Multi-dimensional micro/nanorobots with collective behaviors

Bin Wang , Yuan Lu

SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1263

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1263 DOI: 10.1002/smm2.1263
REVIEW

Multi-dimensional micro/nanorobots with collective behaviors

Author information +
History +
PDF

Abstract

Recently, the collective behavior of micro/nanorobots has shown unprecedented potential in biomedicine and environmental remediation. Collective behavior can work more efficiently, adaptively, and robustly than individual micro/nanorobots. The paradigm of collective behavior needs to be understood in different dimensions, including from individual to cluster, from planar to spatial, and from mono-functional to multifunctional. In this review, the focus will be on summarizing the achievements of collective control of micro/nanorobot swarms in recent years from different dimensions, in an attempt to better understand how the structure and materials of individuals should be designed, how collective behavior should be implemented, and how robots are functionalized to cope with practical applications under the introduction of collective control. The opportunities and challenges that collective control faces at this stage are illustrated to provide perspectives for its future development.

Keywords

collective behaviors / collective control / micro / nanorobots / smart materials / swarms

Cite this article

Download citation ▾
Bin Wang, Yuan Lu. Multi-dimensional micro/nanorobots with collective behaviors. SmartMat, 2024, 5(5): e1263 DOI:10.1002/smm2.1263

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GultepeE, Randhawa JS, KadamS, et al. Biopsy with thermally-responsive untethered microtools. Adv Mater. 2013; 25(4): 514-519.

[2]

MalachowskiK, JamalM, JinQ, PolatB, MorrisCJ, Gracias DH. Self-folding single cell grippers. Nano Lett. 2014; 14(7): 4164-4170.

[3]

PokkiJ, Ergeneman O, ChatzipirpiridisG, et al. Protective coatings for intraocular wirelessly controlled microrobots for implantation: corrosion, cell culture, and in vivo animal tests. J Biomed Mater Res Part B Appl Biomater. 2017; 105(4): 836-845.

[4]

UllrichF, Bergeles C, PokkiJ, et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Visual Sci. 2013; 54(4): 2853-2863.

[5]

MouF, ChenC, ZhongQ, Yin Y, MaH, GuanJ. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl Mater Interfaces. 2014; 6(12): 9897-9903.

[6]

LiJ, Thamphiwatana S, LiuW, et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano. 2016; 10(10): 9536-9542.

[7]

WeiX, Beltrán-Gastélum M, KarshalevE, et al. Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 2019; 19(3): 1914-1921.

[8]

LiJ, Angsantikul P, LiuW, et al. Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew Chem Int Ed. 2017; 56(8): 2156-2161.

[9]

YangJ, LiJ, YangP, et al. Three-dimensional hierarchical Ag/Mg(Ni)Al-layered double hydroxide Janus micromotor derived from lotus pollen for active removal of organic pollutant. J Mater Sci. 2022; 57(24): 10953-10967.

[10]

LiangC, ZhanC, ZengF, et al. Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl Mater Interfaces. 2018; 10(41): 35099-35107.

[11]

LinJ, TaoY, LiuJ, et al. TiO2@carbon microsphere core-shell micromotors for photocatalytic water remediation. Optical Materials. 2022; 124: 111989.

[12]

ArquéX, Romero-Rivera A. FeixasF, PatiñoT, OsunaS, SánchezS. Intrinsic enzymatic properties modulate the self-propulsion of micromotors. Nat Commun. 2019; 10(1): 2826.

[13]

ZhangJ, GuoJ, MouF, GuanJ. Light-controlled swarming and assembly of colloidal particles. Micromachines. 2018; 9(2): 88.

[14]

de la Asunción-NadalV, Jurado-SánchezB, Vázquez L, EscarpaA. Magnetic fields enhanced the performance of tubular dichalcogenide micromotors at low hydrogen peroxide levels. Chemistry. 2019; 25(57): 13157-13163.

[15]

Valdez-GarduñoM, Leal-Estrada M. Oliveros-MataES, et al. Density asymmetry driven propulsion of ultrasound-powered Janus micromotors. Adv Funct Mater. 2020; 30(50): 2004043.

[16]

XieH, SunM, FanX, et al. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Science Robotics. 2019; 4(28): eaav8006.

[17]

WangQ, ZhangL. External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano. 2021; 15(1): 149-174.

[18]

WuR, ZhuY, CaiX, WuS, XuL, YuT. Recent process in microrobots: from propulsion to swarming for biomedical applications. Micromachines. 2022; 13(9): 1473.

[19]

RodgersGM, Kimbell H, MorrellLJ. Mixed-phenotype grouping: the interaction between oddity and crypsis. Oecologia. 2013; 172(1): 59-68.

[20]

Clutton-BrockTH, GaynorD, McIlrathGM, et al. Predation, group size and mortality in a cooperative mongoose, Suricata suricatta. J Anim Ecol. 1999; 68(4): 672-683.

[21]

JiF, WuY, PumeraM, Zhang L. Collective behaviors of active matter learning from natural taxes across scales. Adv Mater. 2023; 35(8): 2203959.

[22]

KimJ, ZhengY, AlobaidiAA, et al. Geometric dependence of 3D collective cancer invasion. Biophys J. 2020; 118(5): 1177-1182.

[23]

TheveneauE, Marchant L, KuriyamaS, et al. Collective chemotaxis requires contact-dependent cell polarity. Dev Cell. 2010; 19(1): 39-53.

