BF3-induced reversible covalent organic framework radicals

Shiwei Zhang , Xin Wang , Fangyuan Kang , Qianfeng Gu , Guohan Sun , Yung-Kang Peng , Qichun Zhang

SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1265

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1265 DOI: 10.1002/smm2.1265
RESEARCH ARTICLE

BF3-induced reversible covalent organic framework radicals

Author information +
History +
PDF

Abstract

The integration of radials into covalent organic frameworks (COFs) would have a profound effect on their applications in spin devices since such radical arrays can offer scientists an additional dimension to manipulate electron spins and maximize the function of organic optoelectrical devices. However, such realization (especially reversible radicals) is very challenging. In this article, using a fluorene-based benzoquinone-derived monomer (M) as the building unit, we successfully synthesized a boroxine-linked COF (named CityU-3), whose crystallinity and chemical composition were confirmed by powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR) spectroscopy, solid-state 13C cross-polarization magic-angle-spinning (CP/MAS) NMR, and X-ray photoelectron spectroscopy (XPS). Interestingly, CityU-3 can be converted into its radical form by treating with BF3·Et2O, which is associated with a color change from red to black, and vice versa upon heating. The as-formed radicals have been confirmed by electron paramagnetic resonance (EPR) spectroscopy. It is worth pointing out that the cycles between radical formation and disappearance would not affect its crystallinity and structure. The reversible COF radicals would have great applications in organic spin devices.

Keywords

boroxine COFs / Lewis acid / reversible COF radicals

Cite this article

Download citation ▾
Shiwei Zhang, Xin Wang, Fangyuan Kang, Qianfeng Gu, Guohan Sun, Yung-Kang Peng, Qichun Zhang. BF3-induced reversible covalent organic framework radicals. SmartMat, 2024, 5(5): e1265 DOI:10.1002/smm2.1265

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005; 310(5751): 1166-1170.

[2]

Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev. 2020; 120(16): 8814-8933.

[3]

a) Yang J, Kang F, Wang X, Zhang Q. Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Mater Horiz. 2022; 9(1): 121-146b) Shi Y, Yang J, Gao F, Zhang Q. Covalent organic frameworks: recent progress in biomedical applications. ACS Nano. 2023; 17: 1879-1905c) Xu S, Zhang Q. Recent progress in covalent organic frameworks as light-emitting materials. Mater Today Energy. 2021; 20: 100635.

[4]

Vyas VS, Vishwakarma M, Moudrakovski I, et al. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv Mater. 2016; 28(39): 8749-8754.

[5]

Zhao Y, Das S, Sekine T, et al. Record ultralarge-pores, low density three-dimensional covalent organic framework for controlled drug delivery. Angew Chem Int Ed. 2023; 62(13): e202300172.

[6]

Ding X, Guo J, Feng X, et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew Chem Int Ed. 2011; 50(6): 1289-1293.

[7]

a) Lv J, Tan YX, Xie J, et al. Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew Chem Int Ed. 2018; 57(39): 12716-12720b) Sun J, Xu Y, Lv Y, Zhang Q, Zhou X. Recent advances in covalent organic framework electrode materials for alkali-metal ion batteries. CCS Chem. 2023; 5: 1259-1276.

[8]

a) Huang N, Ding X, Kim J, Ihee H, Jiang D. A photoresponsive smart covalent organic framework. Angew Chem Int Ed. 2015; 54(30): 8704-8707b) Yu F, Liu W, Li B, Tian D, Zuo J-L, Zhang Q. Photo-stimulus-responsive large-area two-dimensional covalent-organic framework films. Angew Chem Int Ed. 2019; 58(45): 16101-16104.

[9]

Yaghi OM. Reticular chemistry in all dimensions. ACS Cent Sci. 2019; 5(8): 1295-1300.

[10]

Colson JW, Dichtel WR. Rationally synthesized two-dimensional polymers. Nat Chem. 2013; 5(6): 453-465.

[11]

Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013; 42(2): 548-568.

[12]

Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting. Angew Chem Int Ed. 2020; 59(15): 6007-6014.

[13]

a) She P, Qin Y, Wang X, Zhang Q. Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv Mater. 2022; 34(22):2101175b) Gu Q, Zha J, Chen C, et al. Constructing chiral covalent-organic frameworks for circular polarized light detection. Adv Mater. 2024; 36: 2306414.

[14]

Mi Z, Yang P, Wang R, et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J Am Chem Soc. 2019; 141(36): 14433-14442.

[15]

Wang K, Kang X, Yuan C, Han X, Liu Y, Cui Y. Porous 2D and 3D covalent organic frameworks with dimensionality-dependent photocatalytic activity in promoting radical ring-opening polymerization. Angew Chem Int Ed. 2021; 133(35): 19615-19625.

