tomic-scale interface engineering for two-dimensional materials based field-effect transistors
Xiangyu Hou , Tengyu Jin , Yue Zheng , Wei Chen
SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1236
tomic-scale interface engineering for two-dimensional materials based field-effect transistors
Two-dimensional (2D) materials with free of dangling bonds have the potential to serve as ideal channel materials for the next generation of field-effect transistors (FETs) due to their atomic-thin and excellent electronic properties. However, the performance of 2D materials-based FETs is still dictated by the interface between electrodes/dielectrics and 2D materials. Several technical challenges such as improving device stability, reducing contact resistance, and advancing mobility need to be overcome. Herein, we focus on the effects of atomic-scale interface engineering on the contact resistance and dielectric layer for 2D FETs. Universal strategies we consider to achieve ohmic contact and develop high-quality, defect-free dielectric layers are provided. Furthermore, advancing the performance of 2D materials-based FETs and binding to silicon substrates are briefly analyzed.
dielectric layers / field-effect transistors / interface engineering / ohmic contact / two-dimensional materials
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |