Integration fabrication of polyimide composite films for aerospace applications
Yifan Zhang, Shengqi Dai, Zeyu Yin, Weiqing Yan, Qian Li, Heng Yuan, Xu Zhang, Lin Chen, Jun Luo, Xiao Ouyang, Bin Liao, Wei Hao, Jia Zhu
Integration fabrication of polyimide composite films for aerospace applications
Polyimides externally deployed in spacecraft or satellites extensively have various aerospace hazards, including atomic oxygen (AO) erosion, irradiation degradation, and electrostatic charge/discharge (ESC/ESD). To cope with these challenges, we fabricate a ZnO/CuNi-polyimide composite film with augmented permanence. Using spectroscopy and microscopy techniques, we have shown that the combination of chelation and cross-linking in the interfacial architecture leads to enhanced interfacial compatibility and mechanical robustness. Besides, due to the positive AO diffusion barrier ability of the wurtzite ZnO, our composite film shows remarkable AO resistance and a very small Ey value of 6.88 × 10−26 cm3/atom, which is merely 2.29% of that of pristine polyimide. Moreover, the well-defined nanocrystalline state with minimal lattice swelling (0.3%–0.7%) of the Fe+-irradiated ZnO/CuNi-polyimide at a damaging dose of 353.4 dpa demonstrates its excellent irradiation resistance. Finally, the ZnO/CuNi-polyimide also shows sufficient electrostatic dissipation capacity to cope with the ESC/ESD events. Our fabrication approach for composite films based on multi-technology integration shows potential for aerospace applications and deployment.
atomic oxygen / dynamics / electrostatic discharge / irradiation / molecular polyimide
[1] |
Gouzman I, Grossman E, Verker R, Atar N, Bolker A, Eliaz N. Advances in polyimide-based materials for space applications. Adv Mater. 2019;31(18):1807738.
|
[2] |
Wu H, Zhang Y, Guo Y-D, et al. Preparation and properties of intrinsically atomic-oxygen resistant polyimide films containing polyhedral oligomeric silsesquioxane (POSS) in the side chains. Polymers. 2020;12(12):2865.
|
[3] |
Zhang YF, Chen SN, Yan WQ, et al. Protection of Kapton from atomic oxygen attack by SiOx/NiCr coating. Surf Coat Technol. 2021;423:127582.
|
[4] |
Pan XF, Wu B, Gao HL, et al. Double-layer nacre-inspired polyimide-mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Adv Mater. 2022;34(2):2105299.
|
[5] |
Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS. Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci. 2012;37(7):907-974.
|
[6] |
Wang X, Li Y, Qian Y, Qi H, Li J, Sun J. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Adv Mater. 2018;30(36):1803854.
|
[7] |
Zhang Y, Yuan H, Yan W, et al. The effects of atomic oxygen and ion irradiation degradation on multi-polymers: a combined ground-based exposure and ReaxFF-MD simulation. Polym Degrad Stab. 2022;205:110134.
|
[8] |
Jaworske DA, Siamidis J. Overview of materials International space station experiment 7B. 50th AIAA/ASMI/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2009:1-7.
|
[9] |
Strganac TW, Letton A, Rock NI, Williams KD, Farrow DA. Characterization of polymer films retrieved from NASA's long duration exposure facility. J Spacecr Rockets. 1995;32(3):502-506.
|
[10] |
Ghidini T. Materials for space exploration and settlement. Nat Mater. 2018;17(10):846-850.
|
[11] |
Wang D, Ma J, Li P, et al. Flexible hard coatings with self-evolution behavior in a low earth orbit environment. ACS Appl Mater Interfaces. 2021;13(38):46003-46014.
|
[12] |
Atar N, Grossman E, Gouzman I, et al. Atomic-oxygen-durable and electrically-conductive CNT-POSS-polyimide flexible films for space applications. ACS Appl Mater Interfaces. 2015;7(22):12047-12056.
|
[13] |
Waets A, Cipriani F, Ranvier S. LEO charging of the PICASSO cubesat and simulation of the langmuir probes operation. IEEE Trans Plasma Sci. 2019;47(8):3689-3698.
|
[14] |
Mikaelian T. Spacecraft charging and hazards to electronics in space. 2009. Accessed June 5, 2023.
|
[15] |
Fischer HR, Tempelaars K, Kerpershoek A, et al. Development of flexible LEO-resistant PI films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers. ACS Appl Mater Interfaces. 2010;2(8):2218-2225.
|
[16] |
Minton TK, Wright ME, Tomczak SJ, et al. Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl Mater Interfaces. 2012;4(2):492-502.
|
[17] |
Verker R, Grossman E, Eliaz N. Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: the role of mechanical properties at elevated temperatures. Acta Mater. 2009;57(4):1112-1119.
|
[18] |
Wang P, Tang Y, Yu Z, Gu J, Kong J. Advanced aromatic polymers with excellent antiatomic oxygen performance derived from molecular precursor strategy and copolymerization of polyhedral oligomeric silsesquioxane. ACS Appl Mater Interfaces. 2015;7(36):20144-20155.
|
[19] |
Zhang J, Ai L, Li X, et al. Hollow silica nanosphere/polyimide composite films for enhanced transparency and atomic oxygen resistance. Mater Chem Phys. 2019;222:384-390.
|
[20] |
Iskanderova ZA, Kleiman J, Morison WD, Tennyson RC. Erosion resistance and durability improvement of polymers and composites in space environment by ion implantation. Mater Chem Phys. 1998;54(1-3):91-97.
|
[21] |
Iskanderova Z, Kleiman J, Gudimenko Y, Morison WD, Tennyson RC. Improvement of oxidation and erosion resistance of polymers and composites in space environment by ion implantation. Nucl Instrum Methods Phys Res B. 1997;127-128:702-709.
