A-site coordinating cation engineering in zero-dimensional antimony halide perovskites for strong self-trapped exciton emission

Xingyi Liu , Xiaowen Gao , Lin Xiong , Shuoxue Li , Yu Zhang , Qi Li , Hong Jiang , Dongsheng Xu

SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1224

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1224 DOI: 10.1002/smm2.1224
RESEARCH ARTICLE

A-site coordinating cation engineering in zero-dimensional antimony halide perovskites for strong self-trapped exciton emission

Author information +
History +
PDF

Abstract

Low-dimensional hybrid halide perovskites represent a promising class of materials in optoelectronic applications because of strong broad self-trapped exciton (STE) emissions. However, there exists a limitation in designing the ideal A-site cation that makes the material satisfy the structure tolerance and exhibit STE emission raised by the appropriate electron–phonon coupling effect. To overcome this dilemma, we developed an inorganic metal-organic dimethyl sulfoxide (DMSO) coordinating strategy to synthesize a series of zero-dimensional (0D) Sb-based halide perovskites including Na3SbBr6·DMSO6 (1), AlSbBr6·DMSO6 (2), AlSbCl6·DMSO6 (3), GaSbCl6·DMSO6 (4), Mn2Sb2Br10·DMSO13 (5) and MgSbBr5·DMSO7 (6), in which the distinctive coordinating A-site cation [Am-DMSO6]n+ efficiently separate the [SbXz] polyhedrons. Advantageously, these materials all exhibit broadband-emissions with full widths at half maxima (FWHM) of 95–184 nm, and the highest photoluminescent quantum yield (PLQY) of 3 reaches 92%. Notably, compounds 2–4 are able to remain stable after storage of more than 120 d. First-principles calculations indicate that the origin of the efficient STE emission can be attributed to the localized distortion in [SbXz] polyhedron upon optical excitation. Experimental and calculational results demonstrate that the proposed coordinating strategy provides a way to efficiently expand the variety of novel high-performance STE emitters and continuously regulate their emission behaviors.

Keywords

A-site cation / antimony-based perovskites / metal-DMSO coordination / self-trapped excitons

Cite this article

Download citation ▾
Xingyi Liu, Xiaowen Gao, Lin Xiong, Shuoxue Li, Yu Zhang, Qi Li, Hong Jiang, Dongsheng Xu. A-site coordinating cation engineering in zero-dimensional antimony halide perovskites for strong self-trapped exciton emission. SmartMat, 2024, 5(4): e1224 DOI:10.1002/smm2.1224

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

International Energy Agency (IEA). World Energy Balances. https://www.iea.org/sankey/. Accessed: 9, 2022.

[2]

SmithMD, Karunadasa HI. White-light emission from layered halide perovskites. Acc Chem Res. 2018; 51(3): 619-627.

[3]

LiS, HuQ, LuoJ, et al. Self-trapped exciton to dopant energy transfer in rare earth doped lead-free double perovskite. Adv Opt Mater. 2019; 7(23): 1901098.

[4]

YuanZ, ZhouC, MessierJ, et al. A microscale perovskite as single component broadband phosphor for downconversion white-light-emitting devices. Adv Opt Mater. 2016; 4(12): 2009-2015.

[5]

WangL, XieRJ, SuehiroT, Takeda T, HirosakiN. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem Rev. 2018; 118(4): 1951-2009.

[6]

ChenJ, XiangH, WangJ, et al. Perovskite white light emitting diodes: progress, challenges, and opportunities. ACS Nano. 2021; 15(11): 17150-17174.

[7]

DohnerER, HokeET, KarunadasaHI. Self-assembly of broadband white-light emitters. J Am Chem Soc. 2014; 136(5): 1718-1721.

[8]

LuoJ, WangX, LiS, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature. 2018; 563(7732): 541-545.

[9]

LianL, ZhengM, ZhangP, et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): highly luminescent self-trapped excitons from local structure symmetrization. Chem Mater. 2020; 32(8): 3462-3468.

[10]

ZhouL, LiaoJF, HuangZG, et al. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal. Angew Chem Int Ed. 2019; 58(43): 15435-15440.

[11]

LuoZ, LiQ, ZhangL, et al. 0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties. Small. 2020; 16(3): 1905226.

[12]

GuoQ, ZhaoX, SongB, Luo J, TangJ. Light emission of self-trapped excitons in inorganic metal halides for optoelectronic applications. Adv Mater. 2022; 34(52): 2201008.

[13]

LiS, LuoJ, LiuJ, TangJ. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J Phys Chem Lett. 2019; 10(8): 1999-2007.

[14]

XiaoZ, MengW, WangJ, Mitzi DB, YanY. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons. 2017; 4(2): 206-216.

[15]

WangX, MengW, LiaoW, Wang J, XiongRG, YanY. Atomistic mechanism of broadband emission in metal halide perovskites. J Phys Chem Lett. 2019; 10(3): 501-506.

[16]

SaparovB, MitziDB. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev. 2016; 116(7): 4558-4596.

[17]

SaidaminovMI, Mohammed OF, BakrOM. Low-dimensional-networked metal halide perovskites: the next big thing. ACS Energy Lett. 2017; 2(4): 889-896.

[18]

LuoJ, LiS, WuH, et al. Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics. 2018; 5(2): 398-405.

[19]

LiuX, XuX, LiB, et al. Tunable dual-emission in monodispersed Sb3+/Mn2+ codoped Cs2NaInCl6 perovskite nanocrystals through an energy transfer process. Small. 2020; 16(31): 2002547.

