Efforts of implementing ultra-flexible thin-film encapsulation for optoelectronic devices based on atomic layer deposition technology

Guanran Wang , Yu Duan

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1286

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1286 DOI: 10.1002/smm2.1286
REVIEW

Efforts of implementing ultra-flexible thin-film encapsulation for optoelectronic devices based on atomic layer deposition technology

Author information +
History +
PDF

Abstract

Flexible, wearable electronics are the future of electronics. Although organic photovoltaic devices have the advantages of high efficiency, low cost, and flexibility, they face the problem of failure due to the effects of water vapor in the environment. Therefore, the development of encapsulation films with outstanding mechanical and encapsulation properties is the key to realizing wearable devices. This review provides an overview of the development of thin-film encapsulation (TFE), the application of TFE in the field of optoelectronics, recent advances in the field of flexible encapsulation with TFE using atomic layer deposition technology, and an outlook on future trends in the field of flexible encapsulation with TFE using atomic layer deposition technology.

Keywords

atomic layer deposition / flexible thin-film encapsulation / molecular layer deposition / organic optoelectronic device

Cite this article

Download citation ▾
Guanran Wang, Yu Duan. Efforts of implementing ultra-flexible thin-film encapsulation for optoelectronic devices based on atomic layer deposition technology. SmartMat, 2024, 5(6): e1286 DOI:10.1002/smm2.1286

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeong EG, Kwon JH, Kang KS, Jeong SY, Choi KC. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. J Inf Disp. 2020; 21: 19-32.

[2]

Fukagawa H, Sasaki T, Tsuzuki T, et al. Long-lived flexible displays employing efficient andstableinverted organic light-emitting diodes. Adv Mater. 2018; 30: 1706768.

[3]

Choi M, Park YJ, Sharma BK, Bae SR, Kim SY, Ahn JH. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci Adv. 2018; 4: eaas8721.

[4]

Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater. 2018; 28: 1801834.

[5]

Lee SM, Kwon JH, Kwon S, Choi KC. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans Electron Devices. 2017; 64: 1922-1931.

[6]

Keum K, Kim JW, Hong SY, Son JG, Lee SS, Ha JS. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv Mater. 2020; 32: 2002180.

[7]

Singh E, Meyyappan M, Nalwa HS. Flexible graphene-based wearable gas and chemical sensors. ACS Appl Mater Interfaces. 2017; 9: 34544-34586.

[8]

Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014; 26: 5310-5336.

[9]

Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human–machine interaction systems: from design to application. Adv Funct Mater. 2021; 31: 2008936.

[10]

Wang P, Hu M, Wang H, et al. The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv Sci. 2020; 7: 2001116.

[11]

Kim W, Kwon S, Han YC, et al. Reliable actual fabric-based organic light-emitting diodes: toward a wearable display. Adv Electron Mater. 2016; 2: 1600220.

[12]

Jeon Y, Lee H, Kim H, Kwon JH. A review of various attempts on multi-functional encapsulation technologies for the reliability of OLEDs. Micromachines. 2022; 13: 1478.

[13]

Kim E, Kwon J, Kim C, Kim TS, Choi KC, Yoo S. Design of ultrathin OLEDs having oxide-based transparent electrodes and encapsulation with sub-mm bending radius. Org Electron. 2020; 82: 105704.

[14]

Keum C, Murawski C, Archer E, Kwon S, Mischok A, Gather MC. A substrateless, flexible, and water-resistan. organic light-emitting diode. Nat Commun. 2020; 11: 6250.

[15]

Wang J, Wang Z, Chen S, et al. Relieving the ion migration and increasing superoxide resistance with glutathione incorporation for efficient and stable perovskite solar cells. Adv Mater Interfaces. 2023; 10: 2202266.

[16]

Wang JT, Zhang X, Wang ZY, et al. Photocationic initiator induced synergy for high-properties perovskite solar cells. Adv Energy Sustain Res. 2023; 4: 2200123.

