Organic transistor-based integrated circuits for future smart life

Yifan Xie , Chenming Ding , Qingqing Jin , Lei Zheng , Yunqi Xu , Hongmei Xiao , Miao Cheng , Yanqin Zhang , Guanhua Yang , Mengmeng Li , Ling Li , Ming Liu

SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1261

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1261 DOI: 10.1002/smm2.1261
REVIEW

Organic transistor-based integrated circuits for future smart life

Author information +
History +
PDF

Abstract

With the rapid development of advanced technologies in the Internet of Things era, higher requirements are needed for next-generation electronic devices. Fortunately, organic thin film transistors (OTFTs) provide an effective solution for electronic skin and flexible wearable devices due to their intrinsic features of mechanical flexibility, lightweight, simple fabrication process, and good biocompatibility. So far considerable efforts have been devoted to this research field. This article reviews recent advances in various promising and state-of-the-art OTFTs as well as related integrated circuits with the main focuses on: (I) material categories of high-mobility organic semiconductors for both individual transistors and integrated circuits; (II) effective device architectures and processing techniques for large-area fabrication; (III) important performance metrics of organic integrated circuits and realization of digital and analog devices for future smart life; (IV) applicable analytical models and design flow to accelerate the circuit design. In addition, the emerging challenges of OTFT-based integrated circuits, such as transistor uniformity and stability are also discussed, and the possible methods to solve these problems at both transistor and circuit levels are summarized.

Keywords

analytical models / device architectures / digital and analog circuits / integrated circuits / organic thin-film transistors

Cite this article

Download citation ▾
Yifan Xie, Chenming Ding, Qingqing Jin, Lei Zheng, Yunqi Xu, Hongmei Xiao, Miao Cheng, Yanqin Zhang, Guanhua Yang, Mengmeng Li, Ling Li, Ming Liu. Organic transistor-based integrated circuits for future smart life. SmartMat, 2024, 5(4): e1261 DOI:10.1002/smm2.1261

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Myny K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron. 2018; 1(1): 30-39.

[2]

Sugiyama M, Uemura T, Kondo M, et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat Electron. 2019; 2(8): 351-360.

[3]

Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature. 2018; 555(7694): 83-88.

[4]

Wang W, Wang S, Rastak R, et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat Electron. 2021; 4(2): 143-150.

[5]

Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science. 2018; 360(6392): 998-1003.

[6]

Sun Y, Liu Y, Zhu D. Advances in organic field-effect transistors. J Mater Chem. 2005; 15(1): 53-65.

[7]

Sirringhaus H. Device physics of solution-processed organic field-effect transistors. Adv Mater. 2005; 17(20): 2411-2425.

[8]

Jiang C, Choi HW, Cheng X, Ma H, Hasko D, Nathan A. Printed subthreshold organic transistors operating at high gain and ultralow power. Science. 2019; 363(6428): 719-723.

[9]

Keene ST, Lubrano C, Kazemzadeh S, et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat Mater. 2020; 19(9): 969-973.

[10]

Liu Y, Li J, Song S, et al. Morphing electronics enable neuromodulation in growing tissue. Nat Biotechnol. 2020; 38(9): 1031-1036.

[11]

Roth JG, Huang MS, Li TL, et al. Advancing models of neural development with biomaterials. Nat Rev Neurosci. 2021; 22(10): 593-615.

[12]

Wang C, Zhang X, Dong H, Chen X, Hu W. Challenges and emerging opportunities in high-mobility and low-energy-consumption organic field-effect transistors. Adv Energy Mater. 2020; 10(29): 2000955.

[13]

Chen J, Yang J, Guo Y, Liu Y. Acceptor modulation strategies for improving the electron transport in high-performance organic field-effect transistors. Adv Mater. 2022; 34(22): 2104325.

[14]

Guo X, Baumgarten M, Müllen K. Designing π-conjugated polymers for organic electronics. Prog Polym Sci. 2013; 38(12): 1832-1908.

[15]

Huang H, Yang L, Facchetti A, Marks TJ. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem Rev. 2017; 117(15): 10291-10318.

[16]

Liu R, Yang W, Xu W, et al. Impact of chemical design on the molecular orientation of conjugated donor-acceptor polymers for field-effect transistors. ACS Appl Polym Mater. 2022; 4(4): 2233-2250.

[17]

Waldrip M, Jurchescu OD, Gundlach DJ, Bittle EG. Contact resistance in organic field-effect transistors: conquering the barrier. Adv Funct Mater. 2020; 30(20): 1904576.

[18]

Di C, Liu Y, Yu G, Zhu D. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc Chem Res. 2009; 42(10): 1573-1583.

[19]

Li M, Wang J, Xu W, et al. Noncovalent semiconducting polymer monolayers for high-performance field-effect transistors. Prog Polym Sci. 2021; 117: 101394.

[20]

Elsaegh S, Veit C, Zschieschang U, et al. Low-power organic light sensor array based on active-matrix common-gate transimpedance amplifier on foil for imaging applications. IEEE J Solid State Circ. 2020; 55(9): 2553-2566.

[21]

Myny K, van Veenendaal E, Gelinck GH, Genoe J, Dehaene W, Heremans P. An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil. IEEE J Solid State Circ. 2012; 47(1): 284-291.

[22]

Duan S, Geng B, Zhang X, Ren X, Hu W. Solution-processed crystalline organic integrated circuits. Matter. 2021; 4(11): 3415-3443.

[23]

Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev. 2020; 49(21): 7627-7670.

[24]

Matsui H, Takeda Y, Tokito S. Flexible and printed organic transistors: from materials to integrated circuits. Org Electron. 2019; 75: 105432.

[25]

Cui X, Xiao C, Zhang L, Li Y, Wang Z. Polycyclic aromatic hydrocarbons with orthogonal tetraimides as n-type semiconductors. Chem Commun. 2016; 52(90): 13209-13212.

[26]

Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM. Interface-controlled, high-mobility organi. transistors. Adv Mater. 2007; 19(5): 688-692.

[27]

Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of single-crystal films. Nature. 2011; 475(7356): 364-367.

[28]

Nakayama K, Hirose Y, Soeda J, et al. Patternable solution-crystallized organic transistors with high charge carrier mobility. Adv Mater. 2011; 23(14): 1626-1629.

[29]

Yuan Y, Giri G, Ayzner AL, et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat Commun. 2014; 5(1): 3005.

[30]

He T, Stolte M, Würthner F. Air-stable n-channel organic single crystal field-effect transistors based on microribbons of core-chlorinated naphthalene diimide. Adv Mater. 2013; 25(48): 6951-6955.

