Flexible organic integrated circuits free of parasitic capacitance fabricated through a simple dual self-alignment method

Baichuan Jiang , Xiao Han , Yu Che , Wenbin Li , Hongxian Zheng , Jun Li , Cailing Ou , Nannan Dou , Zixiao Han , Tingyu Ji , Chuanhui Liu , Zhiyuan Zhao , Yunlong Guo , Yunqi Liu , Lei Zhang

SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1273

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1273 DOI: 10.1002/smm2.1273
RESEARCH ARTICLE

Flexible organic integrated circuits free of parasitic capacitance fabricated through a simple dual self-alignment method

Author information +
History +
PDF

Abstract

In integrated circuits (ICs), the parasitic capacitance is one of the crucial factors that degrade the circuit dynamic performance; for instance, it reduces the operating frequency of the circuit. Eliminating the parasitic capacitance in organic transistors is notoriously challenging due to the inherent tradeoff between manufacturing costs and interlayer alignment accuracy. Here, we overcome such a limitation using a cost-effective method for fabricating organic thin-film transistors and rectifying diodes without redundant electrode overlaps. This is achieved by placing all electrodes horizontally and introducing sub-100 nm gaps for separation. A representative small-scale IC consisting of five-stage ring oscillators based on the obtained nonparasitic transistors and diodes is fabricated on flexible substrates, which performs reliably at a low driving voltage of 1 V. Notably, the oscillator exhibits signal propagation delays of 5.8 µs per stage at a supply voltage of 20 V when utilizing pentacene as the active layer. Since parasitic capacitance has been a common challenge for all types of thin-film transistors, our approach may pave the way toward the realization of flexible and large-area ICs based on other emerging and highly performing semiconductors.

Keywords

flexible electronics / integrated circuits / organic thin-film transistors / parasitic capacitance / self-alignment

Cite this article

Download citation ▾
Baichuan Jiang, Xiao Han, Yu Che, Wenbin Li, Hongxian Zheng, Jun Li, Cailing Ou, Nannan Dou, Zixiao Han, Tingyu Ji, Chuanhui Liu, Zhiyuan Zhao, Yunlong Guo, Yunqi Liu, Lei Zhang. Flexible organic integrated circuits free of parasitic capacitance fabricated through a simple dual self-alignment method. SmartMat, 2024, 5(5): e1273 DOI:10.1002/smm2.1273

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Myny K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron. 2018; 1(1): 30-39.

[2]

Liu K, Ouyang B, Guo X, Guo Y, Liu Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex Electron. 2022; 6(1): 1.

[3]

Jurchescu OD, Baas J, Palstra TTM. Effect of impurities on the mobility of single crystal pentacene. Appl Phys Lett. 2004; 84(16): 3061-3063.

[4]

Takeya J, Yamagishi M, Tominari Y, et al. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl Phys Lett. 2007; 90(10): 102120.

[5]

Liu J, Zhang H, Dong H, et al. High mobility emissive organic semiconductor. Nat Commun. 2015; 6: 10032.

[6]

Luo C, Kyaw AKK, Perez LA, et al. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 2014; 14(5): 2764-2771.

[7]

Kim G, Kang SJ, Dutta GK, et al. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V·s that substantially exceeds benchmark values for amorphous silicon semiconductors. J Am Chem Soc. 2014; 136(26): 9477-9483.

[8]

Kang I, Yun HJ, Chung DS, Kwon SK, Kim YH. Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc. 2013; 135(40): 14896-14899.

[9]

Park Y, Jung JW, Kang H, Seth J, Kang Y, Sung MM. Single-crystal poly[4-(4, 4-dihexadecyl-4H-cyclopenta[1, 2-b:5, 4-b’]dithiophen-2-yl)-alt-[1, 2, 5]thiadiazolo[3, 4-c]pyridine] nanowires with ultrahigh mobility. Nano Lett. 2019; 19(2): 1028-1032.

[10]

Yu X, Li C, Gao C, Zhang X, Zhang G, Zhang D. Incorporation of hydrogen-bonding units into polymeric semiconductors toward boosting charge mobility, intrinsic stretchability, and self-healin. ability. SmartMat. 2021; 2(3): 347-366.

