Coral-inspired anti-biofilm therapeutic abutments as a new paradigm for prevention and treatment of peri-implant infection

Weiran Li , Zhike Huang , Xin Li , Mengqi Zhang , Qianqian Li , Shulu Luo , Yan Li , Dingcai Wu , Shuyi Wu

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1284

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1284 DOI: 10.1002/smm2.1284
RESEARCH ARTICLE

Coral-inspired anti-biofilm therapeutic abutments as a new paradigm for prevention and treatment of peri-implant infection

Author information +
History +
PDF

Abstract

Peri-implant infection is one of the major causes for implant failure. The transmucosal/transcutaneous surface of implant abutment is directly connected to the external environment and constantly exposed to a large number of bacteria. Establishing a robust anti-biofilm barrier at the abutment surface to minimize the risk of peri-implant infection is highly desirable in the field of dental implantology but remains challenging. Herein, a new class of therapeutic abutments featuring excellent anti-biofilm performance is developed, which is achieved by admirably integrating the outstanding self-cleaning property of polyethylene glycol and the long-lasting renewable antibacterial property of N-halamine. Through a comprehensive series of in vitro and in vivo experiments closely mimicking clinical conditions, therapeutic abutments have been successfully demonstrated to possess the ability of inhibiting biofilm accumulation to prevent peri-implant infection, as well as to achieve persistent and accurate administration to reverse early-stage peri-implant infection. Furthermore, the therapeutic abutment could be repeatedly used, representing the characteristic of sustainable medical devices. These findings indicate a new paradigm for the prevention and treatment of peri-implant infection.

Keywords

anti-biofilm / peri-implant infection / sustainable medical devices / therapeutic abutments

Cite this article

Download citation ▾
Weiran Li, Zhike Huang, Xin Li, Mengqi Zhang, Qianqian Li, Shulu Luo, Yan Li, Dingcai Wu, Shuyi Wu. Coral-inspired anti-biofilm therapeutic abutments as a new paradigm for prevention and treatment of peri-implant infection. SmartMat, 2024, 5(6): e1284 DOI:10.1002/smm2.1284

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Costa RC, Nagay BE, Bertolini M, et al. Fitting pieces into the puzzle: the impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci. 2021; 298: 102551.

[2]

Deng Z, Liang J, Fang N, Li X. Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. Int J Biiol Macromol. 2022; 208: 833-843.

[3]

Herrera D, Berglundh T, Schwarz F, et al. Prevention and treatment of peri-implant diseases: the EFP S3 level clinical practice guideline. J Clin Periodontol. 2023; 50: 4-76.

[4]

Salvi GE, Cosgarea R, Sculean A. Prevalence and mechanisms of peri-implant diseases. J Dent Res. 2017; 96: 31-37.

[5]

Wu YW, Zheng H, Li XF, et al. Changes of microbial community in treated peri-implantitis sites: an experimental study in beagle dogs. Chin J Dent Res. 2019; 22(3): 165-173.

[6]

Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018; 16(7): 397-409.

[7]

Lang NP, Salvi GE, Sculean A. Nonsurgical therapy for teeth and implants—when and why? Periodontol 2000. 2019; 79(1): 15-21.

[8]

Mombelli A. Maintenance therapy for teeth and implants. Periodontol 2000. 2019; 79(1): 190-199.

[9]

Roccuzzo A, Imber J-C, Salvi GE, Roccuzzo M. Peri-implantitis as the consequence of errors in implant therapy. Periodontol 2000. 2023; 92(1): 350-361.

[10]

Schliephake H. The role of systemic diseases and local conditions as risk factors. Periodontol 2000. 2022; 88(1): 36-51.

[11]

Schwarz F, Ramanauskaite A. It is all about peri-implant tissue health. Periodontol 2000. 2022; 88(1): 9-12.

[12]

Guo T, Gulati K, Arora H, Han P, Fournier B, Ivanovski S. Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomater. 2021; 124: 33-49.

[13]

Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: challenges and strategies. Bioact Mater. 2023; 27: 348-361.

[14]

Kim JC, Lee M, Yeo I-SL. Three interfaces of the dental implant system and their clinical effects on hard and soft tissues. Mater Horiz. 2022; 9(5): 1387-1411.

[15]

Zhou M, Wang J, Wang J, et al. Construction of a localized and long-acting CCN2 delivery system on percutaneous Ti implant surfaces for enhanced soft-tissue integration. ACS Appl Mater Interfaces. 2023; 15(19): 22864-22875.