[31]

Uno M, Uemura T, Kanaoka Y, Chen Z, Facchetti A, Takeya J. High-speed organic single-crystal transistors gated with short-channel air gaps: efficient hole and electron injection in organic semiconductor crystals. Org Electron. 2013; 14(6): 1656-1662.

[32]

Li H, Tee BCK, Cha JJ, et al. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J Am Chem Soc. 2012; 134(5): 2760-2765.

[33]

Dou JH, Zheng YQ, Yao ZF, et al. Fine-tuning of crystal packing and charge transport properties of BDOPV derivatives through fluorine substitution. J Am Chem Soc. 2015; 137(50): 15947-15956.

[34]

Tripathi AK, Heinrich M, Siegrist T, Pflaum J. Growth and electronic transport in 9, 10-diphenylanthracene single crystals-an organic semiconductor of high electron and hole mobility. Adv Mater. 2007; 19(16): 2097-2101.

[35]

Xie W, Prabhumirashi PL, Nakayama Y, et al. Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors. ACS Nano. 2013; 7(11): 10245-10256.

[36]

Bisri SZ, Takenobu T, Yomogida Y, et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv Funct Mater. 2009; 19(11): 1728-1735.

[37]

Yang J, Zhao Z, Wang S, Guo Y, Liu Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem. 2018; 4(12): 2748-2785.

[38]

Li J, Zhao Y, Tan HS, et al. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep. 2012; 2(1): 754.

[39]

Wu Y, Su B, Jiang L, Heeger AJ. “Liquid-liquid-solid”-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors. Adv Mater. 2013; 25(45): 6526-6533.

[40]

Yao Y, Dong H, Liu F, Russell TP, Hu W. Approaching intra-and interchain charge transport of conjugated polymers facilely by topochemical polymerized single crystals. Adv Mater. 2017; 29(29): 1701251.

[41]

Um HA, Lee DH, Heo DU, et al. High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors. ACS Nano. 2015; 9(5): 5264-5274.

[42]

Li M, An C, Pisula W, Müllen K. Cyclopentadithiophene-benzothiadiazole donor-acceptor polymers as prototypical semiconductors for high-performance field-effect transistors. Acc Chem Res. 2018; 51(5): 1196-1205.

[43]

Yamashita Y, Hinkel F, Marszalek T, et al. Mobility exceeding 10 cm2/(V·s) in donor-acceptor polymer transistors with band-like charge transport. Chem Mater. 2016; 28(2): 420-424.

[44]

Tseng H-R, Phan H, Luo C, et al. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv Mater. 2014; 26(19): 2993-2998.

[45]

Yang J, Zhao Z, Geng H, et al. Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors. Adv Mater. 2017; 29(36): 1702115.

[46]

Kang K, Watanabe S, Broch K, et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat Mater. 2016; 15(8): 896-902.

[47]

Zhu C, Zhao Z, Chen H, et al. Regioregular bis-pyridal[2, 1, 3]thiadiazole-based semiconducting polymer for high-performance ambipolar transistors. J Am Chem Soc. 2017; 139(49): 17735-17738.

[48]

McCulloch I, Salleo A, Chabinyc M. Avoid the kinks when measuring mobility. Science. 2016; 352(6293): 1521-1522.

[49]

Choi HH, Cho K, Frisbie CD, Sirringhaus H, Podzorov V. Critical assessment of charge mobility extraction in FETs. Nat Mater. 2018; 17(1): 2-7.

[50]

Paterson AF, Singh S, Fallon KJ, et al. Recent progress in high-mobility organic transistors: a reality check. Adv Mater. 2018; 30(36): 1801079.

[51]

Peng B, Cao K, Lau AHY, Chen M, Lu Y, Chan PKL. Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density. Adv Mater. 2020; 32(34): 2002281.

[52]

Pei K, Lau AHY, Chan PKL. Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors. Phys Chem Chem Phys. 2020; 22(13): 7100-7109.

[53]

Yu X, Yu J, Zhou J, Jiang Y. Organic field-effect transistors with nearly non-injection barrier from source/drain electrodes to pentacene. Synth Met. 2012; 162(11): 936-940.

[54]

Liu C, Xu Y, Noh Y-Y. Contact engineering in organic field-effect transistors. Mater Today. 2015; 18(2): 79-96.

[55]

Torres-Miranda M, Petritz A, Fian A, et al. High-speed plastic integrated circuits: process integration, design, and test. IEEE J Emerging Selected Topics Circuits Syst. 2017; 7(1): 133-146.

[56]

Petritz A, Wolfberger A, Fian A, Griesser T, Irimia-Vladu M. Stadlober B. Cellulose-derivative-based gate dielectric for high-performance organic complementary inverters. Adv Mater. 2015; 27(46): 7645-7656.

[57]

Fang P-H, Wu F-C, Sheu H-S. Lai J-H, Cheng H-L. Chou W-Y. Analysis of ultrathin organic inverters by using in situ grazing incidence X-ray diffraction under high bending times and low voltage. Org Electron. 2021; 88: 106002.

[58]

Park H, Yoo S, Ha J, et al. Tailored polymer gate dielectric engineering to optimize flexible organic field-effect transistors and complementary integrated circuits. ACS Appl Mater Interfaces. 2021; 13(26): 30921-30929.

[59]

Chang J, Zhang X, Ge T, Zhou J. Fully printed electronics on flexible substrates: high gain amplifiers and DAC. Org Electron. 2014; 15(3): 701-710.

[60]

Lee M, Yun S, Ho D, et al. Green solvent-processed complementary-like inverters based on ambipolar organic thin-film transistors. J Ind Eng Chem. 2022; 105: 231-237.

[61]

Seo J, Shin J, Yoo H. Zinc-tin oxide/C8-BTBT hybrid heterostructures providing balanced ambipolar charge transport behaviors and their applications to pre-state-dependent inverter logic. Org Electron. 2023; 113: 106713.

[62]

Peng Z, Liu F, Sun H, Wang Y, Wang J, Jiang C. Complementary-like inverter based on organic-inorganic heterojunction ambipolar transistors on flexible substrate. IEEE J Electron Devices Society. 2021; 9: 933-938.

[63]

Panigrahi D, Hayakawa R, Honma K, Kanai K, Wakayama Y. Organic heterojunction transistors for mechanically flexible multivalued logic circuits. Appl Phys Express. 2021; 14(8): 081004.

[64]

Panigrahi D, Hayakawa R, Wakayama Y. High-performance multivalued logic circuits based on optically tunable antiambipolar transistors. J Mater Chem C. 2022; 10(14): 5559-5566.