|
[22] |
Qi H, Qian Y, Xu J, Li M. Studies on atomic oxygen erosion resistance of deposited Mg-alloy coating on Kapton. Corros Sci. 2017;124:56-62.
|
[23] |
Mu H, Wang X, Li Z, Xie Y, Gao Y, Liu H. Preparation and atomic oxygen erosion resistance of SiOx coating formed on polyimide film by plasma polymer deposition. Vacuum. 2019;165:7-11.
|
[24] |
Duo S, Li M, Zhu M, Zhou Y. Resistance of polyimide/silica hybrid films to atomic oxygen attack. Surf Coat Technol. 2006;200(24):6671-6677.
|
[25] |
Cooper R, Upadhyaya HP, Minton TK, Berman MR, Du X, George SM. Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings. Thin Solid Films. 2008;516(12):4036-4039.
|
[26] |
Xiao F, Wang K, Zhan M. Atomic oxygen erosion resistance of polyimide/ZrO2 hybrid films. Appl Surf Sci. 2010;256(24):7384-7388.
|
[27] |
Zhang Y, Yuan H, Yan W, Chen S, Qiu M, Liao B. Atomic-oxygen-durable and antistatic α-AlxTiyO/γ-NiCr coating on Kapton for aerospace applications. ACS Appl Mater Interfaces. 2021;13(48):58179-58192.
|
[28] |
Liu K, Mu H, Shu M, Li Z, Gao Y. Improved adhesion between SnO2/SiO2 coating and polyimide film and its applications to atomic oxygen protection. Colloids Surf A. 2017;529:356-362.
|
[29] |
Gotlib-Vainstein K, Gouzman I, Girshevitz O, et al. Liquid phase deposition of a space-durable, antistatic SnO2 coating on Kapton. ACS Appl Mater Interfaces. 2015;7(6):3539-3546.
|
[30] |
Grossman E, Gouzman I. Space environment effects on polymers in low earth orbit. Nucl Instrum Methods Phys Res B. 2003;208(1-4):48-57.
|
[31] |
Snyder A, Banks BA. Fast three-dimensional modeling of atomic-oxygen undercutting of protected polymers. J Spacecr Rockets. 2004;41:340-344.
|
[32] |
Banks BA, Mirtich MJ, Rutledge SK, Swec DM. Sputtered coatings for protection of spacecraft polymers. Thin Solid Films. 1985;127(1-2):107-114.
|
[33] |
Zhang Y, Li Q, Yuan H, et al. Mechanically robust irradiation, atomic oxygen, and static-durable CrOx/CuNi coatings on Kapton serving as space station solar cell arrays. ACS Appl Mater Interfaces. 2022;14(18):21461-21473.
|
[34] |
Li Q, Zhang Y, Yan W, et al. Effects of surface polarity on the structure and magnetic properties of Co implanted polar ZnO wafers. Scr Mater. 2022;220:114923.
|
[35] |
Li S, Fan Y, Chen H, et al. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ Sci. 2020;13(3):896-907.
|
[36] |
Chen LC, Lu TR, Kuo CT, et al. The use of a biomolecular target for crystalline carbon nitride film deposition by Ar ion-beam sputtering without any other source of nitrogen. Appl Phys Lett. 1998;72(26):3449-3451.
|
[37] |
Chen X, Tang G, Zhou H, Zhu J. Study on the surface structure of polyimide films injected with high energy ion. J Chinese Electron Microsc Soc. 2002;21(5):651-652.
|
[38] |
Baker H. ASM Handbook. 3. Alloy Phase Diagrams; 1992.
|
[39] |
Fan Q, Chai H, Jin Z. Dissolution-precipitation-substitution mechanism of self-propagating high-temperature synthesis of β-NiAl(Cu)/α(Cu,Ni) composite. Intermetallics. 2002;10(6):541-554.
|
[40] |
Fu Y, Peng F, Zhang C, Sun C, Zeng Z, Fang G. Multi-faceted simulation of atomic oxygen erosion of deorbit sail for cleaning space debris. Acta Astronaut. 2021;187(3888):61-69.
|
[41] |
Jiang L, Xiu P, Yan Y, et al. Effects of ion irradiation on chromium coatings of various thicknesses on a zirconium alloy. J Nucl Mater. 2019;526:151740.
|
[42] |
Yang T, Lu C, Velisa G, et al. Effect of alloying elements on defect evolution in Ni-20X binary alloys. Acta Mater. 2018;151:159-168.
|
[43] |
Chen HL, Lu YM, Hwang WS. Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. Mater Trans. 2005;46(4):872-879.
|
[44] |
Gotlib-Vainshtein K, Girshevitz O, Richter V, Sukenik CN. Charging effects in the ion beam analysis of insulating polymers. Polymer. 2015;72:59-62.
|
[45] |
Gouzman I, Girshevitz O, Grossman E, Eliaz N, Sukenik CN. Thin film oxide barrier layers: protection of kapton from space environment by liquid phase deposition of titanium oxide. ACS Appl Mater Interfaces. 2010;2(7):1835-1843.
|
[46] |
Huang Y, Lv S, Tian X, Fu RKY, Chu PK. Interface analysis of inorganic films on polyimide with atomic oxygen exposure. Surf Coat Technol. 2013;216:121-126.
|
[47] |
Lux T. Adhesion of copper on polyimide deposited by arc-enhanced deposition. Surf Coat Technol. 2000;133-134:425-429.
|
[48] |
Lee SY, Park KR, Kang S, et al. Selective crack suppression during deformation in metal films on polymer substrates using electron beam irradiation. Nat Commun. 2019;10(1):4454.
|
/
〈 | 〉 |