Molecular dimer junctions forming: Role of disulfide bonds and electrode-compression-time

Xueyan Zhao , Yan Yan , Min Tan , Surong Zhang , Xiaona Xu , Zhibin Zhao , Maoning Wang , Xubin Zhang , Adila Adijiang , Zongliang Li , Elke Scheer , Dong Xiang

SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1280

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1280 DOI: 10.1002/smm2.1280
RESEARCH ARTICLE

Molecular dimer junctions forming: Role of disulfide bonds and electrode-compression-time

Author information +
History +
PDF

Abstract

Thanks to their excellent bond strength, phenyl-based molecules with thiol anchoring groups are extensively employed to form stable single-molecule junctions. However, two critical questions are still not answered which seriously hinder high-yield establishing reliable molecular functional devices: (1) Whether molecular dimer junctions will be formed, and if this is the case, whether the dimerization is caused by intermolecular disulfide bonds or π–π stacking of phenyl rings; (2) Upon a mechanical-compression force, is it possible that both anchoring groups of the molecule bond to the same electrode instead of bridging two opposite electrodes, which would drastically reduce the yield of the molecular junctions. Here, combining UV-Vis/Raman spectroscopy of bulk molecules and conductance/flicker-noise measurements of single molecules, we give compelling evidence that molecular dimers naturally form under ambient conditions, primarily via disulfide bonds rather than by π–π stacking. We further proposed a technique, named electrode-compression-hold-on (ECHO), and reveal that the two thiol groups of phenyl-backboned molecules will bond to the same electrode upon a compression force with a prolongated ECHO time. In contrast, the compression-time-dependent phenomenon is not observed for alkyl-backboned molecules. The underlying mechanism for these unprecedented observations is elucidated, shedding light on the yield of molecular junctions.

Keywords

disulfide bonds / electrode-compression-time / molecular dimer / single-molecule junction / STM-BJ

Cite this article

Download citation ▾
Xueyan Zhao, Yan Yan, Min Tan, Surong Zhang, Xiaona Xu, Zhibin Zhao, Maoning Wang, Xubin Zhang, Adila Adijiang, Zongliang Li, Elke Scheer, Dong Xiang. Molecular dimer junctions forming: Role of disulfide bonds and electrode-compression-time. SmartMat, 2024, 5(4): e1280 DOI:10.1002/smm2.1280

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stone I, Starr RL, Zang Y, et al. A single-molecule blueprint for synthesis. Nat Rev Chem. 2021; 5(10): 695-710.

[2]

Qu K, Duan P, Wang JY, et al. Capturing the rotation of one molecular crank by single-molecule conductance. Nano Lett. 2021; 21(22): 9729-9735.

[3]

Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Conductance of a molecular junction. Science. 1997; 278(5336): 252-254.

[4]

Xiang D, Wang X, Jia C, Lee T, Guo X. Molecular-scale electronics: from concept to function. Chem Rev. 2016; 116(7): 4318-4440.

[5]

Zhang W, Liu H, Lu J, et al. Atomic switches of metallic point contacts by plasmonic heating. Light Sci Appl. 2019; 8(1): 34.

[6]

Gehring P, Thijssen JM, van der Zant HSJ. Single-molecule quantum-transport phenomena in break junctions. Nat Rev Phys. 2019; 1(6): 381-396.

[7]

Mosso N, Sadeghi H, Gemma A, et al. Thermal transport through single-molecule junctions. Nano Lett. 2019; 19(11): 7614-7622.

[8]

Chen Y, Huang M, Zhou Q, et al. Regio-and steric effects on single molecule conductance of phenanthrenes. Nano Lett. 2021; 21(24): 10333-10340.

[9]

Shen P, Huang M, Qian J, et al. Achieving efficient multichannel conductance in through-space conjugated single-molecule parallel circuits. Angew Chem Int Ed. 2020; 59(11): 4581-4588.

[10]

Reznikova K, Hsu C, Schosser WM, et al. Substitution pattern controlled quantum interference in [2.2]paracyclophane-based single-molecule junctions. J Am Chem Soc. 2021; 143(34): 13944-13951.

[11]

Zhang S, Guo C, Ni L, et al. In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation. Nano Today. 2021; 39: 101226.

[12]

Bruot C, Hihath J, Tao N. Mechanically controlled molecular orbital alignment in single molecule junctions. Nat Nanotechnol. 2012; 7(1): 35-40.

[13]

Metzger RM. Unimolecular electronics. Chem Rev. 2015; 115(11): 5056-5115.

[14]

Wang M, Wang T, Ojambati OS, et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem. 2022; 6(10): 681-704.

[15]

Chen F, Li X, Hihath J, Huang Z, Tao N. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J Am Chem Soc. 2006; 128(49): 15874-15881.

[16]

Arroyo CR, Leary E, Castellanos-Gómez A, Rubio-Bollinger G. González MT, Agraït N. Influence of binding groups on molecular junction formation. J Am Chem Soc. 2011; 133(36): 14313-14319.

