Multicomponent flexible organic crystals

Xuehua Ding , Chuanxin Wei , Lizhi Wang , Jing Yang , Wenxin Huang , Yongzheng Chang , Changjin Ou , Jinyi Lin , Wei Huang

SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1213

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (4) : e1213 DOI: 10.1002/smm2.1213
REVIEW

Multicomponent flexible organic crystals

Author information +
History +
PDF

Abstract

Flexible organic crystals are emerging as a potential candidate for smart materials and have aroused great interest over the past decade. In view of multicomponent supramolecular synthesis with a distinct advantage over single-component approach on the control of molecular arrangements and physicochemical properties, we take note of various multicomponent flexible organic crystals in the range from organic co-crystals, supramolecular salts, solvates, doping organic crystals to solid solution crystals, showing a great diversity of supramolecular architectures such as one-dimensional columns, two-dimensional layer packing, and three-dimensional interlocked structures. Some of them serve as promising multifunctional materials with both flexibility and photoelectric properties such as fluorescence, optical waveguide, and ferroelectricity. In this review, we focus on the packing structures of multicomponent flexible organic crystals and their related mechanical properties, highlight typical research works, and point out the main possible directions that remain to be developed in this field. From the perspectives of crystal engineering and supramolecular chemistry, the flexible crystals outlined here should offer helpful information for further design and investigation on the elusive class of mechanically compliant crystalline compounds.

Keywords

crystal packing / flexible organic crystals / intermolecular interactions / mechanical properties / multicomponent

Cite this article

Download citation ▾
Xuehua Ding, Chuanxin Wei, Lizhi Wang, Jing Yang, Wenxin Huang, Yongzheng Chang, Changjin Ou, Jinyi Lin, Wei Huang. Multicomponent flexible organic crystals. SmartMat, 2024, 5(4): e1213 DOI:10.1002/smm2.1213

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naumov P, Chizhik S, Panda MK, Nath NK, Boldyreva E. Mechanically responsive molecular crystals. Chem Rev. 2015; 115(22): 12440-12490.

[2]

Saha S, Mishra MK, Reddy CM, Desiraju GR. From molecules to interactions to crystal engineering: mechanical properties of organic solids. Acc Chem Res. 2018; 51(11): 2957-2967.

[3]

Panda MK, Ghosh S, Yasuda N, et al. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal. Nat Chem. 2015; 7(1): 65-72.

[4]

Worthy A, Grosjean A, Pfrunder MC, et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat Chem. 2018; 10(1): 65-69.

[5]

Ahmed E, Karothu DP, Naumov P. Crystal adaptronics: mechanically reconfigurable elastic and superelastic molecular crystals. Angew Chem Int Ed. 2018; 57(29): 8837-8846.

[6]

Naumov P, Karothu DP, Ahmed E, et al. The rise of the dynamic crystals. J Am Chem Soc. 2020; 142(31): 13256-13272.

[7]

Wang Y, Sun L, Wang C, et al. Organic crystalline materials in flexible electronics. Chem Soc Rev. 2019; 48(6): 1492-1530.

[8]

Annadhasan M, Agrawal AR, Bhunia S, et al. Mechanophotonics: flexible single-crystal organic waveguides and circuits. Angew Chem Int Ed. 2020; 59(33): 13852-13858.

[9]

Ravi J, Kumar AV, Karothu DP, Annadhasan M, Naumov P, Chandrasekar R. Geometrically reconfigurable, 2D, all-organic photoni. integrated circuits made from two mechanically and optically dissimilar crystals. Adv Funct Mater. 2021; 31(43): 2105415.

[10]

Chen Y, Chang Z, Zhang J, Gong J. Bending for better: flexible organic single crystals with controllable curvature and curvature-related conductivity for customized electronic devices. Angew Chem Int Ed. 2021; 60(41): 22424-22431.

