2017; 13(10): 1602601.

[52]

Revie RW, ed. Uhlig’s Corrosion Handbook. 3rd ed. Wiley; 2011.

[53]

Baghalha M. Leaching of an oxide gold ore with chloride/hypochlorite solutions. Int J Miner Process. 2007; 82(4): 178-186.

[54]

Anderson JC. Applications of thin films in microelectronics. Thin Solid Films. 1972; 12(1): 1-15.

[55]

Nowicki RS, Nicolet MA. General aspects of barrier layers for very-large-scale integration applications II: practice. Thin Solid Films. 1982; 96(4): 317-326.

[56]

Todeschini M, Bastos da Silva Fanta A, Jensen F, Wagner JB, Han A. Influence of Ti and Cr adhesion layers on ultrathin au films. ACS Appl Mater Interfaces. 2017; 9(42): 37374-37385.

[57]

Schafer EA, Wu R, Meli D, et al. Sources and mechanism of degradation in p-type thiophene-based organic electrochemical transistors. ACS Appl Electron Mater. 2022; 4(4): 1391-1404.

[58]

Manoli K, Magliulo M, Mulla MY, et al. Printable bioelectronics to investigate functional biological interfaces. Angew Chem Int Ed. 2015; 54(43): 12562-12576.

[59]

Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 2008; 8(2): 591-595.

[60]

Steudle A, Pleiss J. Modelling of lysozyme binding to a cation exchange surface at atomic detail: the role of flexibility. Biophys J. 2011; 100(12): 3016-3024.

[61]

Syu YC, Hsu WE, Lin CT. Review—field-effect transistor biosensing: devices and clinical applications. ECS J Solid State Sci Technol. 2018; 7(7): Q3196-Q3207.

[62]

Macchia E, Tiwari A, Manoli K, et al. Label-free and selective single-molecule bioelectronic sensing with a millimeter-wide self-assembled monolayer of anti-immunoglobulins. Chem Mater. 2019; 31(17): 6476-6483.

[63]

Höger K, Mathes J, Frieß W. IgG1 adsorption to siliconized glass vials—influence of pH, ionic strength, and nonionic surfactants. J Pharm Sci. 2015; 104(1): 34-43.

[64]

Lee SH, Ruckenstein E. Adsorption of proteins onto polymeric surfaces of different hydrophilicities-a case study with bovine serum albumin. J Colloid Interface Sci. 1988; 125(2): 365-379.

[65]

Sirringhaus H, Simatos D, Nikolka M, et al. Research data supporting: “Electrolyte-gated organic field-effect transistors with high operational stability and lifetime in practical electrolytes”. Apollo -University of Cambridge Repository; 2024. https://doi.org/10.17863/CAM.106919

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

258

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/