[24]

WuY, HosuBG, BergHC. Microbubbles reveal chiral fluid flows in bacterial swarms. Proc Natl Acad Sci USA. 2011; 108(10): 4147-4151.

[25]

PorterSL, Wadhams GH, ArmitageJP. Signal processing in complex chemotaxis pathways. Nat Rev Microbiol. 2011; 9(3): 153-165.

[26]

AndersonC, Theraulaz G, DeneubourgJL. Self-assemblages in insect societies. Insectes Soc. 2002; 49(2): 99-110.

[27]

JohH, FanDE. Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: review and perspective. Adv Mater. 2021; 33(39): 2101965.

[28]

QiuT, LeeT-C, MarkAG, et al. Swimming by reciprocal motion at low Reynolds number. Nat Commun. 2014; 5(1): 5119.

[29]

ZhangL, AbbottJJ, DongL, et al. Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 2009; 9(10): 3663-3667.

[30]

LiT, LiJ, ZhangH, et al. Magnetically propelled fish-like nanoswimmers. Small. 2016; 12(44): 6098-6105.

[31]

LiuK, OuJ, WangS, et al. Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Applied Materials Today. 2020; 20: 100694.

[32]

ChenB, LiuL, LiuK, et al. Photoelectrochemical TiO2-Au-nanowire-based motor for precise modulation of single-neuron activities. Adv Funct Mater. 2021; 31(10): 2008667.

[33]

XuT, LuoY, LiuC, ZhangX, WangS. Integrated ultrasonic aggregation-induced enrichment with raman enhancement for ultrasensitive and rapid biosensing. Anal Chem. 2020; 92(11): 7816-7821.

[34]

LinZ, FanX, SunM, GaoC, HeQ, XieH. Magnetically actuated peanut colloid motors for cell manipulation and patterning. ACS Nano. 2018; 12(3): 2539-2545.

[35]

ZhouH, Mayorga-Martinez CC. PanéS, ZhangL, PumeraM. Magnetically driven micro and nanorobots. Chem Rev. 2021; 121(8): 4999-5041.

[36]

LiuL, ChenB, LiuK, et al. Wireless manipulation of magnetic/piezoelectric micromotors for precise neural stem-like cell stimulation. Adv Funct Mater. 2020; 30(11): 1910108.

[37]

LiuL, WuJ, WangS, et al. Control the neural stem cell fate with biohybrid piezoelectrical magnetite micromotors. Nano Lett. 2021; 21(8): 3518-3526.

[38]

DongM, WangX, ChenXZ, et al. 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv Funct Mater. 2020; 30(17): 1910323.

[39]

WangX, ChenXZ, AlcântaraCCJ, et al. MOFBOTS: metal-organic-framework-based biomedical microrobots. Adv Mater. 2019; 31(27): 1901592.

[40]

XinC, YangL, LiJ, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Adv Mater. 2019; 31(25): 1808226.

[41]

LiuD, GuoR, WangB, Hu J, LuY. Magnetic micro/nanorobots: a new age in biomedicines. Adv Intell Syst. 2022; 4(12): 2200208.

[42]

ZhangL, PeyerKE, NelsonBJ. Artificial bacterial flagella for micromanipulation. Lab Chip. 2010; 10(17): 2203-2215.

[43]

JangB, GutmanE, StuckiN, et al. Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett. 2015; 15(7): 4829-4833.

[44]

KongL, Rohaizad N, NasirMZM, GuanJ, PumeraM. Micromotor-assisted human serum glucose biosensing. Anal Chem. 2019; 91(9): 5660-5666.

[45]

VilelaD, ParmarJ, ZengY, Zhao Y, SánchezS. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016; 16(4): 2860-2866.

[46]

BingX, ZhangX, LiJ, NgDHL, YangW, Yang J. 3D hierarchical tubular micromotors with highly selective recognition and capture for antibiotics. J Mater Chem A. 2020; 8(5): 2809-2819.

[47]

LyuX, LiuX, ZhouC, et al. Active, yet little mobility: asymmetric decomposition of H2O2 is not sufficient in propelling catalytic micromotors. J Am Chem Soc. 2021; 143(31): 12154-12164.

[48]

YuanK, Pacheco M, Jurado-SánchezB, EscarpaA. Design and control of the micromotor swarm toward smart applications. Adv Intell Syst. 2021; 3(6): 2100002.

[49]

ZhangQ, DongR, WuY, GaoW, HeZ, RenB. Light-driven Au-WO3@C Janus micromotors for rapid photodegradation of dye pollutants. ACS Appl Mater Interfaces. 2017; 9(5): 4674-4683.

[50]

TongJT, WangDL, LiuY, et al and spinning schooling motion. Proc Natl Acad Sci USA. 2021; 118(118): e2104481118.

[51]

XieM, ZhangW, FanC, et al. Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. Adv Mater. 2020; 32(26): 2000366.

[52]

LuX, ShenH, WeiY, et al. Ultrafast growth and locomotion of dandelion-like microswarms with tubular micromotors. Small. 2020; 16(38): 2003678.

[53]

VyskočilJ, Mayorga-Martinez CC. JablonskáE, NovotnýF, RumlT, PumeraM. Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano. 2020; 14(7): 8247-8256.

[54]

ZhangH, CaoZ, ZhangQ, et al. Chemotaxis-driven 2D nanosheet for directional drug delivery toward the tumor microenvironment. Small. 2020; 16(44): 2002732.