[65]

Zschieschang U, Bader VP, Klauk H. Below-one-volt organic thin-film transistors with large on/off current ratios. Org Electron. 2017; 49: 179-186.

[66]

Sekitani T, Yokota T, Kuribara K, et al. Ultraflexible organic amplifier with biocompatible gel electrodes. Nat Commun. 2016; 7(1): 11425.

[67]

Elsobky M, Elattar M, Alavi G, et al. A digital library for a flexible low-voltage organic thin-film transistor technology. Org Electron. 2017; 50: 491-498.

[68]

Seong H, Choi J, Jang BC, et al. A low-voltage organic complementary inverter with high operation stability and flexibility using an ultrathin iCVD polymer dielectric and a hybrid encapsulation layer. Adv Electron Mater. 2016; 2(5): 1500385.

[69]

Choi J, Lee C, Lee C, et al. Vertically stacked, low-voltage organi. ternary logic circuits including nonvolatile floating-gate memory transistors. Nat Commun. 2022; 13(1): 2305.

[70]

Seifaei M, DeDorigo D, Fleig DI, et al. Stable, self-biased an. high-gain organic amplifiers with reduced parameter variation effect. IEEE Asian Solid-State Circuits Conference (A-SSCC). San Francisco, CA, USA. 2018; 2018: 119-122.

[71]

Luo Z, Peng B, Zeng J, et al. Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat Commun. 2021; 12(1): 1928.

[72]

Borchert JW, Zschieschang U, Letzkus F, et al. Flexible low-voltage high-frequency organic thin-film transistors. Sci Adv. 2020; 6(21): eaaz5156.

[73]

Matsui H, Hayasaka K, Takeda Y, Shiwaku R, Kwon J, Tokito S. Printed 5-V organic operational amplifiers for various signal processing. Sci Rep. 2018; 8(1): 8980.

[74]

Takeda Y, Yoshimura Y, Shiwaku R, et al. Organic complementary inverter circuits fabricated with reverse offset printing. Adv Electron Mater. 2018; 4(1): 1700313.

[75]

Sekine T, Gaı̈tis A, Sato J, et al. Low operating voltage and highly pressure-sensitive printed sensor for healthcare monitoring with analogic amplifier circuit. ACS Appl Electron Mater. 2019; 1(2): 246-252.

[76]

Shiwaku R, Matsui H, Hayasaka K, et al. Printed organic inverter circuits with ultralow operating voltages. Adv Electron Mater. 2017; 3(5): 1600557.

[77]

Yamamura A, Watanabe S, Uno M, et al. Wafer-scale, layer-controlled organi. single crystals for high-speed circuit operation. Sci Adv. 2018; 4(2): eaao5758.

[78]

Lee D, Cho KG, Seol KH, Lee S, Choi S-H, Lee KH. Low voltage, high gain electrolyte-gated complementary inverters based on transfer-printed block copolymer ion gels. Org Electron. 2019; 71: 266-271.

[79]

Xia Y, Zhang W, Ha M, et al. Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits. Adv Funct Mater. 2010; 20(4): 587-594.

[80]

Guerin M, Daami A, Jacob S, et al. High-gain fully printed organic complementary circuits on flexible plastic foils. IEEE Trans Electron Devices. 2011; 58(10): 3587-3593.

[81]

Kwon J, Lee Y, Jo Y, Jung S. Fabrication of ultrathin low-voltage-driven printed organic circuits with anodized gate islands. Org Electron. 2018; 62: 77-81.

[82]

Luczak A, Mitra KY, Baumann RR, Zichner R, Luszczynska B, Jung J. Fully inkjet-printed flexible organic voltage inverters as a basic component in digital NOT gates. Sci Rep. 2022; 12(1): 10887.

[83]

Yi Z, Jiang Y, Xu L, et al. Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high-gain inverters. Adv Mater. 2018; 30(32): 1801951.

[84]

Yang J, Liu Q, Hu M, et al. Well-balanced ambipolar diketopyrrolopyrrole-based copolymers for OFETs, inverters and frequency doublers. Sci China Chem. 2021; 64(8): 1410-1416.

[85]

Li M, Mangalore DK, Zhao J, et al. Integrated circuits based on conjugated polymer monolayer. Nat Commun. 2018; 9(1): 451.

[86]

Guo Y, Yang M, Deng J, et al Bottom-up growth of n-type polymer monolayers for high-performance complementary integrated circuits. Adv Electron Mater. 2023; 9(5): 2201307.

[87]

Klauk H. Organic thin-film transistors. Chem Soc Rev. 2010; 39(7): 2643-2666.

[88]

Shim CH, Maruoka F, Hattori R. Structural analysis on organic thin-film transistor with device simulation. IEEE Trans Electron Devices. 2010; 57(1): 195-200.

[89]

Gupta D, Katiyar M, Gupta D. An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation. Org Electron. 2009; 10(5): 775-784.

[90]

Singh S, Takeda Y, Matsui H, Tokito S. Flexible PMOS inverter and NOR gate using inkjet-printed dual-gate organic thin film transistors. IEEE Electron Device Lett. 2020; 41(3): 409-412.

[91]

Myny K, Beenhakkers MJ, van Aerle NAJM, et al. Unipolar organic transistor circuits made robust by dual-gate technology. IEEE J Solid State Circ. 2011; 46(5): 1223-1230.

[92]

Kumar B, Kaushik BK, Negi YS, Goswami V. Single and dual gate OTFT based robust organic digital design. Microelectron Reliab. 2014; 54(1): 100-109.

[93]

Negi S, Baliga AK, Pandey Y, Mittal P, Kumar B. Performance analysis of dual gate organic thin film transistor through analytical modeling. IEEE International Conference on Computing, Communication and Automation (ICCCA). 2016: 1533-1538.

[94]

Spijkman M, Mathijssen SGJ, Smits ECP, Kemerink M, Blom PWM, de Leeuw DM. Monolayer dual gate transistors with a single charge transport layer. Appl Phys Lett. 2010; 96(14): 143304.

[95]

Kwon J, Takeda Y, Fukuda K, Cho K, Tokito S, Jung S. Three-dimensional, inkjet-printed organi. transistors and integrated circuits with 100% yield, high uniformity, and long-ter. stability. ACS Nano. 2016; 10(11): 10324-10330.

[96]

Ben-Sasson AJ, Azulai D, Gilon H, Facchetti A, Markovich G, Tessler N. Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS Appl Mater Interfaces. 2015; 7(4): 2149-2152.

[97]

Kwon J, Takeda Y, Shiwaku R, Tokito S, Cho K, Jung S. Three-dimensional monolithic integration in flexible printed organic transistors. Nat Commun. 2019; 10(1): 54.