[17]

Green MA, Ho-Baillie A. Snaith HJ. The emergence of perovskite solar cells. Nat Photonics. 2014; 8: 506-514.

[18]

Seok SI, Grätzel M, Park NG. Methodologies toward highly efficient perovskite solar cells. Small. 2018; 14: 1704177.

[19]

Hong G, Gan X, Leonhardt C, et al. A brief history of OLEDs—emitter development and industry milestones. Adv Mater. 2021; 33: 2005630.

[20]

Huang Y, Hsiang EL, Deng MY, Wu ST. Mini-LED, micro-LED an. OLED displays: present status and future perspectives. Light: Sci Appl. 2020; 9: 105.

[21]

Park M, Oh S, Kim H, Jung D, Choi D, Park JS. Gas diffusion barrier characteristics of Al2O3/alucone films formed using trimethylaluminum, water and ethylene glycol for organic light emitting diode encapsulation. Thin Solid Films. 2013; 546: 153-156.

[22]

Sun FB, Duan Y, Yang YQ, et al. Fabrication of tunable [Al2O3:Alucone] thin-film encapsulations for top-emitting organic light-emitting diodes with high properties optical and barrier properties. Org Electron. 2014; 15: 2546-2552.

[23]

Chiang CJ, Winscom C, Bull S, Monkman A. Mechanical modeling of flexible OLED devices. Org Electron. 2009; 10: 1268-1274.

[24]

Thejo Kalyani N, Dhoble SJ. Organic light emitting diodes: energy saving lighting technology—a review. Renew Sustain Energy Rev. 2012; 16: 2696-2723.

[25]

Song J, Lee H, Jeong EG, Choi KC, Yoo S. Organic light-emitting diodes: pushing toward the limits and beyond. Adv Mater. 2020; 32: e1907539.

[26]

Matthews JCG, Pettitt G. Development of flexible, wearable antennas. 3rd European Conference on Antennas and Propagation. 2009; IEEE.

[27]

Choi S, Kwon S, Kim H, et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci Rep. 2017; 7: 6424.

[28]

Lee S, Han JH, Lee SH, Baek GH, Park JS. Review of organic/inorganic thin film encapsulation by atomic layer deposition for a flexible OLED display. JOM. 2019; 71: 197-211.

[29]

Savagatrup S, Printz AD, O’Connor TF, et al. Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energy Environ Sci. 2015; 8: 55-80.

[30]

Grossiord N, Kroon JM, Andriessen R, Blom PWM. Degradation mechanisms in organic photovoltaic devices. Org Electron. 2012; 13: 432-456.

[31]

Kim LH, Kim K, Park S, et al. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl Mater Interfaces. 2014; 6: 6731-6738.

[32]

Park MH, Kim JY, Han TH, Kim TS, Kim H, Lee TW. Flexible lamination encapsulation. Adv Mater. 2015; 27: 4308-4314.

[33]

Chwang AB, Rothman MA, Mao SY, et al. Thin film encapsulated flexible organic electroluminescent displays. Appl Phys Lett. 2003; 83: 413-415.

[34]

Kim HG, Lee JG, Kim SS. Self-assembled monolayers as a defect sealant of Al2O3 barrier layers grown by atomic layer deposition. Org Electron. 2018; 52: 98-102.

[35]

Lewis J. Material challenge for flexible organic devices. Mater Today. 2006; 9: 38-45.

[36]

Logothetidis S. Flexible organic electronic devices: materials, process and applications. Mater Sci Eng: B. 2008; 152: 96-104.

[37]

Steinmann V, Moro L. Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. J Mater Res. 2018; 33: 1925-1936.

[38]

Seo SW, Jung E, Lim C, Chae H, Cho SM. Water permeation through organic–inorganic multilayer thin films. Thin Solid Films. 2012; 520: 6690-6694.

[39]

Ghosh AP, Gerenser LJ, Jarman CM, Fornalik JE. Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett. 2005; 86: 223503.

[40]

Burrows PE, Bulovic V, Forrest SR, Sapochak LS, McCarty DM, Thompson ME. Reliability and degradation of organic light emitting devices. Appl Phys Lett. 1994; 65: 2922-2924.