[55]

WangJ, ToebesBJ, PlachokovaAS, et al. Self-propelled PLGA micromotor with chemotactic response to inflammation. Adv Healthcare Mater. 2020; 9(7): 1901710.

[56]

HortelãoAC, Carrascosa R, Murillo-CremaesN. PatiñoT, Sánchez S. Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano. 2019; 13(1): 429-439.

[57]

SotoF, KuporD, Lopez-RamirezMA. et al. Onion-like multifunctional microtrap vehicles for attraction-trapping-destruction of biological threats. Angew Chem Int Ed. 2020; 59(9): 3480-3485.

[58]

WangS, LiuK, ZhouQ, et al. Hydrogen-powered microswimmers for precise and active hydrogen therapy towards acute ischemic stroke. Adv Funct Mater. 2021; 31(19): 2009475.

[59]

GaoW, DongR, ThamphiwatanaS, et al. Artificial micromotors in the Mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano. 2015; 9(1): 117-123.

[60]

PantarottoD, BrowneWR, FeringaBL. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem Commun. 2008; (13): 1533-1535.

[61]

HortelaoAC, Simó C, GuixM, et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Science Robotics. 2021; 6(52): eabd2823.

[62]

Esteban-Fernández de ávilaB, GaoW, Karshalev E, ZhangL, WangJ. Cell-like micromotors. Acc Chem Res. 2018; 51(9): 1901-1910.

[63]

PengF, TuY, van HestJCM, Wilson DA. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew Chem Int Ed. 2015; 54(40): 11662-11665.

[64]

NgWM, CheHX, GuoC, et al. Artificial magnetotaxis of microbot: magnetophoresis versus self-swimming. Langmuir. 2018; 34(27): 7971-7980.

[65]

ParkBW, ZhuangJ, YasaO, Sitti M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano. 2017; 11(9): 8910-8923.

[66]

StantonMM, Simmchen J, MaX, Miguel-LópezA, Sánchez S. Biohybrid Janus motors driven by Escherichia coli. Adv Mater Interfaces. 2016; 3(2): 1500505.

[67]

ShaoJ, XuanM, ZhangH, Lin X, WuZ, HeQ. Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angew Chem Int Ed. 2017; 56(42): 12935-12939.

[68]

ParkD, ParkSJ, ChoS, et al. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber. Biotechnol Bioeng. 2014; 111(1): 134-143.

[69]

StriggowF, Medina-Sánchez M, AuernhammerGK, MagdanzV, Friedrich BM, SchmidtOG. Sperm-driven micromotors moving in oviduct fluid and viscoelastic media. Small. 2020; 16(24): 2000213.

[70]

WangB, Kostarelos K, NelsonBJ, ZhangL. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv Mater. 2021; 33(4): 2002047.

[71]

DongR, ZhangQ, GaoW, PeiA, RenB. Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano. 2016; 10(1): 839-844.

[72]

WuY, DongR, ZhangQ, Ren B. Dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au Janus micromotors. Nano Micro Lett. 2017; 9(3): 30.

[73]

DuS, WangH, ZhouC, Wang W, ZhangZ. Motor and rotor in one: light-active ZnO/Au twinned rods of tunable motion modes. J Am Chem Soc. 2020; 142(5): 2213-2217.

[74]

PourrahimiAM, VillaK, Manzanares PalenzuelaCL, YingY, SoferZ, PumeraM. Catalytic and light-driven ZnO/Pt Janus nano/micromotors: switching of motion mechanism via interface roughness and defect tailoring at the nanoscale. Adv Funct Mater. 2019; 29(22): 1808678.

[75]

WangJ, XiongZ, ZhanX, et al. A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv Mater. 2017; 29(30): 1701451.

[76]

ZhouD, LiYC, XuP, et al. Visible-light controlled catalytic Cu2O-Au micromotors. Nanoscale. 2017; 9(1): 75-78.

[77]

DaiB, WangJ, XiongZ, et al. Programmable artificial phototactic microswimmer. Nature Nanotechnology. 2016; 11(12): 1087-1092.

[78]

ChenC, MouF, XuL, et al. Light-steered isotropic semiconductor micromotors. Adv Mater. 2017; 29(3): 1603374.

[79]

IbeleME, Lammert PE, CrespiVH, SenA. Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano. 2010; 4(8): 4845-4851.

[80]

IbeleM, Mallouk TE, SenA. Schooling behavior of light-powered autonomous micromotors in water. Angew Chem Int Ed. 2009; 48(18): 3308-3312.

[81]

DuanW, LiuR, SenA. Transition between collective behaviors of micromotors in response to different stimuli. J Am Chem Soc. 2013; 135(4): 1280-1283.

[82]

BianKX, ZhangXW, LiuK, et al. Peptide-directed hierarchical mineralized silver nanocages for anti-tumor photothermal therapy. ACS Sustain Chem Eng. 2018; 6: 7574-7588.

[83]

HuY, LiuW, SunY. Multiwavelength phototactic micromotor with controllable swarming motion for “chemistry-on-the-fly”. ACS Appl Mater Interfaces. 2020; 12(37): 41495-41505.

[84]

WangQ, DongR, WangC, et al. Glucose-fueled micromotors with highly efficient visible-light photocatalytic propulsion. ACS Appl Mater Interfaces. 2019; 11(6): 6201-6207.

[85]

HuangX, El-Sayed IH. QianW, El-SayedMA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006; 128(6): 2115-2120.