[98]

Yoo H, Park H, Yoo S, et al. Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects. Nat Commun. 2019; 10(1): 2424.

[99]

Nawaz A, Merces L, Ferro LMM, Sonar P, Bufon CCB. Impact of planar and vertical organic field-effect transistors on flexible electronics. Adv Mater. 2023; 35(11): 2204804.

[100]

Natali D, Caironi M. Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods. Adv Mater. 2012; 24(11): 1357-1387.

[101]

Kang M, Baeg K-J, Khim D, Noh Y-Y, Kim D-Y. Printed, flexible, organic nano-floating-gate memory: effects of metal nanoparticles and blocking dielectrics on memory characteristics. Adv Funct Mater. 2013; 23(28): 3503-3512.

[102]

Xu T, Xiang L, Xu M, Xie W, Wang W. Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film. Sci Rep. 2017; 7(1): 8890.

[103]

Chang J, Lin Z, Zhang C, Yue H. Organic field-effect transistor: device physics, materials, and process. In: Momcilo MP, Milic MP, eds, Different Types of Field-Effect Transistors. IntechOpen; 2017: Ch.7.

[104]

Patel BB, Diao Y. Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. Nanotechnology. 2017; 29(4): 044004.

[105]

Diao Y, Shaw L, Bao Z, Mannsfeld SC. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ Sci. 2014; 7(7): 2145-2159.

[106]

Noh J, Jung M, Jung Y, Yeom C, Pyo M, Cho G. Key issues with printed flexible thin film transistors and their application in disposable RF sensors. Proc IEEE. 2015; 103(4): 554-566.

[107]

Daami A, Bory C, Benwadih M, et al. Fully printed organic CMOS technology on plastic substrates for digital and analog applications. 2011 IEEE International Solid-State Circuits Conference. 2011: 328-330.

[108]

Shiwaku R, Matsui H, Nagamine K, et al. A printed organic circuit system for wearable amperometric electrochemical sensors. Sci Rep. 2018; 8(1): 6368.

[109]

Kim D-H, Ahn J-H, Kim H-S. et al. Complementary logic gates and ring oscillators on plastic substrates by use of printed ribbons of single-crystalline silicon. IEEE Electron Device Lett. 2008; 29(1): 73-76.

[110]

Søndergaard RR, Hösel M, Krebs FC. Roll-to-roll fabrication of large area functional organic materials. J Polym Sci Part B Polym Phys. 2013; 51(1): 16-34.

[111]

Baeg K-J, Khim D, Kim J, et al. Flexible complementary logic gates using inkjet-printed polymer field-effect transistors. IEEE Electron Device Lett. 2013; 34(1): 126-128.

[112]

Baeg K-J, Khim D, Kim J, et al. Controlled charge transport by polymer blend dielectrics in top-gate organic field-effect transistors for low-voltage-operating complementary circuits. ACS Appl Mater Interfaces. 2012; 4(11): 6176-6184.

[113]

Griffin RH, Shleifman D, Dadvand A, Graddage N, Chu T-Y, Tao Y. Improved circuit model fitting of inkjet-printed OTFTs and a proposal for standardized parameter reporting. IEEE Trans Electron Devices. 2018; 65(6): 2485-2491.

[114]

Xu L, Qi L, Li K, Zou H. Fabrication of a polymer nano nozzle for electrohydrodynamic small-molecule solvent inkjet printing. ACS Appl Nano Mater. 2023; 6(4): 3046-3053.

[115]

Grau G, Cen J, Kang H, Kitsomboonloha R, Scheideler WJ, Subramanian V. Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flexible and Printed Electronics. 2016; 1(2): 023002.

[116]

Fukuda K, Someya T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv Mater. 2017; 29(25): 1602736.

[117]

Zhang J, Zhang X, Ren X, Hu W. Printed organic digital circuits and its applications. Prog Chem. 2021; 33(3): 490-502.

[118]

Zhao X, Ding X, Tang Q, Tong Y, Liu Y. Photolithography-compatible conformal electrodes for high-performance bottom-contact organic single-crystal transistors. J Mater Chem C. 2017; 5(48): 12699-12706.

[119]

Tang W, Zhao J, Feng L, Yu P, Zhang W, Guo X. Top-gate dry-etching patterned polymer thin-film transistors with a protective layer on top of the channel. IEEE Electron Device Lett. 2015; 36(1): 59-61.

[120]

Li M, Liu Z, Feng L, et al. Facile four-mask processes for organic thin-film transistor integration structure with metal interconnect. IEEE Electron Device Lett. 2020; 41(1): 70-72.

[121]

Huang F, Xu Y, Pan Z, Li W, Chu J. Direct patterning on top-gate organic thin-film transistors: improvement of on/off ratio, subthreshold swing, and uniformity. IEEE Electron Device Lett. 2020; 41(7): 1082-1085.

[122]

Gao C, Shi D, Li C, et al. A dual functional diketopyrrolopyrrole-based conjugated polymer as single component semiconducting photoresist by appending azide groups in the side chains. Adv Sci. 2022; 9(15): 2106087.

[123]

Zhao X, Wang S, Ni Y, Tong Y, Tang Q, Liu Y. High-performance full-photolithographic top-contact conformable organic transistors for soft electronics. Adv Sci. 2021; 8(9): 2004050.

[124]

Liu J, Jiang L, Hu W, Liu Y, Zhu D. Monolayer organic field-effect transistors. Sci China Chem. 2019; 62(3): 313-330.

[125]

Yao Z-F, Zheng Y-Q, Li Q-Y. et al. Wafer-scale fabrication of high-performance n-type polymer monolayer transistors using a multi-level self-assembly strategy. Adv Mater. 2019; 31(7): 1806747.

[126]

Shi Y, Jiang L, Liu J, et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat Commun. 2018; 9(1): 2933.

[127]

Geiger M, Lingstädt R, Wollandt T, et al. Subthreshold swing of 59 mv decade–1 in nanoscale flexible ultralow-voltage organic transistors. Adv Electron Mater. 2022; 8(5): 2101215.

[128]

Ante F, Kälblein D, Zschieschang U, et al. Contact doping and ultrathin gate dielectrics for nanoscale organic thin-film transistors. Small. 2011; 7(9): 1186-1191.

[129]

Pruefer J, Leise J, Borchert JW, et al. Modeling the short-channel effects in coplanar organic thin-film transistors. IEEE Trans Electron Devices. 2022; 69(3): 1099-1106.

[130]

Hauser JR. Noise margin criteria for digital logic circuits. IEEE Trans Educ. 1993; 36(4): 363-368.

