Manual shaking exfoliation of large-size two-dimensional LiInP2S6 nanosheets with exponential change in ionic conductivity for water detection

Jianing Liang , Zongdong Sun , Chaoqi Zhu , Shuhao Wang , Cheng Zeng , Dawen Zeng , Tianyou Zhai , Huiqiao Li

SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1266

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1266 DOI: 10.1002/smm2.1266
RESEARCH ARTICLE

Manual shaking exfoliation of large-size two-dimensional LiInP2S6 nanosheets with exponential change in ionic conductivity for water detection

Author information +
History +
PDF

Abstract

Large-sized and atomically thin two-dimensional metal thiophosphate materials have been widely exploited in detectors due to their rich physical/chemical properties of high surface area and massive adjustable sites. However, existing production methods are limited in terms of meeting the demanding challenges in achieving the scalable fabrication of high-quality nanomaterials under mild conditions. Here, we develop a facile intercalation–exfoliation method that can fabricate large lateral size (>23 µm) and few-layer LiInP2S6 nanosheets with high crystalline quality fast. Due to the advantage of hydrophilicity of lithium, swelled interlayer spacing can be obtained, which enables the rapid exfoliation by only slight manual shaking within tens of seconds. Concomitantly, the inorganic LiInP2S6 film manufactured by nanosheets has inter-connected ionic channels, which can be adjusted on the basis of the water content, enabling tunable ionic conductivity. As a result, ionic conductor films using ions as charge carriers can achieve high water response with good repeatability and excellent long-term stability in a wide moisture range. Moreover, the as-prepared detector has excellent capability in real-time noncontact human–machine interfacing. This study, not only is a powerful strategy for the fabrication of large-sized and high-quality nanosheets presented but also proof for the promising development of iontronic devices in new applications.

Keywords

2D materials / fast exfoliation / ionic conductivity / LiInP 2S 6 / water detection

Cite this article

Download citation ▾
Jianing Liang, Zongdong Sun, Chaoqi Zhu, Shuhao Wang, Cheng Zeng, Dawen Zeng, Tianyou Zhai, Huiqiao Li. Manual shaking exfoliation of large-size two-dimensional LiInP2S6 nanosheets with exponential change in ionic conductivity for water detection. SmartMat, 2024, 5(5): e1266 DOI:10.1002/smm2.1266

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao S, Yi X, Shang J, Liu G, Li RW. Organic and hybrid resistive switching materials and devices. Chem Soc Rev. 2019; 48(6): 1531-1565.

[2]

Ding Q, Wang H, Zhou Z, et al. Stretchable, self-healable, and breathable biomimetic iontronics with superior humidity-sensing performance for wireless respiration monitoring. SmartMat. 2022; 4(2): e1147.

[3]

Liang Y, Ding Q, Wang H, et al. Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano Micro Lett. 2022; 14(1): 183.

[4]

Yang W, Fang B, Xiao X, Meng H, Liu S. Hierarchical core-shell heterostructures of α-MoO3 nanorods@NiO nanosheets for significant detection of ethyl acetate vapor. Sens Actuators B Chem. 2022; 358: 131457.

[5]

Xiao X, Zhou X, Ma J, et al. Rational synthesis and gas sensing performance of ordered mesoporous semiconducting WO3/NiO composites. ACS Appl Mater Interfaces. 2019; 11(29): 26268-26276.

[6]

Zhu LY, Ou LX, Mao LW, Wu XY, Liu YP, Lu HL. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano Micro Lett. 2023; 15(1): 89.

[7]

Chen L, Ye J-W, Wang H-P. et al. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat Commun. 2017; 8(1): 15985.

[8]

Li J, Ding Q, Wang H, et al. Engineering smart composite hydrogels for wearable disease monitoring. Nano Micro Lett. 2023; 15(1): 105.

[9]

Peng J, Liu Y, Lv H, et al. Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nat Chem. 2021; 13(12): 1235-1240.

[10]

Du Z, Yang S, Li S, et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature. 2020; 577(7791): 492-496.

[11]

Chaturvedi A, Chen B, Zhang K, et al. A universal method for rapid and large-scale growth of layered crystals. SmartMat. 2020; 1(1): e1011.