[86]

ChenJ, GlausC, LaforestR, et al. Gold nanocages as photothermal transducers for cancer treatment. Small. 2010; 6(7): 811-817.

[87]

LowJX, ZhangLY, ZhuBC, Liu ZY, YuJG. TiO2 photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity. ACS Sustain Chem Eng. 2018; 6: 15653-15661.

[88]

GuoW, WangF, DingD, Song C, GuoC, LiuS. TiO2-x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem Mater. 2017; 29(21): 9262-9274.

[89]

LeeJ, KimJ, KimWJ. Photothermally controllable cytosolic drug delivery based on core-shell MoS2-porous silica nanoplates. Chem Mater. 2016; 28(17): 6417-6424.

[90]

TianQ, TangM, SunY, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater. 2011; 23(31): 3542-3547.

[91]

LiuD, WangT, LuY. Untethered microrobots for active drug delivery: from rational design to clinical settings. Adv Healthcare Mater. 2022; 11(3): 2102253.

[92]

KimY, ZhaoX. Magnetic soft materials and robots. Chem Rev. 2022; 122(5): 5317-5364.

[93]

RikkenRSM, NolteRJM, MaanJC, van Hest JCM, WilsonDA, ChristianenPCM. Manipulation of micro-and nanostructure motion with magnetic fields. Soft Matter. 2014; 10(9): 1295-1308.

[94]

KadiriVM, BussiC, HolleAW, et al. Biocompatible magnetic micro-and nanodevices: fabrication of FePt nanopropellers and cell transfection. Adv Mater. 2020; 32(25): 2001114.

[95]

ParmarJ, VillaK, VilelaD, Sánchez S. Platinum-free cobalt ferrite based micromotors for antibiotic removal. Appl Mater Today. 2017; 9(9): 605-611.

[96]

YuanK, Asunción-Nadal V, LiY, Jurado-SánchezB, Escarpa A. Graphdiyne tubular micromotors: electrosynthesis, characterization and self-propelled capabilities. Appl Mater Today. 2020; 20: 100743.

[97]

YuanK, De la asunción-Nadal V, Jurado-SánchezB, EscarpaA. 2D nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion. Chem Mater. 2020; 32(5): 1983-1992.

[98]

PachecoM, Asunción-Nadal V, Jurado-SánchezB, EscarpaA. Engineering Janus micromotors with WS2 and affinity peptides for turn-on fluorescent sensing of bacterial lipopolysaccharides. Biosens Bioelectron. 2020; 165: 112286.

[99]

Mayorga-MartinezCC, Pumera M. Self-propelled tags for protein detection. Adv Funct Mater. 2020; 30(6): 1906449.

[100]

YuanK, López , Jurado-SánchezB, EscarpaA. Janus micromotors coated with 2D nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl Mater Interfaces. 2020; 12(41): 46588-46597.

[101]

VillaK, Vyskočil J, YingY, ZelenkaJ, PumeraM. Microrobots in brewery: dual magnetic/light-powered hybrid microrobots for preventing microbial contamination in beer. Chem Eur J. 2020; 26(14): 3039-3043.

[102]

JiF, WangB, ZhangL. Light-triggered catalytic performance enhancement using magnetic nanomotor ensembles. Research (Wash DC). 2020; 3: 6380794.

[103]

ChangMJ, CuiWN, WangH, et al. Recoverable magnetic CoFe2O4/BiOI nanofibers for efficient visible light photocatalysis. Colloids Surf A. 2019; 562: 127-135.

[104]

KimS, QiuF, KimS, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater. 2013; 25(41): 5863-5868.

[105]

TakatoriSC, De Dier R, VermantJ, BradyJF. Acoustic trapping of active matter. Nat Commun. 2016; 7(1): 10694.

[106]

ChenY, DingX, Steven LinSC, et al. Tunable nanowire patterning using standing surface acoustic waves. ACS Nano. 2013; 7(4): 3306-3314.

[107]

SotoF, MartinA, IbsenS, et al. Acoustic microcannons: toward advanced microballistics. ACS Nano. 2016; 10(1): 1522-1528.

[108]

WangW, CastroLA, HoyosM, Mallouk TE. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano. 2012; 6(7): 6122-6132.

[109]

XuanM, MestreR, GaoC, ZhouC, HeQ, Sánchez S. Noncontinuous super-diffusive dynamics of a light-activated nanobottle motor. Angew Chem Int Ed. 2018; 57(23): 6838-6842.

[110]

PalacciJ, Sacanna S, VatchinskyA, ChaikinPM, PineDJ. Photoactivated colloidal dockers for cargo transportation. J Am Chem Soc. 2013; 135(43): 15978-15981.

[111]

LiJ, SinghVV, SattayasamitsathitS, et al. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano. 2014; 8(11): 11118-11125.

[112]

SinghDP, Choudhury U, FischerP, MarkAG. Non-equilibrium assembly of light-activated colloidal mixtures. Adv Mater. 2017; 29(32): 1701328.

[113]

GaoW, WangJ. The environmental impact of micro/nanomachines. A review. ACS Nano. 2014; 8(4): 3170-3180.

[114]

ShaoJ, XuanM, DaiL, SiT, LiJ, HeQ. Near-infrared-activated nanocalorifiers in microcapsules: vapor bubble generation for in vivo enhanced cancer therapy. Angew Chem Int Ed. 2015; 54(43): 12782-12787.