[131]

Klauk H, Zschieschang U, Pflaum J, Halik M. Ultralow-power organic complementary circuits. Nature. 2007; 445(7129): 745-748.

[132]

Huang TC, Fukuda K, Lo CM, et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices. 2011; 58(1): 141-150.

[133]

Huang TC, Fukuda K, Lo CM, et al. Pseudo-CMOS: a novel design style for flexible electronics. 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010). 2010: 154-159.

[134]

Razavi B. Design of Analog CMOS Integrated Circuits. Tsinghua University Press, 2005.

[135]

Sze SM, Li Y, Ng KK. Physics of Semiconductor Devices. John Wiley & Sons, 2021.

[136]

Xu Y, Sun H, Noh Y-Y. Schottky barrier in organic transistors. IEEE Trans Electron Devices. 2017; 64(5): 1932-1943.

[137]

Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 2011; 479(7373): 329-337.

[138]

Íñiguez J, Zubko P, Luk’yanchuk I, Cano A. Ferroelectric negative capacitance. Nat Rev Mater. 2019; 4(4): 243-256.

[139]

Yu Z, Wang H, Li W, et al. Negative capacitance 2D MoS2 transistors with sub-60 mV/dec subthreshold swing over 6 orders, 250 µA/µm current density, and nearly-hysteresis-free. 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 2017.

[140]

Si M, Su C-J, Jiang C, et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat Nanotechnol. 2018; 13(1): 24-28.

[141]

Lee MH, Chen PG, Liu C, et al. Prospects for ferroelectric HfZrOx FETs with experimentally CET = 0.98 nm, SSfor = 42 mV/dec, SSrev = 28 mV/dec, switch-off <0.2 V, and hysteresis-fre. strategies. 2015 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 2015:22.25.21-22.25.24.

[142]

Hu C. Modern Semiconductor Devices for Integrated Circuits. Vol 2. Prentice Hall, 2010.

[143]

Cho I-T, Lee J-W, Park J-M. et al. Full-swing a-IGZO inverter with a depletion load using negative bias instability under light illumination. IEEE Electron Device Lett. 2012; 33(12): 1726-1728.

[144]

Cui Q, Sporea RA, Liu W, Guo X. Analytical models for delay and power analysis of zero-VGS load unipolar thin-film transistor logic circuits. IEEE Trans Electron Devices. 2014; 61(11): 3838-3844.

[145]

Haldar T, Wollandt T, Weis J, et al. High-gain, low-voltage unipola. logic circuits based on nanoscale flexible organic thin-film transistors with small signal delays. Sci Adv. 2023; 9(1): eadd3669.

[146]

Plouchart JO, Kim J, Zamdmer N. A 31 GHz CML ring VCO with 5.4 ps delay in a 0.12-/spl mu/m SOI CMOS technology. ESSCIRC 2004—29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705). 2003: 357-360.

[147]

Zschieschang U, Waizmann U, Weis J, Borchert JW, Klauk H. Nanoscale flexible organic thin-film transistors. Sci Adv. 2022; 8(13): eabm9845.

[148]

Pruefer J, Leise J, Nikolaou A, et al. Compact modeling of nonlinear contact effects in short-channel coplanar and staggered organic thin-film transistors. IEEE Trans Electron Devices. 2021; 68(8): 3843-3850.

[149]

Kim CH, Bonnassieux Y, Horowitz G. Fundamental benefits of the staggered geometry for organic field-effect transistors. IEEE Electron Device Lett. 2011; 32(9): 1302-1304.

[150]

Zaumseil J, Baldwin KW, Rogers JA. Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J Appl Phys. 2003; 93(10): 6117-6124.

[151]

Pesavento PV, Chesterfield RJ, Newman CR, Frisbie CD. Gated four-probe measurements on pentacene thin-film transistors: contact resistance as a function of gate voltage and temperature. J Appl Phys. 2004; 96(12): 7312-7324.

[152]

Wang Q, Jiang S, Zhang B, et al. Role of Schottky barrier and access resistance in organic field-effect transistors. J Phys Chem Lett. 2020; 11(4): 1466-1472.

[153]

Borchert JW, Peng B, Letzkus F, et al. Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. Nat Commun. 2019; 10(1): 1119.

[154]

Zschieschang U, Borchert JW, Giorgio M, et al. Roadmap to gigahertz organic transistors. Adv Funct Mater. 2020; 30(20): 1903812.

[155]

Huang F, Lu D, Ji Y, et al. Electron injection improvement of n-type organic field-effect transistors with indium contact interlayer. IEEE Trans Electron Devices. 2021; 68(5): 2440-2446.

[156]

Hill C. Noise margin and noise immunity in logic circuits. Microelectronics. 1968; 1(5): 16-21.

[157]

Hill C. Definitions of noise margin in logic systems. Mullard Tech Commun. 1967; 89: 239-245.

[158]

De Vusser S, Genoe J, Heremans P. Influence of transistor parameters on the noise margin of organic digital circuits. IEEE Trans Electron Devices. 2006; 53(4): 601-610.

[159]

Bode D, Rolin C, Schols S, et al. Noise-margin analysis for organic thin-film complementary technology. IEEE Trans Electron Devices. 2010; 57(1): 201-208.

[160]

Spijkman M, Smits ECP, Blom PWM, et al. Increasing the noise margin in organic circuits using dual gate field-effect transistors. Appl Phys Lett. 2008; 92(14): 123.

[161]

Tang Y, Jiang F, Cui X, Wang H. Zero drive load inverter with high gain and large noise margin based on organic weak epitaxy growth method. J Phys D: Appl Phys. 2020; 53(22): 225101.

[162]

Jia H, Lei T. Emerging research directions for n-type conjugated polymers. J Mater Chem C. 2019; 7(41): 12809-12821.

[163]

Bucella SG, Luzio A, Gann E, et al. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat Commun. 2015; 6(1): 8394.

[164]

Lee BH, Bazan GC, Heeger AJ. Doping-induced carrier density modulation in polymer field-effect transistors. Adv Mater. 2016; 28(1): 57-62.

[165]

Meller G, Grasser T. Organic Electronics. Springer, 2009.

[166]

Yamamura A, Sakon T, Takahira K, et al. High-speed organic single-crystal transistor responding to very high frequency band. Adv Funct Mater. 2020; 30(11): 1909501.

[167]

Bilgaiyan A, Cho S-I, Abiko M, Watanabe K, Mizukami M. Flexible, high mobility short-channel organic thin film transistors and logic circuits based on 4H–21DNTT. Sci Rep. 2021; 11(1): 11710.