[16]

Daubert DM, Weinstein BF. Biofilm as a risk factor in implant treatment. Periodontol 2000. 2019; 81(1): 29-40.

[17]

Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017; 15(12): 740-755.

[18]

Ivanovski S, Lee R. Comparison of peri-implant and periodontal marginal soft tissues in health and disease. Periodontol 2000. 2018; 76(1): 116-130.

[19]

Tian L, Yin Y, Jin H, et al. Novel marine antifouling coatings inspired by corals. Mater Today Chem. 2020; 17: 100294.

[20]

Jin H, Tian L, Bing W, Zhao J, Ren L. Bioinspired marine antifouling coatings: status, prospects, and future. Prog Mater Sci. 2022; 124: 100889.

[21]

Wu S, Xu J, Zou L, et al. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nat Commun. 2021; 12(1): 3303.

[22]

Wang Y-M, Kálosi A, Halahovets Y, et al. Grafting density and antifouling properties of poly[N-(2-hydroxypropyl) methacrylamide] brushes prepared by “grafting to” and “grafting from. Polym Chem. 2022; 13(25): 3815-3826.

[23]

Li K, Qi Y, Zhou Y, Sun X, Zhang Z. Microstructure and properties of poly(ethylene glycol)-segmented polyurethane antifouling coatings after immersion in seawater. Polymers. 2021; 13(4): 573.

[24]

Dong A, Wang YJ, Gao Y, Gao T, Gao G. Chemical insights into antibacterial N-halamines. Chem Rev. 2017; 117(6): 4806-4862.

[25]

Reynier T, Berahou M, Albaladejo P, Beloeil H. Moving towards green anaesthesia: are patient safety and environmentally friendly practices compatible? A focus on single-use devices. Anaesth Crit Care Pain Med. 2021; 40(4): 100907.

[26]

Lan S, Zhang J, Li J, Guo Y, Sheng X, Dong A. An N-halamine/graphene oxide-functionalized electrospun polymer membrane that inactivates bacteria on contact and by releasing active chlorine. Polymers. 2021; 13(16): 2784.

[27]

Todica M, Stefan R, Pop CV, Olar L. IR and Raman investigation of some poly(acrylic) acid gels in aqueous and neutralized state. Acta Phys Pol A. 2015; 128(1): 128-135.

[28]

Ji Y, Yang X, Ji Z, et al. DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega. 2020; 5(15): 8572-8578.

[29]

Chieng B, Ibrahim N, Yunus W, Hussein M. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers. 2013; 6(1): 93-104.

[30]

Bu D, Zhou Y, Yang C, et al. Preparation of quaternarized N-halamine-grafted graphene oxide nanocomposites and synergetic antibacterial properties. Chin Chem Lett. 2021; 32(11): 3509-3513.

[31]

Rutkunas V, Bukelskiene V, Sabaliauskas V, Balciunas E, Malinauskas M, Baltriukiene D. Assessment of human gingival fibroblast interaction with dental implant abutment materials. J Mater Sci Mater Med. 2015; 26(4): 169.

[32]

Odatsu T, Kuroshima S, Sato M, et al. Antibacterial properties of nano-Ag coating on healing abutment: an in vitro and clinical study. Antibiotics. 2020; 9(6): 347.

[33]

Persson GR, Renvert S. Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. 2014; 16(6): 783-793.

[34]

Heitz-Mayfield LJA, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 2000. 2010; 53(1): 167-181.

[35]

Zhang Y, He X, Ding M, et al. Antibacterial and biocompatible cross-linked waterborne polyurethanes containing gemini quaternary ammonium salts. Biomacromolecules. 2018; 19(2): 279-287.

[36]

Li W, Thian ES, Wang M, Wang Z, Ren L. Surface design for antibacterial materials: from fundamentals to advanced strategies. Adv Sci. 2021; 8(19): 2100368.

[37]

Huang L, Zhang L, Xiao S, et al. Bacteria killing and release of salt-responsive, regenerative, double-layered polyzwitterioni. brushes. Chem Eng J. 2018; 333: 1-10.

[38]

Jiao Y, Tay FR, Niu L, Chen J. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci. 2019; 11(3): 28.

[39]

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-1322.

