Tumor cell dissociation-enhanced intravesical chemotherapy of orthotopic bladder cancer

Zhaoyu Ma , Zhiduo Sun , Zhichao Ye , Kai Cai , Wenbin Zhong , Wei Yuan , Weiyun Zhang , Jin Zhang , Kai Zhang , Huageng Liang , Heyou Han , Yanli Zhao

SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1276

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1276 DOI: 10.1002/smm2.1276
RESEARCH ARTICLE

Tumor cell dissociation-enhanced intravesical chemotherapy of orthotopic bladder cancer

Author information +
History +
PDF

Abstract

Frequent intravesical chemotherapy is still the adopted clinical option after bladder cancer surgery with low adhesion, poor selectivity, low permeability, and drug resistance. Herein, we develop an ingenious bladder cancer dissociation method to enhance intravesical chemotherapy and tumor self-exclusion with urine. Ethylene diamine tetraacetic acid (EDTA), a common Ca2+ chelator, is loaded with the typical clinical bladder instillation drug doxorubicin (Dox) in chitosan-modified hollow gold nanorods and subsequently coated with cancer cell membranes. After bladder perfusion, the nanoplatform exhibits high affinity toward bladder tumors under homologous targeting, assisting in long-term retention. Under NIR-II laser irradiation, the photothermal effect accelerates the unloading of cargo, and the released EDTA then disrupts intratumoral junctions by depriving and chelating Ca2+ from the intercellular calcium-dependent connexin. The consequential intertumoral dissociation gives access to the deeper penetration of Dox and allows the exclusion of the shed small tumor masses from the body with the urine. This distinctive tumor dissociation concept holds great promise for modern clinical intravesical chemotherapy and perhaps for other gastrointestinal malignancies.

Keywords

deep penetration / intravesical chemotherapy / orthotopic bladder cancer / tumor dissociation / urine clearance

Cite this article

Download citation ▾
Zhaoyu Ma, Zhiduo Sun, Zhichao Ye, Kai Cai, Wenbin Zhong, Wei Yuan, Weiyun Zhang, Jin Zhang, Kai Zhang, Huageng Liang, Heyou Han, Yanli Zhao. Tumor cell dissociation-enhanced intravesical chemotherapy of orthotopic bladder cancer. SmartMat, 2024, 5(4): e1276 DOI:10.1002/smm2.1276

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Funt SA, Rosenberg JE. Systemic, perioperative management of muscle-invasive bladder cancer and future horizons. Nat Rev Clin Oncol. 2017; 14(4): 221-234.

[2]

González Del Alba A, De Velasco G, Lainez N, et al. SEOM clinical guideline for treatment of muscle-invasive and metastatic urothelial bladder cancer (2018). Clini Transl Oncol. 2019; 21(1): 64-74.

[3]

Witjes JA, Lebret T, Compérat EM, et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2017; 71(3): 462-475.

[4]

Witjes JA, Bruins HM, Cathomas R, et al. European Association of Urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol. 2021; 79(1): 82-104.

[5]

Jordan B, Meeks JJ. T1 bladder cancer: current considerations for diagnosis and management. Nat Rev Urol. 2019; 16(1): 23-34.

[6]

Huang J, Jiang Y, Li J, He S, Huang J, Pu K. A renal-clearable macromolecular reporter for near-infrared fluorescence imaging of bladder cancer. Angew Chem Int Ed. 2020; 59(11): 4415-4420.

[7]

Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017; 71(1): 96-108.

[8]

Kamat AM, Colombel M, Sundi D, et al. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat Rev Urol. 2017; 14(4): 244-255.

[9]

Bao Q, Hu P, Ren W, Guo Y, Shi J. Tumor cell dissociation removes malignant bladder tumors. Chem. 2020; 6(9): 2283-2299.

[10]

Kamat AM, Hahn NM, Efstathiou JA, et al. Bladder cancer. Lancet. 2016; 388(10061): 2796-2810.

[11]

Lu S, Neoh KG, Kang ET, Mahendran R, Chiong E. Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy. Eur J Pharm Sci. 2015; 72(7): 57-68.

[12]

Li G, Yuan S, Deng D, et al. Fluorinated polyethylenimine to enable transmucosal delivery of photosensitizer-conjugated catalase for photodynamic therapy of orthotopic bladder tumors postintravesical instillation. Adv Funct Mater. 2019; 29(40): 1901932.

[13]

Hao Y, Chen Y, He X, et al. RGD peptide modified platinum nanozyme co-loaded glutathione-responsive prodrug nanoparticles for enhanced chemo-photodynamic bladder cancer therapy. Biomaterials. 2023; 293: 121975.

[14]

Moschini M, Karnes RJ, Sharma V, et al. Patterns and prognostic significance of clinical recurrences after radical cystectomy for bladder cancer: a 20-year single center experience. Eur J Surg Oncol. 2016; 42(5): 735-743.

[15]

Garris CS, Wong JL, Ravetch JV, Knorr DA. Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer. Sci Transl Med. 2021; 13(594): eabd1346.

[16]

Gouin III KH, Ing N, Plummer JT. An N-Cadherin 2 expressing epithelial cell subpopulation predicts response to surgery, chemotherapy and immunotherapy in bladder cancer. Nat Commun. 2021; 12(1): 4906.

[17]

Joice GA, Bivalacqua TJ, Kates M. Optimizing pharmacokinetics of intravesical chemotherapy for bladder cancer. Nat Rev Urol. 2019; 16(10): 599-612.