[41]

Han YC, Jeong EG, Kim H, et al. Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis. RSC Adv. 2016; 6: 40835-40843.

[42]

Jeong EG, Han YC, Im HG, Bae BS, Choi KC. Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs. Org Electron. 2016; 33: 150-155.

[43]

Kim E, Han Y, Kim W, Choi KC, Im HG, Bae BS. Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials. Org Electron. 2013; 14: 1737-1743.

[44]

Hoffmann L, Theirich D, Pack S, et al. Gas diffusion barriers prepared by spatial atmospheric pressure plasma enhanced ALD. ACS Appl Mater Interfaces. 2017; 9: 4171-4176.

[45]

Wang L, Ruan C, Li M, et al. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J Mater Chem C. 2017; 5: 4017-4024.

[46]

Jeon Y, Choi HR, Lim M, et al. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects. Adv Mater Technol. 2018; 3: 1700391.

[47]

Ramanujam J, Bishop DM, Todorov TK, et al. Flexible CIGS, CdTe, and a-Si:H based thin film solar cells: a review. Prog Mater Sci. 2020; 110: 100619.

[48]

Park JS, Chae H, Chung HK, Lee SI. Thin film encapsulation for flexible AM-OLED: a review. Semicond Sci Technol. 2011; 26: 034001.

[49]

Yu D, Yang YQ, Chen Z, Tao Y, Liu YF. Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt Commun. 2016; 362: 43-49.

[50]

Meyer J, Schmidt H, Kowalsky W, Riedl T, Kahn A. The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl Phys Lett. 2010; 96: 243308.

[51]

Wu J, Fei F, Wei C, et al. Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers. RSC Adv. 2018; 8: 5721-5727.

[52]

Dameron AA, Davidson SD, Burton BB, Carcia PF, McLean RS, George SM. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J Phys Chem C. 2008; 112: 4573-4580.

[53]

Miikkulainen V, Leskelä M, Ritala M, Puurunen RL. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys. 2013; 113(2): 021301.

[54]

Leskelä M, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films. 2002; 409: 138-146.

[55]

George SM. Atomic layer deposition: an overview. Chem Rev. 2010; 110: 111-131.

[56]

Poodt P, Cameron DC, Dickey E, et al. Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition. J Vac Sci Techno A. 2011; 30: 010802.

[57]

Groner MD, Fabreguette FH, Elam JW, George SM. Low-temperature Al2O3 atomic layer deposition. Chem Mater. 2004; 16: 639-645.

[58]

Puurunen RL. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys. 2005; 97: 121301.

[59]

Putkonen M, Bosund M, Ylivaara OME, et al. Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors. Thin Solid Films. 2014; 558: 93-98.

[60]

Tian L, Ponton S, Benz M, et al. Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition. Surf Coat Technol. 2018; 347: 181-190.

[61]

Wang H, Liu Y, Liu H, et al. Effect of various oxidants on reaction mechanisms, self-limiting nature. and structural characteristics of Al2O3 films grown by atomic layer deposition. Adv Mater Interfaces. 2018; 5: 1701248.

[62]

Niinistö J, Kukli K, Tamm A, et al. Advanced cyclopentadienyl precursors for atomic layer deposition of ZrO2 thin films. J Mater Chem. 2008; 18: 3385-3390.

[63]

Fabreguette FH, Wind RA, George SM. Ultrahigh X-ray reflectivity from W∕Al2O3 multilayers fabricated using atomic layer deposition. Appl Phys Lett. 2006; 88(1): 013116.

[64]

Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today. 2014; 17: 236-246.

[65]

Keuning W, Van DWP, Lifka H, et al. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks. J Vac Sci Technol A. 2011; 30:01A131.

[66]

Bulusu A, Singh A, Wang CY, et al. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics. J Appl Phys. 2015; 118: 085501.