[11]

Karothu DP, Ferreira R, Dushaq G, et al. Exceptionally high work density of a ferroelectric dynamic organic crystal around room temperature. Nat Commun. 2022; 13(1): 2823.

[12]

Wei C, Bai L, An X, et al. Atomic-resolved hierarchical structure of elastic π-conjugated molecular crystal for flexible organic photonics. Chem. 2022; 8(5): 1427-1441.

[13]

Pan X, Zheng A, Yu X, et al. A low-temperature-resistant flexible organic crystal with circularly polarized luminescence. Angew Chem Int Ed. 2022; 61(25): e202203938.

[14]

Lan L, Li L, Di Q, et al. Organic single-crystal actuators and waveguides that operate at low temperatures. Adv Mater. 2022; 34(14): 2200471.

[15]

Yan D, Wang Z, Zhang Z. Stimuli-responsive crystalline smart materials: from rational design and fabrication to applications. Acc Chem Res. 2022; 55(7): 1047-1058.

[16]

Duan Y, Semin S, Tinnemans P, Cuppen H, Xu J, Rasing T. Robust thermoelastic microactuator based on an organic molecular crystal. Nat Commun. 2019; 10: 4573.

[17]

Li S, Lu B, Fang X, Yan D. Manipulating light-induced dynamic macro-movement and static photonic properties within 1D isostructural hydrogen-bonded molecular cocrystals. Angew Chem Int Ed. 2020; 59(50): 22623-22630.

[18]

Zhou B, Yan D. Recent advances of dynamic molecular crystals with light-triggered macro-movements. Appl Phys Rev. 2021; 8(4): 041310.

[19]

Wang L, Chen D, Jiang K, Shen G. New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev. 2017; 46(22): 6764-6815.

[20]

Huang Y, Gong Q, Yu J. Organic crystal-based flexible smart materials. Sci China Mater. 2022; 65(8): 1994-2016.

[21]

Han K, Na Y, Zhang L, Tezcan FA. Dynamic, polymer-integrated crystal. for efficient, reversible protein encapsulation. J Am Chem Soc. 2022; 144(23): 10139-10144.

[22]

Hu S, Mishra MK, Sun CC. Twistable pharmaceutical crystal exhibiting exceptional plasticity and tabletability. Chem Mater. 2019; 31(10): 3818-3822.

[23]

Singaraju AB, Bahl D, Wang C, Swenson DC, Sun CC, Stevens LL. Molecular interpretation of the compaction performance and mechanical properties of caffeine cocrystals: a polymorphic study. Mol Pharm. 2020; 17(1): 21-31.

[24]

Das S, Mondal A, Reddy CM. Harnessing molecular rotations in plastic crystals: a holistic view for crystal engineering of adaptive soft materials. Chem Soc Rev. 2020; 49(24): 8878-8896.

[25]

Thompson AJ, Chamorro Orué AI, Nair AJ, Price JR, McMurtrie J, Clegg JK. Elastically flexible molecular crystals. Chem Soc Rev. 2021; 50(21): 11725-11740.

[26]

Zheng X, Liu X, Liu L, et al. Multi-stimuli-induced mechanical bending and reversible fluorescence switching in a single organic crystal. Angew Chem Int Ed. 2022; 61(1): e202113073.

[27]

Tang SY, Ye KQ, Commins P, et al. Organic crystalline optical waveguides that remain elastic from –196 to ≈200° C. Adv Opt Mater. 2023; 11(13): 2200627.

[28]

Ravi J, Annadhasan M, Kumar AV, Chandrasekar R. Mechanically reconfigurable organic photonic integrated circuits made from two electronically different flexible microcrystals. Adv Funct Mater. 2021; 31(25): 2100642.

[29]

Annadhasan M, Karothu DP, Chinnasamy R, et al. Micromanipulation of mechanically compliant organic single-crystal optical microwaveguides. Angew Chem Int Ed. 2020; 59(33): 13821-13830.