[18]

Guo H, Xu W, Chen J, et al. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. J Controlled Release. 2017; 259(14): 136-148.

[19]

Ding K, Wang L, Zhu J, et al. Photo-enhanced chemotherapy performance in bladder cancer treatment via albumin coated AIE aggregates. ACS Nano. 2022; 16(5): 7535-7546.

[20]

Pavuluri K, Manoli I, Pass A, et al. Noninvasive monitoring of chronic kidney disease using pH and perfusion imaging. Sci Adv. 2019; 5(8): eaaw8357.

[21]

Deng Q, Xie J, Kong S, Tang T, Zhou J. Long-term retention microbubbles with three-layer structure for floating intravesical instillation delivery. Small. 2023; 19(14): e2205630.

[22]

Lin W, Liu H, Chen L, et al. Pre-clinical MRI-guided intravesical instillation theranosis of bladder cancer by tumor-selective oxygen nanogenerator. Nano Today. 2021; 38: 101124.

[23]

Sun R, Liu X, Li G, et al. Photoactivated H2 nanogenerator for enhanced chemotherapy of bladder cancer. ACS Nano. 2020; 14(7): 8135-8148.

[24]

Oliveira MB, Nova MV, Bruschi ML. A review of recent developments on micro/nanostructured pharmaceutical systems for intravesical therapy of the bladder cancer. Pharm Dev Technol. 2018; 23(1): 1-12.

[25]

Hou DY, Zhang NY, Wang MD, et al. In situ constructed nano-drug depots through intracellular hydrolytic condensation for chemotherapy of bladder cancer. Angew Chem Int Ed. 2022; 61(18): e202116893.

[26]

Iyer G, Al-Ahmadie H. Schultz N, et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol. 2013; 31(25): 3133-3140.

[27]

GuhaSarkar S, More P, Banerjee R. Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery. J Controlled Release. 2017; 245(14): 147-156.

[28]

Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 2002; 4(4): E101-E108.

[29]

Wang B, Tan Z, Guan F. Tumor-derived exosomes mediate the instability of cadherins and promote tumor progression. Int J Mol Sci. 2019; 20(15): 3652.

[30]

Chen CC, Fa YC, Kuo YY, et al. Thiolated mesoporous silica nanoparticles as an immunoadjuvant to enhance efficacy of intravesical chemotherapy for bladder cancer. Adv Sci. 2023; 10(7): e2204643.

[31]

Friedrich EE, Hong Z, Xiong S, et al. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc Natl Acad Sci USA. 2019; 116(26): 12980-12985.

[32]

Sultan S, Murarka S, Jahangir A, Mookadam F, Tajik AJ, Jahangir A. Chelation therapy in cardiovascular disease: an update. Expert Rev Clin Pharmacol. 2017; 10(8): 843-854.

[33]

Li M, Bao Q, Guo J, et al. Low colorectal tumor removal by E-cadherin destruction-enabled tumor cell dissociation. Nano Lett. 2022; 22(7): 2769-2779.

[34]

Li W, Sabater AL, Chen YT, et al. A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Investig Opthalmol Visual Sci. 2007; 48(2): 614-620.

[35]

Peh GSL, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011; 91(8): 811-819.

[36]

Cai K, Zhang W, Foda MF, et al. Miniature hollow gold nanorods with enhanced effect for in vivo photoacoustic imaging in the NIR-II window. Small. 2020; 16(37): e2002748.

[37]

Li G, Wu S, Chen W, et al. Designing intelligent nanomaterials to achieve highly sensitive diagnoses and multimodality therapy of bladder cancer. Small Methods. 2023; 7(2): e2201313.

[38]

Li G, Wang S, Deng D, et al. Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer-conjugated catalase for sonodynamic bladder cancer treatment post-intravesical instillation. ACS Nano. 2020; 14(2): 1586-1599.

[39]

Sun Z, Zhang W, Ye Z, et al. NIR-II-triggered doxorubicin release for orthotopic bladder cancer chemo-photothermal therapy. Nanoscale. 2022; 14(48): 17929-17939.

[40]

Cai K, Zhang W, Zhang J, Li H, Han H, Zhai T. Design of gold hollow nanorods with controllable aspect ratio for multimodal imaging and combined chemo-photothermal therapy in the second near-infrared window. ACS Appl Mater Interfaces. 2018; 10(43): 36703-36710.

[41]

Chang X, Zhang C, Lv C, et al. Construction of a multiple-aptamer-based DNA logic device on live cell membranes via associative toehold activation for accurate cancer cell identification. J Am Chem Soc. 2019; 141(32): 12738-12743.

[42]

Xuan M, Shao J, Li J. Cell membrane-covered nanoparticles as biomaterials. Natl Sci Rev. 2019; 6(3): 551-561.

[43]

Kim SA, Tai CY, Mok LP, Mosser EA, Schuman EM. Calcium-dependent dynamics of cadherin interactions at cell-cell junctions. Proc Natl Acad Sci USA. 2011; 108(24): 9857-9862.

[44]

Wei S, Cassara C, Lin X, Veenstra RD. Calcium-calmodulin gating of a pH-insensitive isoform of connexin43 gap junctions. Biochem J. 2019; 476(7): 1137-1148.

[45]

Sun H, Wang C, Hu B, et al. Exosomal S100A4 derived from highly metastatic hepatocellular carcinoma cells promotes metastasis by activating STAT3. Signal Transduct Target Ther. 2021; 6(1): 187.

[46]

Mishra SK, Siddique HR, Saleem M. S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev. 2012; 31(1-2): 163-172.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/