[115]

ChenC, Karshalev E, LiJ, et al. Transient micromotors that disappear when no longer needed. ACS Nano. 2016; 10(11): 10389-10396.

[116]

ZhangL, AbbottJJ, DongL, Kratochvil BE, BellD, NelsonBJ. Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett. 2009; 94(6): 064107.

[117]

KhalilISM, Dijkslag HC, AbelmannL, MisraS. MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl Phys Lett. 2014; 104(22): 223701.

[118]

SolovevAA, MeiY, Bermúdez UreñaE, HuangG, Schmidt OG. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small. 2009; 5(14): 1688-1692.

[119]

SanchezS, AnanthAN, FominVM, Viehrig M, SchmidtOG. Superfast motion of catalytic microjet engines at physiological temperature. J Am Chem Soc. 2011; 133(38): 14860-14863.

[120]

LiuM, LiuL, GaoW, et al. A micromotor based on polymer single crystals and nanoparticles: toward functional versatility. Nanoscale. 2014; 6(15): 8601-8605.

[121]

ZengH, Wasylczyk P, ParmeggianiC, MartellaD, Burresi M, WiersmaDS. Light-fueled microscopic walkers. Adv Mater. 2015; 27(26): 3883-3887.

[122]

RenL, ZhouD, MaoZ, XuP, HuangTJ, Mallouk TE. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power. ACS Nano. 2017; 11(10): 10591-10598.

[123]

GibbsJG, Kothari S, SaintillanD, ZhaoYP. Geometrically designing the kinematic behavior of catalytic nanomotors. Nano Lett. 2011; 11(6): 2543-2550.

[124]

RaoQ, SiT, WuZ, XuanM, HeQ. A light-activated explosive micropropeller. Sci Rep. 2017; 7(1): 4621.

[125]

HuN, SunM, LinX, et al. Self-propelled rolled-up polyelectrolyte multilayer microrockets. Adv Funct Mater. 2018; 28(25): 1705684.

[126]

LiJ, LiX, LuoT, et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Science Robotics. 2018; 3(19): eaat8829.

[127]

GaoW, PeiA, DongR, Wang J. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J Am Chem Soc. 2014; 136(6): 2276-2279.

[128]

LiaoY, LiuD, WangB, et al. Photothermally modulated magnetic nanochains as swarm nanorobotics for microreaction control. ACS Appl Nano Mater. 2023; 6(1): 21-33.

[129]

LiT, LiJ, MorozovKI, et al. Highly efficient freestyle magnetic nanoswimmer. Nano Lett. 2017; 17(8): 5092-5098.

[130]

GeL, ChengJ, SunX, LiuJ, WeiD, GuoR. Controlled group motion of anisotropic Janus droplets prepared by one-step vortex mixing. ACS Appl Mater Interfaces. 2020; 12(12): 14588-14598.

[131]

CampuzanoS, OrozcoJ, KaganD, et al. Bacterial isolation by lectin-modified microengines. Nano Lett. 2012; 12(1): 396-401.

[132]

HuangY, LiuD, GuoR, et al. Magnetic-controlled dandelion-like nanocatalytic swarm for targeted biofilm elimination. Nanoscale. 2022; 14(17): 6497-6506.

[133]

ServantA, QiuF, MazzaM, Kostarelos K, NelsonBJ. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater. 2015; 27(19): 2981-2988.

[134]

VilelaD, Cossío U, ParmarJ, et al. Medical imaging for the tracking of micromotors. ACS Nano. 2018; 12(2): 1220-1227.

[135]

GuixM, MeyerAK, KochB, Schmidt OG. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ. Sci Rep. 2016; 6(1): 21701.

[136]

YanH, ShaoD, LaoYH, Li M, HuH, LeongKW. Engineering cell membrane-based nanotherapeutics to target inflammation. Adv Sci. 2019; 6(15): 1900605.

[137]

JeonS, ParkBC, LimS, et al. Heat-generating iron oxide multigranule nanoclusters for enhancing hyperthermic efficacy in tumor treatment. ACS Appl Mater Interfaces. 2020; 12(30): 33483-33491.

[138]

LiS, BatraR, BrownD, et al. Particle robotics based on statistical mechanics of loosely coupled components. Nature. 2019; 567(7748): 361-365.

[139]

ButtinoniI, Bialké J, KümmelF, LöwenH, Bechinger C, SpeckT. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys Rev Lett. 2013; 110(23): 238301.

[140]

SolovevAA, MeiY, SchmidtOG. Catalytic microstrider at the air-liquid interface. Adv Mater. 2010; 22(39): 4340-4344.

[141]

LiJ, LiT, XuT, et al. Magneto-acoustic hybrid nanomotor. Nano Lett. 2015; 15(7): 4814-4821.

[142]

AhmedD, SukhovA, HauriD, et al. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nature Machine Intelligence. 2021; 3(2): 116-124.

[143]

XuH, Medina-Sánchez M, MaitzMF, WernerC, Schmidt OG. Sperm micromotors for cargo delivery through flowing blood. ACS Nano. 2020; 14(3): 2982-2993.

[144]

AhmedS, Gentekos DT, FinkCA, MalloukTE. Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano. 2014; 8(11): 11053-11060.

[145]

Hernàndez-NavarroS, TiernoP, Farrera JA, Ignés-MullolJ, SaguésF. Reconfigurable swarms of nematic colloids controlled by photoactivated surface patterns. Angew Chem Int Ed. 2014; 53(40): 10696-10700.