[16]

a) Chen L, Furukawa K, Gao J, et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor–acceptor heterojunctions. J Am Chem Soc. 2014; 136(28): 9806-9809b) Yu F, Liu W, Ke S-W, Kurmoo M, Zuo J-L, Zhang Q. Electrochromic two-dimensional covalent organic framework with a revisable dark-to-transparent switch. Nat Commun. 2020; 11: 5534.

[17]

Hughes BK, Braunecker WA, Bobela DC, Nanayakkara SU, Reid OG, Johnson JC. Covalently bound nitroxyl radicals in an organic framework. J Phys Chem Lett. 2016; 7(18): 3660-3665.

[18]

Lakshmi V, Liu CH, Rajeswara Rao M, et al. A two-dimensional poly(azatriangulene) covalent organic framework with semiconducting and paramagnetic states. J Am Chem Soc. 2020; 142(5): 2155-2160.

[19]

Laxman K, Che Y, Raj KA, Perepichka DF, Rao MR. Trifluoroacetic acid prompted unexpected visible to NIR switching of ketoenamine-substituted triphenylamines. J Mater Chem C. 2023; 11(7): 2680-2687.

[20]

Wu S, Li M, Phan H, et al. Toward two-dimensional π-conjugated covalent organic radical frameworks. Angew Chem Int Ed. 2018; 57(27): 8007-8011.

[21]

Liu CH, Sakai-Otsuka Y. Richardson P, et al. A 2D perchlorinated sp2-carbon framework. Cell Rep Phys Sci. 2022; 3(5): 100858.

[22]

Chen F, Guan X, Li H, et al. Three-dimensional radical covalent organic frameworks as highly efficient and stable catalysts for selective oxidation of alcohols. Angew Chem Int Ed. 2021; 133(41): 22404-22409.

[23]

Jin E, Asada M, Xu Q, et al. Two-dimensional sp2 carbon–conjugated covalent organic frameworks. Science. 2017; 357(6352): 673-676.

[24]

Phan H, Herng TS, Wang D, et al. Room-temperature magnets based on 1, 3, 5-triazine-linked porous organic radical frameworks. Chem. 2019; 5(5): 1223-1234.

[25]

Mahmood J, Park J, Shin D, et al. Organic ferromagnetism: trapping spins in the glassy state of an organic network structure. Chem. 2018; 4(10): 2357-2369.

[26]

Xu F, Xu H, Chen X, et al. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew Chem Int Ed. 2015; 127(23): 6918-6922.

[27]

Cao W, Wang WD, Xu HS, et al. Exploring applications of covalent organic frameworks: homogeneous reticulation of radicals for dynamic nuclear polarization. J Am Chem Soc. 2018; 140(22): 6969-6977.

[28]

Volkov A, Mi J, Lalit K, et al. General strategy for incorporation of functional group handles into covalent organic frameworks via the Ugi reaction. J Am Chem Soc. 2023; 145(11): 6230-6239.

[29]

Bunck DN, Dichtel WR. Internal functionalization of three-dimensional covalent organic frameworks. Angew Chem Int Ed. 2012; 51(8): 1885-1889.

[30]

Ding SY, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc. 2011; 133(49): 19816-19822.

[31]

Chen Y, Qiu J, Zhang XG, et al. A visible light/heat responsive covalent organic framework for highly efficient and switchable proton conductivity. Chem Sci. 2022; 13(20): 5964-5972.

[32]

Hamzehpoor E, Jonderian A, McCalla E, Perepichka DF. Synthesis of boroxine and dioxaborole covalent organic frameworks via transesterification and metathesis of pinacol boronates. J Am Chem Soc. 2021; 143(33): 13274-13280.

[33]

Cheng S, Battaglia AM, Imperiale CJ, Lough A, Wilson MWB, Seferos DS. Synthesis and optoelectronic properties of radical conjugated polyfluorenes. Chem Commun. 2022; 58: 8630-8633.

[34]

Sprick RS, Jiang JX, Bonillo B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc. 2015; 137(9): 3265-3270.

[35]

Liu Y, Liu C, Pu L, Zhang Z, King RB. Boron monoxide dimer as a building block for boroxine based buckyballs and related cages: a theoretical study. Chem Commun. 2017; 53(22): 3239-3241.

[36]

Ma K, Wu J, Wang X, et al. Periodically interrupting bonding behavior to reformat delocalized electronic states of graphdiyne for improved electrocatalytic hydrogen evolution. Angew Chem Int Ed. 2022; 134(42): e202211094.

[37]

Welch GC, Coffin R, Peet J, Bazan GC. Band gap control in conjugated oligomers via Lewis acids. J Am Chem Soc. 2009; 131(31): 10802-10803.

[38]

Poverenov E, Zamoshchik N, Patra A, Ridelman Y, Bendikov M. Unusual doping of donor–acceptor-type conjugated polymers using Lewis acids. J Am Chem Soc. 2014; 136(13): 5138-5149.

[39]

Kong S, Tang S, Wang T, et al. Stable radical ion pairs induced by single electron transfer: frustrated versus nonfrustrated. CCS Chem. 2022; 5(2): 1-7.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/