[40]

Alves CH, Russi KL, Rocha NC, et al. Host-microbiome interactions regarding peri-implantitis and dental implant loss. J Transl Med. 2022; 20(1): 425.

[41]

Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005; 38(1): 135-187.

[42]

Yang K, Shi J, Wang L, et al. Bacterial anti-adhesion surface design: surface patterning, roughness and wettability: a review. J Mater Sci Technol. 2022; 99: 82-100.

[43]

Wuolo-Journey K, Binahmed S, Linna E, Romero-Vargas Castrillón S. Do graphene oxide nanostructured coatings mitigate bacterial adhesion? Environ Sci Nano. 2019; 6: 2863-2875.

[44]

Harimawan A, Rajasekar A, Ting Y-P. Bacteria attachment to surfaces: AFM force spectroscopy and physicochemical analyses. J Colloid Interface Sci. 2011; 364(1): 213-218.

[45]

Alam F, Kumar S, Varadarajan KM. Quantification of adhesion force of bacteria on the surface of biomaterials: techniques and assays. ACS Biomater Sci Eng. 2019; 5(5): 2093-2110.

[46]

Kimkes TEP, Heinemann M. How bacteria recognise and respond to surface contact. FEMS Microbiol Rev. 2020; 44(1): 106-122.

[47]

Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontol 2000. 2020; 83(1): 14-25.

[48]

Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987; 237(4822): 1588-1595.

[49]

Cao H, Qiao S, Qin H, Jandt KD. Antibacterial designs for implantable medical devices: evolutions and challenges. J Funct Biomater. 2022; 13(3): 86.

[50]

Walther JT, Illing B, Kimmerle-Müller E, Theurer A, Rupp F. Advanced co-culture model: soft tissue cell and bacteria interactions at the transgingival dental implant interface. Dent Mater. 2023; 39(5): 504-512.

[51]

Neumann Y, Bruns SA, Rohde M, Prajsnar TK, Foster SJ, Schmitz I. Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase. Autophagy. 2016; 12(11): 2069-2084.

[52]

Tuchscherr L, Medina E, Hussain M, et al. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med. 2011; 3(3): 129-141.

[53]

Liu Q, Zheng S, Ye K, et al. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials. Biomaterials. 2020; 263: 120327.

[54]

Fretwurst T, Garaicoa-Pazmino C. Nelson K, et al. Characterization of macrophages infiltrating peri-implantitis lesions. Clin Oral Implants Res. 2020; 31(3): 274-281.

[55]

Galarraga-Vinueza ME, Obreja K, Ramanauskaite A, et al. Macrophage polarization in peri-implantitis lesions. Clin Oral Investig. 2021; 25(4): 2335-2344.

[56]

Heitz-Mayfield LJA, Salvi GE. Peri-implant mucositis. J Clin Periodontol. 2018; 45(S20): S237-S245.

[57]

Renvert S, Persson GR, Pirih FQ, Camargo PM. Peri-implant health, peri-implant mucositis. and peri-implantitis. case definitions and diagnostic considerations. J Clin Periodontol. 2018; 45(S20): S278-S285.

[58]

Faot F, Nascimento GG, Bielemann AM, Campão TD, Leite FRM, Quirynen M. Can peri-implant crevicular fluid assist in the diagnosis of peri-implantitis? A systematic review and meta-analysis. J Periodontol. 2015; 86(5): 631-645.

[59]

Zani SR, Moss K, Shibli JA, et al. Peri-implant crevicular fluid biomarkers as discriminants of peri-implant health and disease. J Clin Periodontol. 2016; 43(10): 825-832.

[60]

Carinci F, Romanos GE, Scapoli L. Molecular tools for preventing and improving diagnosis of peri-implant diseases. Periodontol 2000. 2019; 81(1): 41-47.

[61]

Kapila YL. Oral health’s inextricable connection to systemic health: special populations bring to bear multimodal relationships and factors connecting periodontal disease to systemic diseases and conditions. Periodontol 2000. 2021; 87(1): 11-16.

[62]

Renvert S, Polyzois I. Treatment of pathologic peri-implant pockets. Periodontol 2000. 2018; 76(1): 180-190.

[63]

Caplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019; 93: 2-11.

[64]

Song C, Huang D, Zhao C, Zhao Y. Abalone-inspired adhesive and photo-responsive microparticle delivery systems for periodontal drug therapy. Adv Sci. 2022; 9(30): 2202829.

[65]

Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 2004; 10(S12): S122-S129.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/