[146]

YeZ, SunY, ZhangH, Song B, DongB. A phototactic micromotor based on platinum nanoparticle decorated carbon nitride. Nanoscale. 2017; 9(46): 18516-18522.

[147]

MouF, ZhangJ, WuZ, et al. Phototactic flocking of photochemical micromotors. iScience. 2019; 19: 415-424.

[148]

HongY, DiazM, Córdova-FigueroaUM, SenA. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv Funct Mater. 2010; 20(10): 1568-1576.

[149]

LiuD, SunD, ZhouJ, et al. Bionic morphological design and interface-free fabrication of halfmoon microrobots with enhanced motion performance. Chem Eng J. 2023; 452: 139464.

[150]

XuT, SotoF, GaoW, et al. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J Am Chem Soc. 2015; 137(6): 2163-2166.

[151]

ZhouD, GaoY, YangJ, et al. Light-ultrasound driven collective “firework” behavior of nanomotors. Adv Sci. 2018; 5(7): 1800122.

[152]

KaiserA, Snezhko A, AransonIS. Flocking ferromagnetic colloids. Sci Adv. 2017; 3(2): e1601469.

[153]

YuJ, WangB, DuX, WangQ, ZhangL. Ultra-extensible ribbon-like magnetic microswarm. Nat Commun. 2018; 9(1): 3260.

[154]

AbolfathiK, YazdiMRH, HoshiarAK. Studies of different swarm modes for the MNPs under the rotating magnetic field. IEEE Trans Nanotechnol. 2020; 19: 849-855.

[155]

YuJ, JinD, ChanKF, Wang Q, YuanK, ZhangL. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun. 2019; 10(1): 5631.

[156]

HanK, KokotG, TovkachO, Glatz A, AransonIS, SnezhkoA. Emergence of self-organized multivortex states in flocks of active rollers. Proc Natl Acad Sci USA. 2020; 117(18): 9706-9711.

[157]

LiJ, LiT, XuT, et al. Magneto–acoustic hybrid nanomotor. Nano Lett. 2015; 15(7): 4814-4821.

[158]

PartridgeBL. The structure and function of fish schools. Sci Am. 1982; 246(6): 114-123.

[159]

VicsekT, Zafeiris A. Collective motion. Phys Rep. 2012; 517(3-4): 71-140.

[160]

DuX, YuJ, JinD, ChiuPWY, ZhangL. Independent pattern formation of nanorod and nanoparticle swarms under an oscillating field. ACS Nano. 2021; 15(3): 4429-4439.

[161]

JinD, YuJ, YuanK, Zhang L. Mimicking the structure and function of ant bridges in a reconfigurable microswarm for electronic applications. ACS Nano. 2019; 13(5): 5999-6007.

[162]

WangL, SongL, SunH, JiY, DaiY, FengL. Multi-mode motion control of reconfigurable vortex-shaped microrobot swarms for targeted tumor therapy. IEEE Robot Autom Lett. 2022; 7(2): 3578-3583.

[163]

ZhangT, DengY, ZhouB, et al. Reconfigurable disk-like microswarm under a sawtooth magnetic field. Micromachines. 2021; 12(12): 1529.

[164]

SnezhkoA, Aranson IS. Magnetic manipulation of self-assembled colloidal asters. Nat Mater. 2011; 10(9): 698-703.

[165]

YangT, Sprinkle B, GuoY, et al. Reconfigurable microbots folded from simple colloidal chains. Proc Natl Acad Sci USA. 2020; 117(31): 18186-18193.

[166]

YanJ, HanM, ZhangJ, Xu C, LuijtenE, GranickS. Reconfiguring active particles by electrostatic imbalance. Nat Mater. 2016; 15(10): 1095-1099.

[167]

WangX, YuanY, XieX, ZhangY, MinC, YuanX. Graphene-based opto-thermoelectric tweezers. Adv Mater. 2022; 34(8): 2107691.

[168]

GaoZ, WangS, SuiY, et al. A multifunctional acoustic tweezer for heterogenous assembloids patterning. Small Structures. 2023; 4(5): 2200288.

[169]

SunM, FanX, TianC, Yang M, SunL, XieH. Swarming microdroplets to a dexterous micromanipulator. Adv Funct Mater. 2021; 31(19): 2011193.

[170]

ChenX, WuT, HuangD, et al. Optothermally programmable liquids with spatiotemporal precision and functional complexity. Adv Mater. 2022; 34(38): 2205563.

[171]

ChenHC, ChengCJ. Holographic optical tweezers: techniques and biomedical applications. Appl Sci. 2022; 12(20): 10244.

[172]

AshkinA, Dziedzic JM, BjorkholmJE, ChuS. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986; 11(5): 288-290.

[173]

KimH, LeeW, LeeH, JoH, SongY, Ahn J. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat Commun. 2016; 7(1): 13317.

[174]

XieX, WangX, MinC, et al. Single-particle trapping and dynamic manipulation with holographic optical surface-wave tweezers. Photonics Research. 2022; 10(1): 166-173.

[175]

LiuW, GaoH, LiuK, LeiD, PeiK, HuG. A review on particle assembly in standing wave acoustic field. J Nanopart Res. 2022; 24(4): 81.

[176]

MeldeK, MarkAG, QiuT, Fischer P. Holograms for acoustics. Nature. 2016; 537(7621): 518-522.