[168]

Ke T-H, Myny K, Chasin A, Müller R, Steudel S. Ultralow power transponder in thin film circuit technology on foil with sub-1V operation voltage. 2014 IEEE International Electron Devices Meeting. San Francisco, CA, USA. 2014.

[169]

Ke T-H, Müller R, Kam B, et al. Scaling down of organic complementary logic gates for compact logic on foil. Org Electron. 2014; 15(6): 1229-1234.

[170]

Uno M, Isahaya N, Cha B-S, et al. High-yield, highly uniform solution-processed organic transistors integrated into flexible organic circuits. Adv Electron Mater. 2017; 3(1): 1600410.

[171]

Myny K, van Veenendaal E, Gelinck GH, Genoe J, Dehaene W, Heremans P. An 8b organic microprocessor on plastic foil. 2011 IEEE International Solid-State Circuits Conference. San Francisco, CA, USA. 2011.

[172]

Smits ECP, Mathijssen SGJ, van Hal PA, et al. Bottom-up organic integrated circuits. Nature. 2008; 455(7215): 956-959.

[173]

Lu C, Ji Z, Xu G, et al. Progress in flexible organic thin-film transistors and integrated circuits. Sci Bull. 2016; 61(14): 1081-1096.

[174]

Taylor DM. Progress in organic integrated circuit manufacture. Jpn J Appl Phys. 2015; 55(2S):02BA01.

[175]

Fuketa H, Yoshioka K, Shinozuka Y, et al. 1µm-thickness 64-channel surface electromyogram measurement sheet with 2 V organic transistors for prosthetic hand control. 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers. San Francisco, CA, USA. 2013.

[176]

Ouyang B, Song Y, Cai W, et al. RF powered flexible printed ion-sensitive organic field effect transistor chip with design-to-manufacturing automation for mobile bio-sensing. 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 2021:16.13.11-16.13.14.

[177]

Kondo M, Melzer M, Karnaushenko D, et al. Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits. Sci Adv. 2020; 6(4): eaay6094.

[178]

Shiwaku R, Matsui H, Nagamine K, et al. A printed organic amplification system for wearable potentiometric electrochemical sensors. Sci Rep. 2018; 8(1): 3922.

[179]

Marien H, Steyaert M, van Veenendaal E, Heremans P. Analog techniques for reliable organic circuit design on foil applied to an 18 dB single-stage differential amplifier. Org Electron. 2010; 11(8): 1357-1362.

[180]

Ganesan R, Krumm J, Ludwig K, Glesner M. Investigation of voltage-controlled oscillator circuits using organic thin-film transistors (OTFT) for use in VCO-based analog-to-digital converters. Solid-State Electron. 2014; 93: 8-14.

[181]

Zaki T, Ante F, Zschieschang U, et al. A 3.3 V 6-bit 100 kS/s current-steering digital-to-analog converter using organic p-type thin-film transistors on glass. IEEE J Solid State Circ. 2012; 47(1): 292-300.

[182]

Nakayama K, Cha B-S, Kanaoka Y, et al. Organic temperature sensors and organic analog-to-digital converters based on p-type and n-type organic transistors. Org Electron. 2016; 36: 148-152.

[183]

Fiore V, Battiato P, Abdinia S, et al. An integrated 13.56-MHz RFID tag in a printed organic complementary TFT technology on flexible substrate. IEEE Trans Circuits Syst I: Regular Papers. 2015; 62(6): 1668-1677.

[184]

Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature. 2013; 499(7459): 458-463.

[185]

Ishida K, Huang TC, Honda K, et al. Insole pedometer with piezoelectric energy harvester and 2 V organic circuits. IEEE J Solid State Circ. 2013; 48(1): 255-264.

[186]

Zang Y, Zhang F, Huang D, Gao X, Di C, Zhu D. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun. 2015; 6(1): 6269.

[187]

Song M, Seo J, Kim H, Kim Y. Flexible thermal sensors based on organic field-effect transistors with polymeric channel/gate-insulating and light-blocking layers. ACS Omega. 2017; 2(7): 4065-4070.

[188]

Minami T, Sato T, Minamiki T, Fukuda K, Kumaki D, Tokito S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens Bioelectron. 2015; 74: 45-48.

[189]

Kotlowski C, Aspermair P, Khan H, et al. Electronic biosensing with flexible organic transistor devices. Flexible Printed Electron. 2018; 3(3): 034003.

[190]

Lee Y, Liu Y, Seo D-G, et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat Biomed Eng. 2023; 7(4): 511-519.

[191]

Someya T, Yokota T, Lee S, Fukuda K. Electronic skins for robotics and wearables. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). San Francisco, CA, USA. 2020: 66-71.

[192]

Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area network. of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci. 2005; 102(35): 12321-12325.

[193]

Tee BCK, Chortos A, Berndt A, et al. A skin-inspired organic digital mechanoreceptor. Science. 2015; 350(6258): 313-316.

[194]

Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater. 2016; 15(9): 937-950.

[195]

Xie Z, Abdou MSA, Lu X, Deen MJ, Holdcroft S. Electrical characteristics and photolytic tuning of poly(3-hexylthiophene) thin film metal-insulator-semiconductor field-effect transistors (MISFETs). Can J Phys. 1992; 70(10-11): 1171-1177.

[196]

Marinov O, Deen MJ, Datars R. Compact modeling of charge carrier mobility in organic thin-film transistors. J Appl Phys. 2009; 106(6): 064501.

[197]

Lu N, Li L, Liu M. Universal carrier thermoelectric-transport model based on percolation theory in organic semiconductors. Phys Rev B: Condens Matter Mater Phys. 2015; 91(19): 195205.

[198]

Li L, Debucquoy M, Genoe J, Heremans P. A compact model for polycrystalline pentacene thin-film transistor. J Appl Phys. 2010; 107(2): 024519.

[199]

Kim CH, Castro-Carranza A. Estrada M, et al. A compact model for organic field-effect transistors with improved output asymptotic behaviors. IEEE Trans Electron Devices. 2013; 60(3): 1136-1141.

[200]

Meshkin R, Ziabari SAS. Analytical modeling of transconductance in organic thin-film transistors. 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). San Francisco, CA, USA. 2017: 286-289.

[201]

Castro-Carranza A, Estrada M, Cerdeira A, et al. Compact capacitance model for OTFTs at low and medium frequencies. IEEE Trans Electron Devices. 2014; 61(2): 638-642.

[202]

Cortes-Ordonez H, Haddad C, Mescot X, et al. Parameter extraction and compact modeling of OTFTs from 150 K to 350 K. IEEE Trans Electron Devices. 2020; 67(12): 5685-5692.