[30]

Hayashi S, Yamamoto S, Takeuchi D, Ie Y, Takagi K. Creating elastic organic crystals of π-conjugated molecules with bending mechanofluorochromism and flexible optical waveguide. Angew Chem Int Ed. 2018; 57(52): 17002-17008.

[31]

Reddy CM, Gundakaram RC, Basavoju S, Kirchner MT, Padmanabhan KA, Desiraju GR. Structural basis for bending of organic crystals. Chem Commun. 2005; 31: 3945-3947.

[32]

Reddy CM, Padmanabhan KA, Desiraju GR. Structure-property correlations in bending and brittle organic crystals. Cryst Growth Des. 2006; 6(12): 2720-2731.

[33]

Ghosh S, Mishra MK, Ganguly S, Desiraju GR. Dual stress and thermally driven mechanical properties of the same organic crystal: 2, 6-dichlorobenzylidene-4-fluoro-3-nitroaniline. J Am Chem Soc. 2015; 137(31): 9912-9921.

[34]

Ghosh S, Mishra MK, Kadambi SB, Ramamurty U, Desiraju GR. Designing elastic organic crystals: highly flexible polyhalogenated n-benzylideneanilines. Angew Chem Int Ed. 2015; 54(9): 2674-2678.

[35]

Lan L, Yang X, Tang B, et al. Hybrid elastic organic crystals that respond to aerial humidity. Angew Chem Int Ed. 2022; 61(14): e202200196.

[36]

Karothu DP, Dushaq G, Ahmed E, Catalano L, Rasras M, Naumov P. Multifunctional deformable organic semiconductor single crystals. Angew Chem Int Ed. 2021; 60(50): 26151-26157.

[37]

Ahmed E, Karothu DP, Warren M, Naumov P. Shape-memory effects in molecular crystals. Nat Commun. 2019; 10: 3723.

[38]

Bhattacharya B, Roy D, Dey S, et al. Mechanical-bending-induced fluorescence enhancement in plastically flexible crystals of a GFP chromophore analogue. Angew Chem Int Ed. 2020; 59(45): 19878-19883.

[39]

Yan D. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality. Chemistry. 2015; 21(13): 4880-4896.

[40]

Wang Y, Zhu W, Dong H, Zhang X, Li R, Hu W. Organic cocrystals: new strategy for molecular collaborative innovation. Top Curr Chem. 2016; 374(6): 83.

[41]

Saha S, Desiraju GR. Acid center dot center dot center dot amide supramolecular synthon in cocrystals: from spectroscopic detection to property engineering. J Am Chem Soc. 2018; 140(20): 6361-6373.

[42]

Terao F, Morimoto M, Irie M. Light-driven molecular-crystal actuators: rapid and reversible bending of rodlike mixed crystals of diarylethene derivatives. Angew Chem Int Ed. 2012; 51(4): 901-904.

[43]

Huang R, Wang C, Wang Y, Zhang H. Elastic self-doping organic single crystals exhibiting flexible optical waveguide and amplified spontaneous emission. Adv Mater. 2018; 30(21): 1800814.

[44]

Das S, Saha S, Sahu M, Mondal A, Reddy CM. Temperature-reliant dynamic properties and elasto-plastic to plastic crystal (rotator) phase transition in a metal oxyacid salt. Angew Chem Int Ed. 2022; 61(8): e202115359.

[45]

Wang C, Sun CC. The landscape of mechanical properties of molecular crystals. CrystEngComm. 2020; 22(7): 1149-1153.

[46]

Nangia AK, Desiraju GR. Crystal engineering: an outlook for the future. Angew Chem Int Ed. 2019; 58(13): 4100-4107.

[47]

Saha S, Desiraju GR. σ-hole and π-hole synthon mimicry in third-generation crystal engineering: design of elastic crystals. Chemistry. 2017; 23(20): 4936-4943.