[67]

Yoon KH, Kim HS, Han KS, et al. Extremely high barrier performance of organic–inorganic nanolaminated thin films for organic light-emitting diodes. ACS Appl Mater Interfaces. 2017; 9: 5399-5408.

[68]

Park J, Yoon HR, Khan MA, Cho S, Sung MM. Selective infiltration in polymer hybrid thin films as a gas-encapsulation layer for stretchable electronics. ACS Appl Mater Interfaces. 2020; 12: 8817-8825.

[69]

Carcia PF, Mclean RS, Reilly MH, Groner MD, George SM. Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett. 2006; 89(3): 031915.

[70]

Meyer J, Görrn P, Bertram F, et al. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—a strategy for reliable encapsulation of organic electronics. Adv Mater. 2009; 21: 1845-1849.

[71]

Kwon JH, Jeon Y, Choi KC. Robust transparent and conductive gas diffusion multibarrier based on Mg-and Al-doped ZnO as indium tin oxide-free electrodes for organic electronics. ACS Appl Mater Interfaces. 2018; 10: 32387-32396.

[72]

Chang CY, Lee KT, Huang WK, Siao HY, Chang YC. High-performance, air-stable, low-temperature processe. semitransparent perovskite solar cells enabled by atomic layer deposition. Chem Mater. 2015; 27: 5122-5130.

[73]

Han YC, Kim E, Kim W, Im HG, Bae BS, Choi KC. A flexible moisture barrier comprised of a SiO2-embedded organic–inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs. Org Electron. 2013; 14: 1435-1440.

[74]

Duan Y, Wang X, Duan YH, et al. High-performance barrier using a dual-layer inorganic/organic hybrid thin-film encapsulation for organic light-emitting diodes. Org Electron. 2014; 15: 1936-1941.

[75]

Meyer J, Schneidenbach D, Winkler T, et al. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Appl Phys Lett. 2009; 94: 233305.

[76]

Li H, Ma Y, Huang Y. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Materials Horizons. 2021; 8: 383-400.

[77]

Behrendt A, Meyer J, van de Weijer P, Gahlmann T, Heiderhoff R, Riedl T. Stress management in thin-film gas-permeation barriers. ACS Appl Mater Interfaces. 2016; 8: 4056-4061.

[78]

Jen SH, Bertrand JA, George SM. Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition. J Appl Phys. 2011; 109: 084305.

[79]

Nam T, Park YJ, Lee H, et al. A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon. 2017; 116: 553-561.

[80]

Kwon JH, Jeon Y, Choi S, Park JW, Kim H, Choi KC. Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl Mater Interfaces. 2017; 9: 43983-43992.

[81]

Jeong EG, Kwon S, Han JH, Im HG, Bae BS, Choi KC. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale. 2017; 9: 6370-6379.

[82]

Kim SJ, Yong SH, Choi YJ, Hwangbo H, Yang WY, Chae H. Flexible Al2O3/plasma polymer multilayer moisture barrier films deposited by a spatial atomic layer deposition process. J Vac Sci Technol A. 2020; 38(2): 022418.

[83]

Seo SW, Jung E, Seo SJ, Chae H, Chung HK, Cho SM. Toward fully flexible multilayer moisture-barriers for organic light-emitting diodes. J Appl Phys. 2013; 114(14): 143505.

[84]

Park JS, Yong SH, Choi YJ, Chae H. Residual stress analysis and control of multilayer flexible moisture barrier films with SiNx and Al2O3 layers. AIP Adv. 2018; 8: 085101.

[85]

Chen Z, Wang Z, Zhou Y, et al. Stress-matched laminated thin film of SiOxNy/SiO2/SiOxNy for enhanced encapsulation of organic light-emitting devices. Opt Express. 2021; 29: 33077-33085.

[86]

Li Z, Wang Z, Chen Z, et al. Complete stress release in monolayer ALD-Al2O3 films based on mechanical equilibrium homeostasis to realize a bending radius of 1 mm. Soft Matter. 2022; 18: 4756-4766.

