Ultrasmall high-entropy alloy nanoparticles with 1 nm size by continuous-flow reactor

Li Li , Zhicheng Zhang

SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1239

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1239 DOI: 10.1002/smm2.1239
COMMENT

Ultrasmall high-entropy alloy nanoparticles with 1 nm size by continuous-flow reactor

Author information +
History +
PDF

Keywords

catalysis / continuous-flow reactor / high-entropy alloys / nanoparticles

Cite this article

Download citation ▾
Li Li, Zhicheng Zhang. Ultrasmall high-entropy alloy nanoparticles with 1 nm size by continuous-flow reactor. SmartMat, 2024, 5(4): e1239 DOI:10.1002/smm2.1239

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YaoY, HuangZ, XieP, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018; 359(6383): 1489-1494.

[2]

Kumar KatiyarN, BiswasK, YehJ-W, Sharma S, Sekhar TiwaryC. A perspective on the catalysis using the high entropy alloys. Nano Energy. 2021; 88(106261): 106261.

[3]

SongJ-Y, KimC, KimM, et al. Generation of high-density nanoparticles in the carbothermal shock method. Sci Adv. 2021; 7(48): eabk2984.

[4]

GaoS, HaoS, HuangZ, et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat Commun. 2020; 11(1): 2016.

[5]

TaoL, SunM, ZhouY, et al. A general synthetic method for high-entropy alloy subnanometer ribbons. J Am Chem Soc. 2022; 144(23): 10582-10590.

[6]

RenJ, ZhangY, ZhaoD, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature. 2022; 608(7921): 62-68.

[7]

CaoG, LiangJ, GuoZ, et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature. 2023; 619: 73-77.

[8]

HuangK, ZhangB, WuJ, et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J Mater Chem A. 2020; 8(24): 11938-11947.

[9]

WangD, ChenZ, WuY, et al. Structurally ordered high-entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. SmartMat. 2023; 4(1): 106-116.

[10]

ShiY, HouM, LiJ, et al. Cu-based tandem catalysts for electrochemical CO2 reduction. Acta Phys Chim Sin. 2022; 38(11): 2206020.

[11]

LiL, ZhangZC. Sn-Bi bimetallic interface induced by nano-crumples for CO2 electroreduction to formate. Rare Met. 2022; 41(12): 3943-3945.

[12]

ChenC, SunM, WangK, Li Y. Dual-metal single-atomic catalyst: the challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat. 2022; 3(4): 533-564.

[13]

SharmaL, Katiyar N-K, ParuiA, et al. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022; 15(6): 4799-4806.

[14]

MinamiharaH, KusadaK, WuD, et al. Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles. J Am Chem Soc. 2022; 144(26): 11525-11529.

[15]

SchöttleC, Bockstaller P, PopescuR, GerthsenD, Feldmann C. Sodium-naphthalenide-driven synthesis of base-metal nanoparticles and follow-up reactions. Angew Chem Int Ed. 2015; 54(34): 9866-9870.

RIGHTS & PERMISSIONS

2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/