[48]

Liu B, Liu H, Zhang H, Di Q, Zhang H. Crystal engineering of a hydrazone molecule toward high elasticity and bright luminescence. J Phys Chem Lett. 2020; 11(21): 9178-9183.

[49]

Tang B, Li M, Yu X, Zhang H. Achieving two things at one stroke: crystal engineering simultaneously optimizes the emission and mechanical compliance of organic crystals. J Mater Chem C. 2022; 10(10): 3894-3900.

[50]

Commins P, Karothu DP, Naumov P. Is a bent crystal still a single crystal? Angew Chem Int Ed. 2019; 58(30): 10052-10060.

[51]

Ghosh S, Mishra MK. Elastic molecular crystals: from serendipity to design to applications. Cryst Growth Des. 2021; 21(4): 2566-2580.

[52]

Hasija A, Chopra D. Potential and challenges of engineering mechanically flexible molecular crystals. CrystEngComm. 2021; 23(34): 5711-5730.

[53]

Bhandary S, Thompson AJ, McMurtrie JC, et al. The mechanism of bending in a plastically flexible crystal. Chem Commun. 2020; 56(84): 12841-12844.

[54]

Varughese S, Kiran MSRN, Ramamurty U, Desiraju GR. Nanoindentation in crystal engineering: quantifying mechanical properties of molecular crystals. Angew Chem Int Ed. 2013; 52(10): 2701-2712.

[55]

Karothu DP, Mahmoud Halabi J, Ahmed E, et al. Global analysis of the mechanical properties of organic crystals. Angew Chem Int Ed. 2022; 61(10): e202113988.

[56]

Annadhasan M, Basak S, Chandrasekhar N, Chandrasekar R. Next-generation organic photonics: the emergence of flexible crystal optical waveguides. Adv Opt Mater. 2020; 8(21): 2000959.

[57]

Chandrasekar R. Mechanophotonics—mechanical micromanipulation of single-crystals toward organic photonic integrated circuits. Small. 2021; 17(24): 2100277.

[58]

Thompson AJ, Worthy A, Grosjean A, Price JR, McMurtrie JC, Clegg JK. Determining the mechanisms of deformation in flexible crystals using micro-focus X-ray diffraction. CrystEngComm. 2021; 23(34): 5731-5737.

[59]

Spackman PR, Grosjean A, Thomas SP, Karothu DP, Naumov P, Spackman MA. Quantifying mechanical properties of molecular crystals: a critical overview of experimental elastic tensors. Angew Chem Int Ed. 2022; 61(6): e202110716.

[60]

Yu P, Zhen Y, Dong H, Hu W. Crystal engineering of organic optoelectronic materials. Chem. 2019; 5(11): 2814-2853.

[61]

Ghosh S, Reddy CM. Elastic and bendable caffeine cocrystals: implications for the design of flexible organic materials. Angew Chem Int Ed. 2012; 51(41): 10319-10323.

[62]

Chen CT, Ghosh S, Malla Reddy C, Buehler MJ. Molecular mechanics of elastic and bendable caffeine co-crystals. Phys Chem Chem Phys. 2014; 16(26): 13165-13171.

[63]

Dey S, Das S, Bhunia S, et al. Mechanically interlocked architecture aids an ultra-stiff and ultra-hard elastically bendable cocrystal. Nat Commun. 2019; 10: 3711.

[64]

Thompson AJ, Price JR, McMurtrie JC, Clegg JK. The mechanism of bending in co-crystals of caffeine and 4-chloro-3-nitrobenzoic acid. Nat Commun. 2021; 12(1): 5983.

[65]

Dey S, Das S, Bhunia S, et al. Retraction note: mechanically interlocked architecture aids an ultra-stiff and ultra-hard elastically bendable cocrystal. Nat Commun. 2021; 12(1): 6104.

[66]

Vreeman G, Wang C, Reddy CM, Sun CC. Exceptional powder tabletability of elastically flexible crystals. Cryst Growth Des. 2021; 21(12): 6655-6659.