[203]

Cortes-Ordonez H, Jacob S, Mohamed F, Ghibaudo G, Iniguez B. Analysis and compact modeling of gate capacitance in organic thin-film transistors. IEEE Trans Electron Devices. 2019; 66(5): 2370-2374.

[204]

Fayez M, Morsi KM, Sabry MN. OTFTs compact models: analysis, comparison, and insights. IET Circuits Devices Syst. 2017; 11(5): 409-420.

[205]

Marinov O, Deen MJ, Zschieschang U, Klauk H. Organic thin-film transistors: part I—compact DC modeling. IEEE Trans Electron Devices. 2009; 56(12): 2952-2961.

[206]

Romero A, Jiménez-Tejada JA, González J, Deen MJ. Unified electrical model for the contact regions of staggered thin film transistors. Org Electron. 2021; 92: 106129.

[207]

Fan J, Zhao J, Guo X. DC compact model for subthreshold operated organic field-effect transistors. IEEE Electron Device Lett. 2018; 39(8): 1191-1194.

[208]

Kaveh O, Kheradmand-Boroujeni B. Kasemann D, Leo K, Ellinger F. Modeling of fully printed organic field effect transistors for circuit design and simulation. 2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). 2016: 1-4.

[209]

Maiti TK, Hayashi T, Chen L, et al. A surface potential based organic thin-film transistor model for circuit simulation verified with DNTT high performance test devices. IEEE Trans Semiconduct Manufact. 2014; 27(2): 159-168.

[210]

Deen MJ, Marinov O, Zschieschang U, Klauk H. Organic thin-film transistors: part II—parameter extraction. IEEE Trans Electron Devices. 2009; 56(12): 2962-2968.

[211]

Tu D, Forchheimer R, Herlogsson L, Crispin X, Berggren M. Parameter extraction for electrolyte-gated organic field effect transistor modeling. 2011 20th European Conference on Circuit Theory and Design (ECCTD). San Francisco, CA, USA. 2011: 853-856.

[212]

García-Sánchez FJ, Ortiz-Conde A. Muci J, Sucre-González A, Liou JJ. A unified look at the use of successive differentiation and integration in MOSFET model parameter extraction. Microelectron Reliab. 2015; 55(2): 293-307.

[213]

Zhao J, Yu P, Qiu S, et al. Universal compact model for thin-film transistors and circuit simulation for low-cost flexible large area electronics. IEEE Trans Electron Devices. 2017; 64(5): 2030-2037.

[214]

Hamadani BH, Natelson D. Nonlinear charge injection in organic field-effect transistors. J Appl Phys. 2005; 97(6): 064508.

[215]

Meixner RM, Gobel HH, Qiu H, et al. A physical-based PSPICE compact model for poly(3-hexylthiophene) organic field-effect transistors. IEEE Trans Electron Devices. 2008; 55(7): 1776-1781.

[216]

Necliudov PV, Shur MS, Gundlach DJ, Jackson TN. Modeling of organic thin film transistors of different designs. J Appl Phys. 2000; 88(11): 6594-6597.

[217]

Li L, Lu N, Liu M, Bässler H. General Einstein relation model in disordered organic semiconductors under quasiequilibrium. Phys Rev B: Condens Matter Mater Phys. 2014; 90(21): 214107.

[218]

Ling LL, Marien H, Genoe J, Steyaert M, Heremans P. Compact model for organic thin-film transistor. IEEE Electron Device Lett. 2010; 31(3): 210-212.

[219]

Torricelli F, Ghittorelli M, Kovács-Vajna ZM. Operation and modelling of diffusion-driven organic field-effect transistors for high-performance organic electronics. 2017 European Conference on Circuit Theory and Design (ECCTD). Catania, Italy. 2017: 1-4.

[220]

Valletta A, Rapisarda M, Calvi S, Mariucci L, Fortunato G. A large signal non quasi static model of printed organic TFTs and simulation of CMOS circuits. 2017 European Conference on Circuit Theory and Design (ECCTD). Catania, Italy. 2017: 1-4.

[221]

Ibrahim GH, Zschieschang U, Klauk H, Reindl L. High-frequency rectifiers based on organic thin-film transistors on flexible substrates. IEEE Trans Electron Devices. 2020; 67(6): 2365-2371.

[222]

Fadlallah M, Billiot G, Eccleston W, Barclay D. DC/AC unified OTFT compact modeling and circuit design for RFID applications. Solid-State Electron. 2007; 51(7): 1047-1051.

[223]

Romero A, González J, Deen MJ, Jiménez-Tejada JA. Versatile model for the contact region of organic thin-film transistors. Org Electron. 2020; 77: 105523.

[224]

Shao L, Huang TC, Lei T, Bao Z, Beausoleil R, Cheng KT. Process design kit for flexible hybrid electronics. 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC). 2018:651-657.

[225]

Zhou J, Ge T, Chang JS. Fully-additive printed electronics: process development kit. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). San Francisco, CA, USA. 2016: 862-865.

[226]

Chang TJ, Yao Z, Rand BP, Wentzlaff D. Organic-flow: an open-source organic standard cell library and process development kit. 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2020: 49-54.

[227]

Ragonese E, Fattori M, Cantatore E. Printed organic electronics on flexible foil: circuit design and emerging applications. IEEE Trans Circuits Syst II: Express Briefs. 2021; 68(1): 42-48.

[228]

de Leeuw DM, Cantatore E. Organic electronics: materials, technology and circuit design developments enabling new applications. Mater Sci Semicond Process. 2008; 11(5): 199-204.

[229]

Petritz A, Karner-Petritz E. Uemura T, et al. Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. Nat Commun. 2021; 12(1): 2399.

[230]

Chen G, Yu W, Hao Y, et al. Micron-scale resolution image sensor based on flexible organic thin film transistor arrays via femtosecond laser processing. IEEE Electron Device Lett. 2022; 43(2): 248-251.

[231]

Rudenko T, Kilchytska V, Collaert N, Jurczak M, Nazarov A, Flandre D. Substrate bias effect linked to parasitic series resistance in multiple-gate SOI MOSFETs. IEEE Electron Device Lett. 2007; 28(9): 834-836.

[232]

Singh B, Gola D, Jit S. Subthreshold performance analysis of double-fin multi-channel junctionless transistor with substrate bias effects. TENCON 2019-2019 IEEE Region 10 Conference (TENCON). 2019: 1834-1837.

[233]

Zan HW, Kao SC. The effects of drain-bias on the threshold voltage instability in organic TFTs. IEEE Electron Device Lett. 2008; 29(2): 155-157.