[177]

WorkampM, Ramirez G, DanielsKE, DijksmanJA. Symmetry-reversals in chiral active matter. Soft Matter. 2018; 14(27): 5572-5580.

[178]

ScholzC, EngelM, PöschelT. Rotating robots move collectively and self-organize. Nat Commun. 2018; 9(1): 931.

[179]

WuC, DaiJ, LiX, et al. Ion-exchange enabled synthetic swarm. Nat Nanotechnol. 2021; 16(3): 288-295.

[180]

SinghDP, UspalWE, PopescuMN, Wilson LG, FischerP. Photogravitactic microswimmers. Adv Funct Mater. 2018; 28(25): 1706660.

[181]

CohenJA, Golestanian R. Emergent cometlike swarming of optically driven thermally active colloids. Phys Rev Lett. 2014; 112(6): 068302.

[182]

GuoZ, WangT, RawalA, et al. Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Mater Today. 2019; 28: 10-16.

[183]

GolestanianR, Liverpool TB, AjdariA. Designing phoretic micro-and nano-swimmers. New J Phys. 2007; 9(5): 126.

[184]

JiF, JinD, WangB, Zhang L. Light-driven hovering of a magnetic microswarm in fluid. ACS Nano. 2020; 14(6): 6990-6998.

[185]

XuZ, XuQ. Collective behaviors of magnetic microparticle swarms: from dexterous tentacles to reconfigurable carpets. ACS Nano. 2022; 16(9): 13728-13739.

[186]

GaoY, MouF, FengY, et al. Dynamic colloidal molecules maneuvered by light-controlled Janus micromotors. ACS Appl Mater Interfaces. 2017; 9(27): 22704-22712.

[187]

LiangX, MouF, HuangZ, et al. Hierarchical microswarms with leader-follower-like structures: electrohydrodynamic self-organization and multimode collective photoresponses. Adv Funct Mater. 2020; 30(16): 1908602.

[188]

MouF, LiX, XieQ, et al. Active micromotor systems built from passive particles with biomimetic predator-prey interactions. ACS Nano. 2020; 14(1): 406-414.

[189]

MeredithCH, Moerman PG, GroenewoldJ, et al. Predator-prey interactions between droplets driven by non-reciprocal oil exchange. Nat Chem. 2020; 12(12): 1136-1142.

[190]

ZhangY, YanK, JiF, ZhangL. Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Adv Funct Mater. 2018; 28(52): 1806340.

[191]

SunM, ChenW, FanX, TianC, SunL, XieH. Cooperative recyclable magnetic microsubmarines for oil and microplastics removal from water. Appl Mater Today. 2020; 20: 100682.

[192]

WangD, ZhaoG, ChenC, et al. One-step fabrication of dual optically/magnetically modulated walnut-like micromotor. Langmuir. 2019; 35(7): 2801-2807.

[193]

DasR, SypuVS, PaumoHK, Bhaumik M, MaharajV, MaityA. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl Catal B. 2019; 244: 546-558.

[194]

ParkH, MayA, PortillaL, et al. Magnetite nanoparticles as efficient materials for removal of glyphosate from water. Nat Sustain. 2020; 3(2): 129-135.

[195]

RenY, LiH, LiuJ, ZhouM, PanJ. Crescent-shaped micromotor sorbents with sulfonic acid functionalized convex surface: the synthesis by a Janus emulsion strategy and adsorption for Li. J Hazard Mater. 2022; 422: 126870.

[196]

WangB, JiF, YuJ, YangL, WangQ, Zhang L. Bubble-assisted three-dimensional ensemble of nanomotors for improved catalytic performance. iScience. 2019; 19: 760-771.

[197]

ChenZ, JiangJ, WangX, Zhang H, SongB, DongB. Visible light-regulated BiVO4-based micromotor with biomimetic ‘predator-bait’ behavior. J Mater Sci. 2022; 57(6): 4092-4103.

[198]

Jurado-SánchezB, Pacheco M, RojoJ, EscarpaA. Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew Chem Int Ed. 2017; 56(24): 6957-6961.

[199]

GuoR, LiuD, HuangY, Wang B, DongJ, LuY. Honeycomb-like active microswarms for magnetically tunable cascade enzyme catalysis. Nanoscale. 2022; 14(17): 6535-6542.

[200]

ChengX, WangC, LiuD, et al. Dynamic artificial cells by swarm nanorobotics and synthetic life chemistry. Sci China Mater. 2023; 66(5): 2090-2099.

[201]

FuS, ZhangX, XieY, WuJ, JuH. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale. 2017; 9(26): 9026-9033.

[202]

ZhaoL, LiuY, XieS, et al. Janus micromotors for motion-capture-ratiometric fluorescence detection of circulating tumor cells. Chem Eng J. 2020; 382: 123041.

[203]

WangY, ZhouC, WangW, et al. Photocatalytically powered matchlike nanomotor for light-guided active sers sensing. Angew Chem Int Ed. 2018; 57(40): 13110-13113.

[204]

JiY, LinX, WuZ, WuY, GaoW, HeQ. Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers. Angew Chem Int Ed. 2019; 58(35): 12200-12205.

[205]

LoghinD, Tremblay C, MohammadiM, MartelS. Exploiting the responses of magnetotactic bacteria robotic agents to enhance displacement control and swarm formation for drug delivery platforms. Int J Robot Res. 2017; 36(11): 1195-1210.