[11]

Chen H, Zhang W, Li M, He G, Guo X. Interface engineering in organic field-effect transistors: principles, applications, and perspectives. Chem Rev. 2020; 120(5): 2879-2949.

[12]

Zeng J, He D, Qiao J, et al. Ultralow contact resistance in organic transistors via orbital hybridization. Nat Commun. 2023; 14(1): 324.

[13]

Fu Y, Zhu J, Sun Y, et al. Oxygen-induced barrier lowering for high-performance organic field-effect transistors. ACS Nano. 2023; 17(15): 15044-15052.

[14]

Chen J, Das S, Shao M, et al. Phase segregation mechanisms of small molecule-polymer blends unraveled by varying polymer chain architecture. SmartMat. 2021; 2(3): 367-377.

[15]

Klauk H. Will we see gigahertz organic transistors? Adv Electron Mater. 2018; 4(10): 1700474.

[16]

Higgins SG, Muir BVO, Dell’Erba G, Perinot A, Caironi M, Campbell AJ. Self-aligned organic field-effect transistors on plastic with picofarad overlap capacitances and megahertz operating frequencies. Appl Phys Lett. 2016; 108(2): 023302.

[17]

Klauk H, Gundlach DJ, Bonse M, Kuo CC, Jackson TN. A reduced complexity process for organic thin film transistors. Appl Phys Lett. 2000; 76(13): 1692-1694.

[18]

Palfinger U, Auner C, Gold H, et al. Fabrication of n-and p-type organic thin film transistors with minimized gate overlaps by self-aligned nanoimprinting. Adv Mater. 2010; 22(45): 5115-5119.

[19]

Noh YY, Zhao N, Caironi M, Sirringhaus H. Downscaling of self-aligned, all-printed polyme. thin-film transistors. Nat Nanotechnol. 2007; 2(12): 784-789.

[20]

Perinot A, Giorgio M, Mattoli V, Natali D, Caironi M. Organic electronics picks up the pace: mask-less, solution processed organic transistors operating at 160 MHz. Adv Sci. 2021; 8(4): 2001098.

[21]

Vahland J, Leo K, Kleemann H. Quasi-self-aligned organic thin-film transistors in coplanar top-gate configuration. ACS Appl Electron Mater. 2021; 3(11): 5131-5137.

[22]

Shim H, Ershad F, Patel S, et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat Electron. 2022; 5(10): 660-671.

[23]

Haldar T, Wollandt T, Weis J, et al. High-gain, low-voltage unipola. logic circuits based on nanoscale flexible organic thin-film transistors with small signal delays. Sci Adv. 2023; 9(1): eadd3669.

[24]

Zschieschang U, Klauk H, Borchert JW. High-resolution lithography for high-frequency organic thin-film transistors. Adv Mater Technol. 2023; 8(11): 2201888.

[25]

Zheng H, Ou C, Huang X, et al. A flexible, high-voltage (>100 V) generating device based on zebra-like asymmetrical photovoltaic cascade. Adv Mater. 2023; 35(10): 2209482.

[26]

Higgins SG, Muir BVO, Dell’Erba G, Perinot A, Caironi M, Campbell AJ. Complementary organic logic gates on plastic formed by self-aligned transistors with gravure and inkjet printed dielectric and semiconductors. Adv Electron Mater. 2016; 2(2): 1500272.

[27]

Zheng H, Li W, Chen Y, et al. Construction of laterally asymmetric heterojunctions with sub-micrometer resolution by hierarchical self-assembly of polythiophene nanofibers. Small. 2022; 18(10): 2105306.

[28]

Loganathan K, Scaccabarozzi AD, Faber H, et al. 14 GHz Schottky diodes using a p-doped organic polymer. Adv Mater. 2022; 34(22): 2108524.

[29]

Gold H, Haase A, Fian A, et al. Self-aligned flexible organic thin-film transistors with gates patterned by nano-imprint lithography. Org Electron. 2015; 22: 140-146.

[30]

Klauk H. Organic thin-film transistors. Chem Soc Rev. 2010; 39(7): 2643-2666.