[234]

Ramon E, Martinez-Domingo C. Alcalde-Aragones A, Carrabina J. Development of a simple manufacturing process for all-inkjet printed organic thin film transistors and circuits. IEEE J Emerging Selected Topics Circuits and Systems. 2017; 7(1): 161-170.

[235]

Holler H. Measurement and mismatch-modelling of semiconductor devices in BiCMOS technology. 2000 IEEE International Symposium on Circuits and Systems (ISCAS). 2000; 374: 373-376.

[236]

Vani YS, Rani NU, Vaddi R. A low voltage capacitor based current controlled sense amplifier for input offset compensation. 2017 International SoC Design Conference (ISOCC). 2017:23-24.

[237]

Sekitani T, Iba S, Kato Y, Noguchi Y, Someya T, Sakurai T. Suppression of DC bias stress-induced degradation of organic field-effect transistors using postannealing effects. Appl Phys Lett. 2005; 87(7): 073505.

[238]

Ji D, Li T, Hu W, Fuchs H. Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv Mater. 2019; 31(15): 1806070.

[239]

Suemori K, Uemura S, Yoshida M, et al. Influence of fine roughness of insulator surface on threshold voltage stability of organic field-effect transistors. Appl Phys Lett. 2008; 93(3): 033308.

[240]

Guo X, Huang Y, Feng L, et al. Printable low power organic transistor for highly customizable IoT devices. 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). 2020: 1-4.

[241]

Suemori K, Uemura S, Yoshida M, et al. Threshold voltage stability of organic field-effect transistors for various chemical species in the insulator surface. Appl Phys Lett. 2007; 91(19): 192112.

[242]

Geiger M, Acharya R, Reutter E, et al. Effect of the degree of the gate-dielectric surface roughness on the performance of bottom-gate organic thin-film transistors. Adv Mater Interfaces. 2020; 7(10): 1902145.

[243]

Fukuda K, Suzuki T, Kobayashi T, Kumaki D, Tokito S. Suppression of threshold voltage shifts in organic thin-film transistors with bilayer gate dielectrics. Phys Status Sol. 2013; 210(5): 839-844.

[244]

Xiong W, Guo Y, Zschieschang U, Klauk H, Murmann B. A 3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass. IEEE J Solid State Circ. 2010; 45(7): 1380-1388.

[245]

Chu Y, Li H, Huang J, Katz HE. High signal-to-noise chemical sensors based on compensated organic transistor circuits. Adv Mater Technol. 2019; 4(10): 1900410.

[246]

Kumar B, Kaushik BK, Negi YS. Organic thin film transistors: structures, models, materials, fabrication, and applications: a review. Polym Rev. 2014; 54(1): 33-111.

[247]

Zhang X, Pu Z, Su X, Li C, Zheng H, Li D. Flexible organic field-effect transistors-based biosensors: progress and perspectives. Anal Bioanal Chem. 2023; 415(9): 1607-1625.

[248]

Quinn JTE, Zhu J, Li X, Wang J, Li Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J Mater Chem C. 2017; 5(34): 8654-8681.

[249]

Chen SP, Chen YS, Hsieh GW. N-channel zinc oxide nanowire: perylene diimide blend organic thin film transistors. IEEE J Electron Devices Soc. 2017; 5(5): 367-371.

[250]

Liu X, Shi Y, Zhou Q, Liu J, Jiang L, Han Y. Small molecule: polymer blends for n-type organic thin film transistors via bar-coating in air. Chin J Chem. 2022; 40(1): 91-96.

[251]

He T, Stolte M, Burschka C, et al. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat Commun. 2015; 6(1): 5954.

[252]

Kumagai S, Ishii H, Watanabe G, et al. Nitrogen-containing perylene diimides: molecular design, robust aggregated structures, and advances in n-type organic semiconductors. Acc Chem Res. 2022; 55(5): 660-672.

[253]

Chu Y, Qian C, Chahal P, Cao C. Printed diodes: materials processing, fabrication, and applications. Adv Sci. 2019; 6(6): 1801653.

[254]

Wang B, Huang W, Chi L, Al-Hashimi M. Marks TJ, Facchetti A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem Rev. 2018; 118(11): 5690-5754.

[255]

Li J, Sun Z, Yan F. Solution processable low-voltage organic thin film transistors with high-k relaxor ferroelectric polymer as gate insulator. Adv Mater. 2012; 24(1): 88-93.

[256]

Yang F, Sun L, Han J, et al. Low-voltage organic single-crystal field-effect transistor with steep subthreshold slope. ACS Appl Mater Interfaces. 2018; 10(31): 25871-25877.

[257]

Crone BK, Dodabalapur A, Sarpeshkar R, Gelperin A, Katz HE, Bao Z. Organic oscillator and adaptive amplifier circuits for chemical vapor sensing. J Appl Phys. 2002; 91(12): 10140-10146.

[258]

Gay N, Fischer W, Halik M, Klauk H, Zschieschang U, Schmid G. Analog signal processing with organic FETs. 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers. San Francisco, CA, USA. 2006:1070-1079.

[259]

Kane MG, Campi J, Hammond MS, et al. Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Device Lett. 2000; 21(11): 534-536.

[260]

Koo JB, Ku CH, Lim JW, Kim SH. Novel organic inverters with dual-gate pentacene thin-film transistor. Org Electron. 2007; 8(5): 552-558.

[261]

Mansour K, Elsaegh S, Zschieschang U, Klauk H, Ibrahim GH. Three-terminal floating-gate cell for threshold-voltage control of organic thin-film transistors. IEEE Trans Electron Devices. 2021; 68(3): 1088-1092.

[262]

Ishida K, Huang TC, Honda K, et al. A 100-V AC energy meter integrating 20-V organic CMOS digital and analog circuits with a floating gate for process variation compensation and a 100-V organic pMOS rectifier. IEEE J Solid State Circ. 2012; 47(1): 301-309.

[263]

Yokota T, Nakagawa T, Sekitani T, et al. Control of threshold voltage in low-voltage organic complementary inverter circuits with floating gate structures. Appl Phys Lett. 2011; 98(19): 193302.

[264]

Webb RC, Bonifas AP, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater. 2013; 12(10): 938-944.

[265]

Kim D-I, Trung T-Q, Hwang B-U. et al. A sensor array using multi-functional field-effect transistors with ultrahigh sensitivity and precision for bio-monitoring. Sci Rep. 2015; 5(1): 12705.

[266]

Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016; 540(7633): 379-385.

[267]

Harikesh PC, Yang C-Y, Tu D, et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat Commun. 2022; 13(1): 901.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/