A low-voltage-driven, neuromorphic sensorimotor loop for monolithic soft prosthetic e-skin

Xiangxiang Li , Darakhshan Mehvish , Hui Yang

SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1248

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (5) : e1248 DOI: 10.1002/smm2.1248
COMMENT

A low-voltage-driven, neuromorphic sensorimotor loop for monolithic soft prosthetic e-skin

Author information +
History +
PDF

Abstract

Artificial skin with tactile perceptions is anticipated to play a pivotal role in next-generation robotic and medical devices. The primary challenge lies in creating a biomimetic system that seamlessly integrates with the human body and biological systems. The authors have developed an electronic skin (e-skin) that imitates the biological sensorimotor loop through medium-scale circuit integration, boasting low power consumption and solid-state synaptic transistors.

Keywords

biological synapses / e-skin / low-voltage-driven / neuromorphic sensorimotor loop / stretchable organic electronics

Cite this article

Download citation ▾
Xiangxiang Li, Darakhshan Mehvish, Hui Yang. A low-voltage-driven, neuromorphic sensorimotor loop for monolithic soft prosthetic e-skin. SmartMat, 2024, 5(5): e1248 DOI:10.1002/smm2.1248

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng G, Dean-Leon E. Bergner F, Rogelio Guadarrama Olvera J, Leboutet Q, Mittendorfer P. A comprehensive realization of robot skin: sensors, sensing, control, and applications. Proc IEEE. 2019; 107(10): 2034-2051.

[2]

Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng. 2019; 3(1): 58-68.

[3]

Ge J, Wang X, Drack M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun. 2019; 10(1): 4405.

[4]

Ding Q, Wang H, Zhou Z, et al. Stretchable, self-healable, and breathable biomimetic iontronics with superior humidity-sensing performance for wireless respiration monitoring. SmartMat. 2022; 4(2): e1147.

[5]

Yiu CK, Liu YM, Zhang C, et al. Soft stretchable, wireless intelligent three-lead electrocardiograph monitors with feedback functions for warning of potential heart attack. SmartMat. 2022; 3(4): 668-684.

[6]

Flesher SN, Downey JE, Weiss JM, et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science. 2021; 372(6544): 831-836.

[7]

Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485(7398): 372-375.

[8]

Wang C, He K, Li J, Chen X. Conformal electrodes for on-skin digitalization. SmartMat. 2021; 2(3): 252-262.

[9]

Zhou K, Dai K, Liu C, Shen C. Flexible conductive polymer composites for smart wearable strain sensors. SmartMat. 2020; 1(1): e1010.

[10]

Rogers JA, Someya T, Huang Y, et al. Materials and mechanics for stretchable electronics. Science. 2010; 327(5973): 1603-1607.

[11]

Khodagholy D, Doublet T, Quilichini P, et al. In vivo recordings of brain activity using organic transistors. Nat Commun. 2013; 4(1): 1575.

[12]

Takei K, Takahashi T, Ho JC, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater. 2010; 9(10): 821-826.

[13]

Tee BCK, Chortos A, Berndt A, et al. A skin-inspired organic digital mechanoreceptor. Science. 2015; 350(6258): 313-316.

[14]

Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science. 2018; 360(6392): 998-1003.

[15]

Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science. 2023; 380(6646): 735-742.

RIGHTS & PERMISSIONS

2024 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/