[17]

Su TA, Neupane M, Steigerwald ML, Venkataraman L, Nuckolls C. Chemical principles of single-molecule electronics. Nat Rev Mater. 2016; 1(3): 16002.

[18]

Matsumura M, Signor G, Matthews BW. Substantial increase of protein stability by multiple disulphide bonds. Nature. 1989; 342(6247): 291-293.

[19]

Frisenda R, Janssen VAEC, Grozema FC, van der Zant HSJ, Renaud N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat Chem. 2016; 8(12): 1099-1104.

[20]

Joo SW, Han SW, Kim K. Adsorption of 1, 4-benzenedithiol on gold and silver surfaces: surface-enhanced Raman scattering study. J Colloid Interface Sci. 2001; 240(2): 391-399.

[21]

Zheng J, Liu J, Zhuo Y, et al. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1, 4-dithiol junctions. Chem Sci. 2018; 9(22): 5033-5038.

[22]

Wu S, González MT, Huber R, et al. Molecular junctions based on aromatic coupling. Nat Nanotechnol. 2008; 3(9): 569-574.

[23]

Magyarkuti A, Adak O, Halbritter A, Venkataraman L. Electronic and mechanical characteristics of stacked dimer molecular junctions. Nanoscale. 2018; 10(7): 3362-3368.

[24]

Schneebeli ST, Kamenetska M, Cheng Z, et al. Single-molecule conductance through multiple π–π-stacked benzene rings determined with direct electrode-to-benzene ring connections. J Am Chem Soc. 2011; 133(7): 2136-2139.

[25]

Li R, Zhou Y, Ge W, et al. Strain of supramolecular interactions in single-stacking junctions. Angew Chem Int Ed. 2022; 61(27): e202200191.

[26]

Kim Y, Pietsch T, Erbe A, Belzig W, Scheer E. Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 2011; 11(9): 3734-3738.

[27]

Yoshida S, Taninaka A, Sugita Y, Katayama T, Takeuchi O, Shigekawa H. Revealing the conformational dynamics in a single-molecule junction by site-and angle-resolved dynamic probe method. ACS Nano. 2016; 10(12): 11211-11218.

[28]

Häkkinen H. The gold–sulfur interface at the nanoscale. Nat Chem. 2012; 4(6): 443-455.

[29]

Strange M, Lopez-Acevedo O. Häkkinen H. Oligomeric gold–thiolate units define the properties of the molecular junction between gold and benzene dithiols. J Phys Chem Lett. 2010; 1(10): 1528-1532.

[30]

Wang L, Gong ZL, Li SY, et al. Molecular conductance through a quadruple-hydrogen-bond-bridged supramolecular junction. Angew Chem Int Ed. 2016; 55(40): 12393-12397.

[31]

Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 Rev. A.03. Gaussian Inc., Wallingford, CT; 2016.

[32]

Krishnakumar V, Keresztury G, Sundius T, Ramasamy R. Simulation of IR and Raman spectra based on scaled DFT force fields: a case study of 2-(methylthio)benzonitrile, with emphasis on band assignment. J Mol Struct. 2004; 702(1-3): 9-21.

[33]

Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML. Dependence of single-molecule junction conductance on molecular conformation. Nature. 2006; 442(7105): 904-907.

[34]

Quek SY, Venkataraman L, Choi HJ, Louie SG, Hybertsen MS, Neaton JB. Amine-gold linked single-molecule circuits: experiment and theory. Nano Lett. 2007; 7(11): 3477-3482.

[35]

Zhao X, Zhang X, Yin K, et al. In situ adjustable nanogaps and in-plane break junctions. Small Methods. 2023; 7(4): 2201427.

[36]

Hunter CA, Sanders JKM. The nature of π–π interactions. J Am Chem Soc. 1990; 112(14): 5525-5534.

[37]

Tang Y, Zhou Y, Zhou D, et al. Electric field-induced assembly in single-stacking terphenyl junctions. J Am Chem Soc. 2020; 142(45): 19101-19109.

[38]

Wang L, Li SY, Yuan JH, Gu JY, Wang D, Wan LJ. Electron transport characteristics of the dimeric 1, 4-benzenedithiol junction. Chem Asian J. 2014; 9(8): 2077-2082.

[39]

Burns JA, Butler JC, Moran J, Whitesides GM. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J Org Chem. 1991; 56(8): 2648-2650.

[40]

Adak O, Rosenthal E, Meisner J, et al. Flicker noise as a probe of electronic interaction at metal–single molecule interfaces. Nano Lett. 2015; 15(6): 4143-4149.

[41]

Tang C, Chen L, Zhang L, et al. Multicenter-bond-based quantum interference in charge transport through single-molecule carborane junctions. Angew Chem Int Ed. 2019; 58(31): 10601-10605.