[206]

YangL, YuJ, ZhangL. Statistics-based automated control for a swarm of paramagnetic nanoparticles in 2-D space. IEEE Trans Robot. 2020; 36(1): 254-270.

[207]

YuJ, YangL, ZhangL. Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. Int J Robot Res. 2018; 37(8): 912-930.

[208]

AhmedD, BaaschT, BlondelN, Läubli N, DualJ, NelsonBJ. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nat Commun. 2017; 8(1): 770.

[209]

WuZ, TrollJ, JeongHH, et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv. 2018; 4(11): eaat4388.

[210]

WangQ, YangL, WangB, Yu E, YuJ, ZhangL. Collective behavior of reconfigurable magnetic droplets via dynamic self-assembly. ACS Appl Mater Interfaces. 2019; 11(1): 1630-1637.

[211]

BhuyanT, SinghAK, DuttaD, Unal A, GhoshSS, BandyopadhyayD. Magnetic field guided chemotaxis of imushbots for targeted anticancer therapeutics. ACS Biomater Sci Eng. 2017; 3(8): 1627-1640.

[212]

LiuD, GuoR, MaoS, et al. 3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids. Nano Res. 2023; 16(1): 1021-1032.

[213]

LeeH, KimDI, KwonSH, Park S. Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. ACS Appl Mater Interfaces. 2021; 13(17): 19633-19647.

[214]

ChengR, HuangW, HuangL, et al. Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors. ACS Nano. 2014; 8(8): 7746-7754.

[215]

BoymelgreenAM, BalliT, MilohT, Yossifon G. Active colloids as mobile microelectrodes for unified label-free selective cargo transport. Nat Commun. 2018; 9(1): 760.

[216]

FelfoulO, Mohammadi M, TaherkhaniS, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol. 2016; 11(11): 941-947.

[217]

TerzopoulouA, WangX, ChenXZ, et al. Biodegradable metal-organic framework-based microrobots (MOFBOTs). Adv Healthcare Mater. 2020; 9(20): 2001031.

[218]

HortelãoAC, Patiño T, Perez-JiménezA, BlancoÀ, SánchezS. Enzyme-powered nanobots enhance anticancer drug delivery. Adv Funct Mater. 2018; 28(25): 1705086.

[219]

YuJ, WangQ, LiM, et al. Characterizing nanoparticle swarms with tuneable concentrations for enhanced imaging contrast. IEEE Robot Autom Lett. 2019; 4(3): 2942-2949.

[220]

XuanM, ShaoJ, DaiL, HeQ, LiJ. Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthcare Mater. 2015; 4(11): 1645-1652.

[221]

LiJ, LiuW, LiT, et al. Swimming microrobot optical nanoscopy. Nano Lett. 2016; 16(10): 6604-6609.

[222]

WangQ, DuX, JinD, ZhangL. Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano. 2022; 16(1): 604-616.

[223]

XieL, PangX, YanX, et al. Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano. 2020; 14(3): 2880-2893.

[224]

YanX, ZhouQ, VincentM, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics. 2017; 2(12): eaaq1155.

[225]

WangQ, JinD, WangB, et al. Reconfigurable magnetic microswarm for accelerating tPA-mediated thrombolysis under ultrasound imaging. IEEE/ASME Trans Mechatron. 2022; 27(4): 2267-2277.

[226]

WangQ, YangL, YuJ, VongC-I, ChiuPWY, Zhang L. Magnetic navigation of a rotating colloidal swarm using ultrasound images. In: 25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018.

[227]

SinghAV, Dad Ansari MH, DayanCB, et al. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials. 2019; 219: 119394.

[228]

WuZ, LiL, YangY, et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Science Robotics. 2019; 4(32): eaax0613.

[229]

ErinO, Gilbert HB, TabakAF, SittiM. Elevation and azimuth rotational actuation of an untethered millirobot by MRI gradient coils. IEEE Trans Robots. 2019; 35(6): 1323-1337.

[230]

KimJI, ChunC, KimB, et al. Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials. 2012; 33(1): 218-224.

[231]

PalagiS, MarkAG, ReighSY, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater. 2016; 15(6): 647-653.

[232]

LiS, LiuD, HuY, et al. Soft magnetic microrobot doped with porous silica for stability-enhanced multimodal locomotion in a nonideal environment. ACS Appl Mater Interfaces. 2022; 14(8): 10856-10874.

[233]

HuW, LumGZ, MastrangeliM, SittiM. Small-scale soft-bodied robot with multimodal locomotion. Nature. 2018; 554(7690): 81-85.

[234]

JaniJM, LearyM, SubicA, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014; 56: 1078-1113.

[235]

ZhangF, ZhaoT, Ruiz-MolinaD. et al. Shape memory polyurethane microcapsules with active deformation. ACS Appl Mater Interfaces. 2020; 12(41): 47059-47064.

[236]

ZhuZ, NgDWH, ParkHS, McAlpine MC. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater. 2021; 6(1): 27-47.

[237]

ShengX, LiuZ, ZengR, Chen L, FengX, JiangL. Enhanced photocatalytic reaction at air-liquid-solid joint interfaces. J Am Chem Soc. 2017; 139(36): 12402-12405.

[238]

DengC, LiuY, FanX, et al. Femtosecond laser 4D printing of light-driven intelligent micromachines. Adv Funct Mater. 2023; 33(11): 2211473.

[239]

YangL, JiangJ, GaoX, WangQ, DouQ, ZhangL. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nat Mach Intell. 2022; 4(5): 480-493.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/