[12]

Ma Y, Hu X, Li S, He Y, Xia Z, Cai K. A facile and flexible humidity sensor based on porous PDMS/AgNWs and GO for environmental humidity and respiratory detection. Macromol Mater Eng. 2022; 307(3): 2100686.

[13]

Strelcov E, Lilach Y, Kolmakov A. Gas sensor based on metal-insulator transition in VO2 nanowire thermistor. Nano Lett. 2009; 9(6): 2322-2326.

[14]

Narwade SH, Shinde PV, Shinde NM, et al. Hydrangea-type bismuth molybdate as a room-temperature smoke and humidity sensor. Sens Actuators B Chem. 2021; 348(3): 130643.

[15]

Pazniak H, Varezhnikov AS, Kolosov DA, et al. 2D molybdenum carbide MXenes for enhanced selective detection of humidity in air. Adv Mater. 2021; 33(52): 2104878.

[16]

Zhou R, Li J, Jiang H, et al. Highly transparent humidity sensor with thin cellulose acetate butyrate and hydrophobic AF1600X vapor permeating layers fabricated by screen printing. Sens Actuators B Chem. 2019; 281: 212-220.

[17]

Zhao Y, Li X, Zhou X, Zhang Y. Review on the graphene based optical fiber chemical and biological sensors. Sens Actuators B Chem. 2016; 231: 324-340.

[18]

Li P, Bräuniger Y, Kunigkeit J, et al. Bioactive ion-based switchable supercapacitors. Angew Chem Int Ed. 2022; 61(50): 202212250.

[19]

Zhang J, Liu W, Dai J, Xiao K. Nanoionics from biological to artificial systems: an alternative beyond nanoelectronics. Adv Sci. 2022; 9(23): 2200534.

[20]

Zhou K, Dai K, Liu C, Shen C. Flexible conductive polymer composites for smart wearable strain sensors. SmartMat. 2020; 1(1): e1010.

[21]

Li T, Xiao K. Solid-state iontronic devices: mechanisms and applications. Adv Mater Technol. 2022; 7(12): 2200205.

[22]

Zhang HT, Park TJ, Islam ANMN, et al. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science. 2022; 375(6580): 533-539.

[23]

Zhang L, Chao D, Yang P, et al. Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv Energy Mater. 2020; 10(17): 2000142.

[24]

Li T, Li L, Sun H, et al. Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv Sci. 2017; 4(5): 1600404.

[25]

Gao N, Pan C. Intelligent ion gels: design, performance, and applications. SmartMat. 2023; 5(1): e1215.

[26]

Maisonneuve V, Reau JM, Dong M, Cajipe VB, Payen C, Ravez J. Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6. Ferroelectrics. 1997; 196(1): 257-260.

[27]

Susner MA, Chyasnavichyus M, McGuire MA, Ganesh P, Maksymovych P. Metal thio-and selenophosphates as multifunctional van der Waals layered materials. Adv Mater. 2017; 29(38): 1602852.

[28]

Kuhn A, Eger R, Nuss J, Lotsch BV. Synthesis and structural characterization of the alkali thiophosphates Na2P2S6, Na4P2S6, K4P2S6, and Rb4P2S6. Zeitschrift für anorganische und allgemeine Chemie. 2014; 640(5): 689-692.

[29]

Fincher T, LeBret G, Cleary DA. Single-crystal structure determination of Na4P2S6·6H2O. J Solid State Chem. 1998; 141(1): 274-281.

[30]

Clement R, Garnier O, Jegoudez J. Coordination chemistry of the lamellar MPS3 materials: metal-ligand cleavage as the source of an unusual “cation-transfer” intercalation process. Inorganic Chem. 1986; 25(9): 1404-1409.

[31]

Silipigni L, Schirò L, Scolaro LM, De Luca G, Salvato G. XPS analysis of nanocomposite Li2xyMn1–xPS3(C13H11N2)y films. Appl Surf Sci. 2013; 280: 572-577.

[32]

Chica DG, He Y, McCall KM, et al. Direct thermal neutron detection by the 2D semiconductor 6LiInP2Se6. Nature. 2020; 577(7790): 346-349.

[33]

Wang X, Du K, Liu W, et al. Second-harmonic generation in quaternary atomically thin layered AgInP2S6 crystals. Appl Phys Lett. 2016; 109(12): 123103.