[20]

LiuX, XuX, LiB, et al. Antimony-doping induced highly efficient warm-white emission in indium-based zero-dimensional perovskites. CCS Chemistry. 2020; 2(2): 216-224.

[21]

ZhangY, LiuX, SunH, et al. Strong self-trapped exciton emissions in two-dimensional Na-In halide perovskites triggered by antimony doping. Angew Chem Int Ed. 2021; 60(14): 7587-7592.

[22]

ZhouB, LiuZ, FangS, et al. Efficient white photoluminescence from self-trapped excitons in Sb3+/Bi3+-codoped Cs2NaInCl6 double perovskites with tunable dual-emission. ACS Energy Lett. 2021; 6(9): 3343-3351.

[23]

ChengX, XieZ, ZhengW, et al. Boosting the self-trapped exciton emission in alloyed Cs2(Ag/Na)InCl6 double perovskite via Cu+ doping. Adv Sci. 2022; 9(7): 2103724.

[24]

HouL, ZhuY, ZhuJ, GongY, LiC. Mn-doped 2D Sn-based perovskites with energy transfer from self-trapped excitons to dopants for warm white light-emitting diodes. J Mater Chem C. 2020; 8(25): 8502-8506.

[25]

MaoL, WuY, StoumposCC, et al. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10–xClx. J Am Chem Soc. 2017; 139(34): 11956-11963.

[26]

UrbanJM, Jouaiti A, GruberN, et al. Using chiral ammonium cations to modulate the structure of 1D hybrid lead bromide perovskites for linearly polarized broadband light emission at room temperature. J Mater Chem C. 2022; 10(34): 12436-12443.

[27]

YuJ, KongJ, HaoW, et al. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Adv Mater. 2019; 31(7): 1806385.

[28]

JohnstonA, DinicF, TodorovićP, et al. Narrow emission from Rb3Sb2I9 nanoparticles. Adv Opt Mater. 2020; 8(1): 1901606.

[29]

ZhangJ, YangY, DengH, et al. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano. 2017; 11(9): 9294-9302.

[30]

LinF, WangH, LiuW, LiJ. Zero-dimensional ionic antimony halide inorganic–organic hybrid with strong greenish yellow emission. J Mater Chem C. 2020; 8(22): 7300-7303.

[31]

ZhaoJQ, HanMF, ZhaoXJ, et al. Structural dimensionality modulation toward enhanced photoluminescence efficiencies of hybrid lead-free antimony halides. Adv Opt Mater. 2021; 9(19): 2100556.

[32]

XingZ, ZhouZ, ZhongG, et al. Barrierless exciton self-trapping and emission mechanism in low-dimensional copper halides. Adv Funct Mater. 2022; 32(46): 2207638.

[33]

KühneTD, Iannuzzi M, Del BenM, et al. CP2K: an electronic structure and molecular dynamics software package-quickstep: efficient and accurate electronic structure calculations. J Chem Phys. 2020; 152(19): 194103.

[34]

GoedeckerS, TeterM, HutterJ. Separable dual-space Gaussian pseudopotentials. Phys Rev B: Condens Matter Mater Phys. 1996; 54(3): 1703-1710.

[35]

PerdewJP, BurkeK, ErnzerhofM. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[36]

KowalczykT, Tsuchimochi T, ChenPT, TopL, Van Voorhis T. Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach. J Chem Phys. 2013; 138(16): 164101.

[37]

PerdewJP. Self-interaction correction. In Local Density Approximations in Quantum Chemistry and Solid State Physics. Springer; 1985.

[38]

ChenD, DaiF, HaoS, et al. Crystal structure and luminescence properties of lead-free metal halides (C6H5CH2NH3)3MBr6 (M = Bi and Sb). J Mater Chem C. 2020; 8(22): 7322-7329.

[39]

WangZ, ZhangZ, TaoL, et al. Hybrid chloroantimonates(III): thermally induced triple-mode reversible luminescent switching and laser-printable rewritable luminescent paper. Angew Chem Int Ed. 2019; 58(29): 9974-9978.

[40]

TanZ, HuM, NiuG, et al. Inorganic antimony halide hybrids with broad yellow emissions. Science Bulletin. 2019; 64(13): 904-909.

[41]

MoQ, QianQ, ShiY, CaiW, ZhaoS, Zang Z. High quantum efficiency of stable Sb-based perovskite-like halides toward white light emission and flexible X-ray imaging. Adv Opt Mater. 2022; 10(23): 2201509.

[42]

PengH, TianY, WangX, et al. Bulk assembly of a 0D organic antimony chloride hybrid with highly efficient orange dual emission by self-trapped states. J Mater Chem C. 2021; 9(36): 12184-12190.

[43]

ZhouC, WorkuM, NeuJ, et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chem Mater. 2018; 30(7): 2374-2378.

[44]

WangP, WangB, LiuY, et al. Ultrastable perovskite-zeolite composite enabled by encapsulation and in situ passivation. Angew Chem Int Ed. 2020; 59(51): 23100-23106.

[45]

TrimplMJ, WrightAD, SchuttK, et al. Charge-carrier trapping and radiative recombination in metal halide perovskite semiconductors. Adv Funct Mater. 2020; 30(42): 2004312.

[46]

StranksSD. Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2017; 2(7): 1515-1525.

[47]

MondalN, DeA, SamantaA. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Lett. 2019; 4(1): 32-39.

[48]

ZengR, BaiK, WeiQ, et al. Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Res. 2021; 14(5): 1551-1558.

[49]

KresseG, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996; 6(1): 15-50.

RIGHTS & PERMISSIONS

2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/