Steep slope threshold switching field-effect transistors based on 2D heterostructure

Jingyu Mao , Tengyu Jin , Xiangyu Hou , Siew Lang Teo , Ming Lin , Jingsheng Chen , Wei Chen

SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1283

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (6) : e1283 DOI: 10.1002/smm2.1283
RESEARCH ARTICLE

Steep slope threshold switching field-effect transistors based on 2D heterostructure

Author information +
History +
PDF

Abstract

In dealing with the increasing power dissipation of electronic systems with increasing integration density, a field-effect transistor (FET) with steep switching slope that overcomes the thermionic limit is vital to achieve low-power operations. Here, we report two types of threshold switching (TS) FETs based on 2D Van der Waals heterostructures by virtue of the abrupt resistive switching of the hexagonal boron nitride (hBN) TS device. The common hBN dielectric layer functions as the switching medium for the TS device and the gate dielectric for the 2D FET enabling seamless integration of the hBN TS device and baseline 2D FET. TS FET in source configuration by connecting the TS device to the source terminal of the 2D FET offers an ultralow average subthreshold swing (SS) of 1.6 mV/dec over six decades of drain current at room temperature and suppressed leakage current. TS FET in gate configuration by connecting the TS device to the gate terminal of the 2D FET also exhibits steep switching slope with ultralow SS of 10.6 mV/dec. The proposed compact device structures integrating 2D FET and TS device provide a potential approach of monolithic integration toward next-generation low-power electronics.

Keywords

2D materials / field-effect transistor / low subthreshold swing / threshold switching / vdW heterostructure

Cite this article

Download citation ▾
Jingyu Mao, Tengyu Jin, Xiangyu Hou, Siew Lang Teo, Ming Lin, Jingsheng Chen, Wei Chen. Steep slope threshold switching field-effect transistors based on 2D heterostructure. SmartMat, 2024, 5(6): e1283 DOI:10.1002/smm2.1283

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 2011; 479(7373): 329-337.

[2]

Lundstrom MS, Alam MA. Moore’s law: the journey ahead. Science. 2022; 378(6621): 722-723.

[3]

Zhai Y, Feng Z, Zhou Y, Han ST. Energy-efficient transistors: suppressing the subthreshold swing below the physical limit. Mater Horiz. 2021; 8(6): 1601-1617.

[4]

Chang L, Frank DJ, Montoye RK, et al. Practical strategies for power-efficient computing technologies. Proc IEEE. 2010; 98(2): 215-236.

[5]

Sarkar D, Xie X, Liu W, et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature. 2015; 526(7571): 91-95.

[6]

Si M, Su CJ, Jiang C, et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat Nanotechnol. 2018; 13(1): 24-28.

[7]

Shukla N, Thathachary AV, Agrawal A, et al. A steep-slope transistor based on abrupt electronic phase transition. Nat Commun. 2015; 6(1): 7812.

[8]

Gao A, Zhang Z, Li L, et al. Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures. ACS Nano. 2020; 14(1): 434-441.

[9]

Choi H, Li J, Kang T, et al. A steep switching WSe2 impact ionization field-effect transistor. Nat Commun. 2022; 13(1): 6076.

[10]

Wang XF, Tian H, Liu Y, et al. Two-mode MoS2 filament transistor with extremely low subthreshold swing and record high on/off ratio. ACS Nano. 2019; 13(2):acsnano.8b08876.

[11]

Theis TN, Solomon PM. It’s time to reinvent the transistor! Science. 2010; 327(5973): 1600-1601.

[12]

Lim S, Yoo J, Song J, Woo J, Park J, Hwang H. CMOS compatible low-power volatile atomic switch for steep-slope FET devices. Appl Phys Lett. 2018; 113(3): 033501.

[13]

Song J, Woo J, Lee S, et al. Steep slope field-effect transistors with Ag/TiO2-based threshold switching device. IEEE Electron Device Lett. 2016; 37(7): 932-934.

[14]

Huang Q, Huang R, Pan Y, Tan S, Wang Y. Resistive-gate field-effect transistor: a novel steep-slope device based on a metal–insulator–metal–oxide gate stack. IEEE Electron Device Lett. 2014; 35(8): 877-879.

[15]

Song J, Woo J, Prakash A, Lee D, Hwang H. Threshold selector with high selectivity and steep slope for cross-point memory array. IEEE Electron Device Lett. 2015; 36(7): 681-683.

[16]

Hua Q, Gao G, Jiang C, et al. Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics. Nat Commun. 2020; 11(1): 6207.

[17]

Wang Z, Rao M, Midya R, et al. Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv Funct Mater. 2018; 28(6): 1704862.

[18]

Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nat Rev Mater. 2016; 1(11): 16052.

[19]

Huang YL, Chen W, Wee ATS. Two-dimensional magnetic transition metal chalcogenides. SmartMat. 2021; 2(2): 139-153.

[20]

Gao J, Zheng Y, Yu W, et al. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat. 2021; 2(1): 88-98.

[21]

Liu C, Chen H, Wang S, et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol. 2020; 15(7): 545-557.

[22]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011; 6(3): 147-150.

[23]

Hou X, Jin T, Zheng Y, Chen W. Atomic-scale interface engineering for two-dimensional materials based field-effect transistors. SmartMat. 2024; 5(4): e1236.

[24]

Shi Y, Liang X, Yuan B, et al. Electronic synapses made of layered two-dimensional materials. Nat Electron. 2018; 1(8): 458-465.

[25]

Pan C, Ji Y, Xiao N, et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv Funct Mater. 2017; 27(10): 1604811.

[26]

Liu Y, Weiss NO, Duan X, Cheng H-C, Huang Y, Duan X. Van der Waals heterostructures and devices. Nat Rev Mater. 2016; 1(9): 16042.

[27]

Lin J, Chen X, Duan X, et al. Ultra-steep-slope high-gain MoS2 transistors with atomic threshold-switching gate. Adv Sci. 2022; 9(8): 2104439.

[28]

Kim SG, Kim SH, Kim GS, Jeon H, Kim T, Yu HY. Steep-slope gate-connected atomic threshold switching field-effect transistor with MoS2 channel and its application to infrared detectable phototransistors. Adv Sci. 2021; 8(12): 2100208.

[29]

Midya R, Wang Z, Zhang J, et al. Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity. Adv Mater. 2017; 29(12): 1604457.

[30]

Knobloch T, Illarionov YY, Ducry F, et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat Electron. 2021; 4(2): 98-108.

[31]

Qian F, Chen R-S, Wang R, et al. A leaky integrate-and-fire neuron based on hexagonal boron nitride (h-BN) monocrystalline memristor. IEEE Trans Electron Devices. 2022; 69(11): 6049-6056.

[32]

Sun L, Zhang Y, Han G, et al. Self-selective van der Waals heterostructures for large scale memory array. Nat Commun. 2019; 10(1): 3161.

[33]

Vitale WA, Casu EA, Biswas A, et al. A steep-slope transistor combining phase-change and band-to-band-tunneling to achieve a sub-unity body factor. Sci Rep. 2017; 7(1): 355.

[34]

Aziz A, Shukla N, Datta S, Gupta SK. Steep switching hybrid phase transition FETs (Hyper-FET) for low power applications: a device-circuit co-design perspective–Part I. IEEE Trans Electron Devices. 2017; 64(3): 1350-1357.

[35]

Luo P, Liu C, Lin J, et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat Electronics. 2022; 5(12): 849-858.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/