[34]

Sun Z, Liang J, Liu K, et al. Building intercalation structure for high ionic conductivity via aliovalent substitution. Sci Bull. 2023; 68(11): 1134-1142.

[35]

Schönberger S, Rotter C, Karaghiosoff K. Synthesis and crystal structure of a new salt of the water-stable hexathiohypodiphosphate anion: [py2Li]4[P2S6]·2 py. Heteroat Chem. 2014; 25(2): 95-99.

[36]

Synnatschke K, Shao S, van Dinter J, et al. Liquid exfoliation of Ni2P2S6: structural characterization, size-dependent properties. and degradation. Chem Mater. 2019; 31(21): 9127-9139.

[37]

Zhu Y, Ji Y, Ju Z, et al. Ultrafast intercalation enabled by strong solvent-host interactions: understanding solvent effect at the atomic level. Angew Chem Int Ed. 2019; 58(48): 17205-17209.

[38]

Lin S, Lai WK, Li Y, Lu W, Bai G, Lau SP. Liquid-phase exfoliation of violet phosphorus for electronic applications. SmartMat. 2021; 2(2): 226-233.

[39]

Su J, Shen W, Chen J, et al. 2D ternary vanadium phosphorous chalcogenide with strong in-plane optical anisotropy. Inorg Chem Front. 2021; 8(12): 2999-3006.

[40]

Liu C, Li Z, Hu J, et al. Probing the Néel-type antiferromagnetic order and coherent magnon-exciton coupling in van der Waals VPS3. Adv Mater. 2023; 35(30): 2300247.

[41]

Xiong P, Zhang F, Zhang X, et al. Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nat Commun. 2020; 11(1): 3297.

[42]

Qian X, Chen L, Yin L, et al. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science. 2020; 370(6516): 596-600.

[43]

Klepov VV, Berseneva AA, Pace KA, et al. NaGaS2: an elusive layered compound with dynamic water absorption and wide-ranging ion-exchange properties. Angew Chem Int Ed. 2020; 59(27): 10836-10841.

[44]

Chen C, Jiang M, Luo X, et al. Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing. Sens Actuators B Chem. 2022; 370: 132441.

[45]

Li L, Xuan X, Chen G, Ma Y, Chen C, Wang C. Hydrothermal preparation of Na0.5Bi0.5TiO3 nanospheres towards high humidity sensing response. Sens Actuators B Chem. 2021; 347: 130584.

[46]

Wang Y, Zhang L, Zhou J, Lu A. Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl Mater Interfaces. 2020; 12(6): 7631-7638.

[47]

An H, Habib T, Shah S, et al. Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl Nano Mater. 2019; 2(2): 948-955.

[48]

Wu Z, Rong L, Yang J, et al. Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small. 2021; 17(52): 2104997.

[49]

Adhikary A, Yaghoobnejad Asl H, Sandineni P, et al. Unusual atmospheric water trapping and water induced reversible restacking of 2D gallium sulfide layers in NaGaS2 formed by supertetrahedral building unit. Chem Mater. 2020; 32(13): 5589-5603.

[50]

Joos M, Schneider C, Münchinger A, et al. Impact of hydration on ion transport in Li2Sn2S5·xH2O. J Mater Chem A. 2021; 9(30): 16532-16544.

[51]

Koltonow AR, Huang J. Two-dimensional nanofluidics. Science. 2016; 351(6280): 1395-1396.

[52]

Mi B. Graphene oxide membranes for ionic and molecular sieving. Science. 2014; 343(6172): 740-742.

[53]

Chen W, Gu J, Liu Q, et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat Nanotechnol. 2022; 17(2): 153-158.

[54]

He X, Zhu Y, Mo Y. Origin of fast ion diffusion in super-ionic conductors. Nat Commun. 2017; 8(1): 15893.

[55]

Iton ZWB, See KA. Multivalent ion conduction in inorganic solids. Chem Mater. 2022; 34(3): 881-898.

[56]

Wang Y, Duan R, Tong Z, Wang B, Zhang Z, Li Y. Sensitively humidity-driven actuator and sensor derived from natural skin system. Sens Actuators B Chem. 2022; 370: 132388.

[57]

Wu Z, Wang H, Ding Q, et al. A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv Funct Mater. 2023; 33(21): 2300046.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/