[87]

Chen Z, Wang Z, Wang J, et al. Analysis of the effect of graphene, metal, and metal oxide transparent electrodes on the performance of organic optoelectronic devices. Nanomaterials. 2023; 13: 25.

[88]

Kwon JH, Choi S, Jeon Y, Kim H, Chang KS, Choi KC. Functional design of dielectric–metal–dielectric-based thin-film encapsulation with heat transfer and flexibility for flexible displays. ACS Appl Mater Interfaces. 2017; 9: 27062-27072.

[89]

Yoon B, Seghete D, Cavanagh AS, George SM. Molecular layer deposition of hybrid organic–inorganic alucone polymer films using a three-step ABC reaction sequence. Chem Mater. 2009; 21: 5365-5374.

[90]

Philip A, Mai L, Ghiyasi R, Devi A, Karppinen M. Low-temperature ALD/MLD growth of alucone and zincone thin films from non-pyrophoric precursors. Dalton Trans. 2022; 51: 14508-14516.

[91]

Azpiroz R, Borraz M, González A, Mansilla C, Iglesias M, Pérez-Torrente JJ. Photocatalytic activity in the in-flow degradation of NO on porous TiO2-coated glasses from hybrid inorganic–organic thin films prepared by a combined ALD/MLD deposition strategy. Coatings. 2022; 12: 488.

[92]

Ghiyasi R, Milich M, Tomko J, Hopkins PE, Karppinen M. Organic-component dependent thermal conductivity reduction in ALD/MLD grown ZnO:organic superlattice thin films. Appl Phys Lett. 2021; 118(21): 211903.

[93]

Heiska J, Sorsa O, Kallio T, Karppinen M. Benzenedisulfonic acid as an ALD/MLD building block for crystalline metal-organic thin films. Chem–Eur J. 2021; 27: 8799-8803.

[94]

Sundberg P, Karppinen M. Organic and inorganic-organic thin film structures by molecular layer deposition: a review. Beilstein J Nanotechnol. 2014; 5: 1104-1136.

[95]

Wang X, Duan Y, Sun FB, et al. The improvement of thin film barrier performances of organic–inorganic hybrid nanolaminates employing a low-temperature MLD/ALD method. RSC Adv. 2014; 4: 43850-43856.

[96]

Dameron AA, Seghete D, Burton BB, et al. Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem Mater. 2008; 20: 3315-3326.

[97]

Multia J, Heiska J, Khayyami A, Karppinen M. Electrochemically active in situ crystalline lithium-organic thin films by ALD/MLD. ACS Appl Mater Interfaces. 2020; 12: 41557-41566.

[98]

Philip A, Niemelä JP, Tewari GC, et al. Flexible ϵ-Fe2O3-terephthalate thin-film magnets through ALD/MLD. ACS Appl Mater Interfaces. 2020; 12(19): 21912-21921.

[99]

George SM, Yoon B, Dameron AA. Surface chemistry for molecular layer deposition of organic and hybrid organic–inorganic polymers. Acc Chem Res. 2009; 42: 498-508.

[100]

Miller DC, Foster RR, Zhang Y, et al. The mechanical robustness of atomic-layer-and molecular-layer-deposited coatings on polymer substrates. J Appl Phys. 2009; 105: 093527.

[101]

Jen SH, Lee BH, George SM, McLean RS, Carcia PF. Critical tensile strain and water vapor transmission rate for nanolaminate films grown using Al2O3 atomic layer deposition and alucone molecular layer deposition. Appl Phys Lett. 2012; 101: 234103.

[102]

Chen Z, Wang H, Wang X, et al. Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes. Sci Rep. 2017; 7: 40061.

[103]

Wang H, Zhao Y, Wang Z, et al. Hermetic seal for perovskite solar cells: an improved plasma enhanced atomic layer deposition encapsulation. Nano Energy. 2020; 69: 104375.

[104]

Wang Z, Wang J, Li Z, et al. Crosslinking and densification by plasma-enhanced molecular layer deposition for hermetic seal of flexible perovskite solar cells. Nano Energy. 2023; 109: 108232.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/