[31]

Geiger M, Hagel M, Reindl T, et al. Optimizing the plasma oxidation of aluminum gate electrodes for ultrathin gate oxides in organic transistors. Sci Rep. 2021; 11(1): 6382.

[32]

Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature. 2013; 499(7459): 458-463.

[33]

Klauk H, Zschieschang U, Pflaum J, Halik M. Ultralow-power organic complementary circuits. Nature. 2007; 445(7129): 745-748.

[34]

Borchert JW, Zschieschang U, Letzkus F, et al. Flexible low-voltage high-frequency organic thin-film transistors. Sci Adv. 2020; 6(21): eaaz5156.

[35]

Im H, Huang XJ, Gu B, Choi YK. A dielectric-modulated field-effect transistor for biosensing. Nat Nanotechnol. 2007; 2(7): 430-434.

[36]

Briseno AL, Mannsfeld SCB, Ling MM, et al. Patterning organic single-crystal transistor arrays. Nature. 2006; 444(7121): 913-917.

[37]

Sundar VC, Zaumseil J, Podzorov V, et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science. 2004; 303(5664): 1644-1646.

[38]

Singh KA, Young T, McCullough RD, Kowalewski T, Porter LM. Planarization of polymeric field-effect transistors: improvement of nanomorphology and enhancement of electrical performance. Adv Funct Mater. 2010; 20(14): 2216-2221.

[39]

Borchert JW, Peng B, Letzkus F, et al. Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. Nat Commun. 2019; 10(1): 1119.

[40]

Zojer K, Rothländer T, Kraxner J, et al. Switching from weakly to strongly limited injection in self-aligned, nano-patterned organi. transistors. Sci Rep. 2016; 6: 31387.

[41]

Xu Y, Sun H, Liu A, et al. Doping: a key enabler for organic transistors. Adv Mater. 2018; 30(46): 1801830.

[42]

Kano M, Minari T, Tsukagoshi K. Improvement of subthreshold current transport by contact interface modification in p-type organic field-effect transistors. Appl Phys Lett. 2009; 94(14): 143304.

[43]

Choi S, Fuentes-Hernandez C. Wang CY, et al. A study on reducing contact resistance in solution-processed organic field-effect transistors. ACS Appl Mater Interfaces. 2016; 8(37): 24744-24752.

[44]

Long DX, Choi EY, Noh YY. Manganese oxide nanoparticle as a new p-type dopant for high-performance polymer field-effect transistors. ACS Appl Mater Interfaces. 2017; 9(29): 24763-24770.

[45]

Long DX, Baeg KJ, Xu Y, et al. Gradual controlling the work function of metal electrodes by solution-processed mixed interlayers for ambipolar polymer field-effect transistors and circuits. Adv Funct Mater. 2014; 24(41): 6484-6491.

[46]

Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B. Surface modification using phosphonic acids and esters. Chem Rev. 2012; 112(7): 3777-3807.

[47]

Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev. 2020; 49(21): 7627-7670.

[48]

Zhang L, Wang H, Zhao Y, et al. Substrate-free ultra-flexible organic field-effect transistors and five-stage ring oscillators. Adv Mater. 2013; 25(38): 5455-5460.

[49]

Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature. 2009; 457(7230): 679-686.

[50]

Guo E, Xing S, Dollinger F, et al. Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nat Electron. 2021; 4(8): 588-594.

[51]

Ji D, Li T, Zou Y, et al. Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics. Nat Commun. 2018; 9(1): 2339.

[52]

Chen R, Wang X, Li X, et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Sci Adv. 2021; 7(25): eabg0659.

[53]

Perinot A, Passarella B, Giorgio M, Caironi M. Walking the route to GHz solution-processed organic electronics: a HEROIC exploration. Adv Funct Mater. 2020; 30: 1907641.

[54]

Sun X, Zhang L, Di C, et al. Morphology optimization for the fabrication of high mobility thin-film transistors. Adv Mater. 2011; 23(28): 3128-3133.

[55]

Zhao Y, Di C, Gao X, et al. All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics. Adv Mater. 2011; 23(21): 2448-2453.

[56]

Li M, Mangalore DK, Zhao J, et al. Integrated circuits based on conjugated polymer monolayer. Nat Commun. 2018; 9(1): 451.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/