[67]

Saha S, Desiraju GR. Using structural modularity in cocrystals to engineer properties: elasticity. Chem Commun. 2016; 52(49): 7676-7679.

[68]

Ghora M, Majumdar P, Anas M, Varghese S. Enabling control over mechanical conformity and luminescence in molecular crystals: interaction engineering in action. Chemistry. 2020; 26(63): 14488-14495.

[69]

Luo Q, Jiang C, Lin H, Luo C, Qi R, Peng H. Elastic flexibility of ferroelectric supramolecular co-crystals. Soft Mater. 2020; 18(1): 31-37.

[70]

Singh M, Chopra D. Diversity in mechanical response in donor-acceptor coupled cocrystal stoichiomorphs based on pyrene and 1, 8-dinitroanthraquinone systems. Cryst Growth Des. 2018; 18(11): 6670-6680.

[71]

Yu X, Tang B, Zhang H. A controllable and defectless cutting postprocess method via cleavage of an elastic cocrystal based on pyrene and tetrachloroterephthalonitrile. CrystEngComm. 2022; 24(5): 942-946.

[72]

Sun Y, Lei Y, Dong H, Zhen Y, Hu W. Solvatomechanical bending of organic charge transfer cocrystal. J Am Chem Soc. 2018; 140(20): 6186-6189.

[73]

Morimoto M, Irie M. A diarylethene cocrystal that converts light into mechanical work. J Am Chem Soc. 2010; 132(40): 14172-14178.

[74]

Ye Y, Gao L, Hao H, Yin Q, Xie C. Tuning the photomechanical behavior and excellent elasticity of azobenzene via cocrystal engineering. CrystEngComm. 2020; 22(46): 8045-8053.

[75]

Gupta P, Karothu DP, Ahmed E, Naumov P, Nath NK. Thermally twistable, photobendable, elastically deformable, and self-healabl. soft crystals. Angew Chem Int Ed. 2018; 57(28): 8498-8502.

[76]

Wang JR, Li M, Yu Q, et al. Anisotropic elasticity and plasticity of an organic crystal. Chem Commun. 2019; 55(59): 8532-8535.

[77]

Ghosh S, Mondal A, Kiran MSRN, Ramamurty U, Reddy CM. The role of weak interactions in the phase transition and distinct mechanical behavior of two structurally similar caffeine co-crystal polymorphs studied by nanoindentation. Cryst Growth Des. 2013; 13(10): 4435-4441.

[78]

Singaraju AB, Iyer M, Haware RV, Stevens LL. Caffeine co-crystal mechanics evaluated with a combined structural and spectroscopic approach. Cryst Growth Des. 2016; 16(8): 4383-4391.

[79]

Mishra MK, Mishra K, Narayan A, Reddy CM, Vangala VR. Structural basis for mechanical anisotropy in polymorphs of a caffeine-glutaric acid cocrystal. Cryst Growth Des. 2020; 20(10): 6306-6315.

[80]

Kakkar S, Bhattacharya B, Reddy CM, Ghosh S. Tuning mechanical behaviour by controlling the structure of a series of theophylline co-crystals. CrystEngComm. 2018; 20(8): 1101-1109.

[81]

Mondal PK, Bhandary S, Javoor MG, et al. Probing the distinct nanomechanical behaviour of a new co-crystal and a known solvate of 5-fluoroisatin and identification of a new polymorph. CrystEngComm. 2020; 22(15): 2566-2572.

[82]

Kale DP, Puri V, Kumar A, Kumar N, Bansal AK. The role of cocrystallization-mediated altered crystallographic properties on the tabletability of rivaroxaban and malonic acid. Pharmaceutics. 2020; 12(6): 546.

[83]

Yadav JP, Yadav RN, Sihota P, et al. Single-crystal plasticity defies bulk-phase mechanics in isoniazid cocrystals with analogous coformers. Cryst Growth Des. 2019; 19(8): 4465-4475.