[42]

Li J, Zhuang Z, Shen P, Song S, Tang BZ, Zhao Z. Achieving multiple quantum-interfered states via through-space and through-bond synergistic effect in foldamer-based single-molecule junctions. J Am Chem Soc. 2022; 144(18): 8073-8083.

[43]

Petrov AI, Lutoshkin MA. TD-DFT assessment of UV-vis spectra palladium and platinum complexes with thiols and disulfides. J Mol Model. 2021; 27(6): 152.

[44]

Hirata S, Head-Gordon M. Time-dependent density functional theory for radicals. Chem Phys Lett. 1999; 302(5): 375-382.

[45]

Matsuhita R, Horikawa M, Naitoh Y, Nakamura H, Kiguchi M. Conductance and SERS measurement of benzenedithiol molecules bridging between au electrodes. J Phys Chem C. 2013; 117(4): 1791-1795.

[46]

Kaneko S, Murai D, Marqués-González S, et al. Site-selection in single-molecule junction for highly reproducible molecular electronics. J Am Chem Soc. 2016; 138(4): 1294-1300.

[47]

Suzuki S, Kaneko S, Fujii S, Marqués-González S, Nishino T, Kiguchi M. Effect of the molecule-metal interface on the surface-enhanced Raman scattering of 1, 4-benzenedithiol. J Phys Chem C. 2016; 120(2): 1038-1042.

[48]

Tsutsui M, Taniguchi M. Single molecule electronics and devices. Sensors. 2012; 12(6): 7259-7298.

[49]

Kim T, Liu ZF, Lee C, Neaton JB, Venkataraman L. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc Natl Acad Sci USA. 2014; 111(30): 10928-10932.

[50]

Quek SY, Kamenetska M, Steigerwald ML, et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nanotechnol. 2009; 4(4): 230-234.

[51]

Kaliginedi V, Rudnev AV, Moreno-García P, et al. Promising anchoring groups for single-molecule conductance measurements. Phys Chem Chem Phys. 2014; 16(43): 23529-23539.

[52]

Kiguchi M, Kaneko S. Electron transport through single π-conjugated molecules bridging between metal electrodes. Chemphyschem. 2012; 13(5): 1116-1126.

[53]

Kaneko S, Nakazumi T, Kiguchi M. Fabrication of a well-defined single benzene molecule junction using ag electrodes. J Phys Chem Lett. 2010; 1(24): 3520-3523.

[54]

Xiang D, Pyatkov F, Schröper F, Offenhäusser A, Zhang Y, Mayer D. Molecular junctions bridged by metal ion complexes. Chem Eur J. 2011; 17(47): 13166-13169.

[55]

Halbritter A, Makk P, Mackowiak S, Csonka S, Wawrzyniak M, Martinek J. Regular atomic narrowing of Ni, Fe, and V nanowires resolved by two-dimensional correlation analysis. Phys Rev Lett. 2010; 105(26): 266805.

[56]

Makk P, Tomaszewski D, Martinek J, et al. Correlation analysis of atomic and single-molecule junction conductance. ACS Nano. 2012; 6(4): 3411-3423.

[57]

Kamenetska M, Koentopp M, Whalley AC, et al. Formation and evolution of single-molecule junctions. Phys Rev Lett. 2009; 102(12): 126803.

[58]

Liu R, Bi JJ, Xie Z, et al. Fabricating atom-sized gaps by field-aided atom migration in nanoscale junctions. Phys Rev Appl. 2018; 9(5): 054023.

[59]

Zhao Z, Liu R, Mayer D, et al. Shaping the atomic-scale geometries of electrodes to control optical and electrical performance of molecular devices. Small. 2018; 14(15): 1703815.

[60]

Sun F, Liu L, Zheng C-F, et al. Decoding the mechanical conductance switching behaviors of dipyridyl molecular junctions. Nanoscale. 2023; 15(30): 12586-12597.

[61]

Zhang W, Zhao Z, Tan M, et al. Regulating the orientation of a single coordinate bond by the synergistic action of mechanical forces and electric field. Chem Sci. 2023; 14(41): 11456-11465.

[62]

Krüger D, Rousseau R, Fuchs H, Marx D. Towards “mechanochemistry”: mechanically induced isomerizations of thiolate–gold clusters. Angew Chem Int Ed. 2003; 42(20): 2251-2253.

[63]

Li ZL, Zhang GP, Wang CK. First-principles study on formation and electron-transport properties of single oligothiophene molecular junctions. J Phys Chem C. 2011; 115(31): 15586-15591.

[64]

Kim Y, Hellmuth TJ, Bürkle M, Pauly F, Scheer E. Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy. ACS Nano. 2011; 5(5): 4104-4111.

[65]

Liu R, Bao D, Jiao Y, et al. Study on force sencitivity of electronic transport properties of 1, 4-butanedithiol molecular device. Acta Phys Sin. 2014; 63(6): 68501.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/