[84]

Yadav JP, Yadav RN, Uniyal P, et al. Molecular interpretation of mechanical behavior in four basic crystal packing of isoniazid with homologous cocrystal formers. Cryst Growth Des. 2020; 20(2): 832-844.

[85]

Rao Khandavilli UB, Bhogala BR, Maguire AR, Lawrence SE. Symmetry assisted tuning of bending and brittle multi-component forms of probenecid. Chem Commun. 2017; 53(23): 3381-3384.

[86]

Nath NK, Hazarika M, Gupta P, Ray NR, Paul AK, Nauha E. Plastically bendable crystals of probenecid and its cocrystal with 4, 4’-bipyridine. J Mol Struct. 2018; 1160: 20-25.

[87]

Krishna GR, Shi L, Bag PP, Sun CC, Reddy CM. Correlation among crystal structure, mechanical behavior, and tabletability in the co-crystals of vanillin isomers. Cryst Growth Des. 2015; 15(4): 1827-1832.

[88]

Cruz-Cabeza AJ. Acid–base crystalline complexes and the pKa rule. CrystEngComm. 2012; 14(20): 6362-6365.

[89]

Ding XH, Li YH, Wang S, Huang W. Proton-transfer supramolecular salts of D-/L-tartaric acid and 1-(2-pyrimidyl) piperazine. J Mol Struct. 2014; 1062: 61-67.

[90]

Li S, Yan D. Tuning light-driven motion and bending in macroscale-flexible molecular crystals based on a cocrystal approach. ACS Appl Mater Interfaces. 2018; 10(26): 22703-22710.

[91]

Hasija A, Ranjan S, Guerin S, Mangalampalli SRNK, Takamizawa S, Chopra D. Tracing shape memory effect and elastic bending in a conformationally flexible organic salt. J Mater Chem C. 2022; 10(11): 4257-4267.

[92]

Wang C, Paul S, Wang K, Hu S, Sun CC. Relationships among crystal structures, mechanical properties, and tableting performance probed using four salts of diphenhydramine. Cryst Growth Des. 2017; 17(11): 6030-6040.

[93]

Khandavilli UBR, Yousuf M, Schaller BE, et al. Plastically bendable pregabalin multi-component systems with improved tabletability and compressibility. CrystEngComm. 2020; 22(3): 412-415.

[94]

Panda MK, Pal KB, Raj G, et al. Flexibility in a molecular crystal accomplished by structural modulation of carbohydrate epimers. Cryst Growth Des. 2017; 17(4): 1759-1765.

[95]

Khandavilli UBR, Lusi M, Frawley PJ. Plasticity in zwitterionic drugs: the bending properties of pregabalin and gabapentin and their hydrates. IUCrJ. 2019; 6: 630-634.

[96]

Saha S, Desiraju GR. A hand-twisted helical crystal based solely on hydrogen bonding. Chem Commun. 2017; 53(47): 6371-6374.

[97]

Lusi M. A rough guide to molecular solid solutions: design, synthesis and characterization of mixed crystals. CrystEngComm. 2018; 20(44): 7042-7052.

[98]

Tsunashima R. Molecular solid solutions for advanced materials—homeomorphic or heteromorphic. CrystEngComm. 2022; 24(7): 1309-1318.

[99]

Pramanik T, Sarkar S, Guru Row TN. Halogen bonded network modulating the mechanical property elastic and plastic bending in nonconventional molecular solid solutions. Cryst Growth Des. 2022; 22(1): 48-53.

[100]

Owczarek M, Hujsak KA, Ferris DP, et al. Flexible ferroelectric organic crystals. Nat Commun. 2016; 7: 13108.

[101]

Ohshima S, Morimoto M, Irie M. Light-driven bending of diarylethene mixed crystals. Chem Sci. 2015; 6(10): 5746-5752.

RIGHTS & PERMISSIONS

2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/