Synergistic fluorescent hydrogel actuators with selective spatial shape/color-changing behaviors via interfacial supramolecular assembly

Wei Lu, Ruijia Wang, Muqing Si, Yi Zhang, Shuangshuang Wu, Ning Zhu, Wenqin Wang, Tao Chen

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (2) : e1190. DOI: 10.1002/smm2.1190
RESEARCH ARTICLE

Synergistic fluorescent hydrogel actuators with selective spatial shape/color-changing behaviors via interfacial supramolecular assembly

Author information +
History +

Abstract

Biomimetic intelligent polymeric hydrogel actuators with cooperative fluorescence-color switchable behaviors are expected to find great potential applications in soft robotics, visual detection/display, and camouflage applications. However, it remains challenging to realize the spatial manipulation of synergistic shape/color-changing behaviors. Herein, we report an interfacial supramolecular assembly (ISA) approach that enables the construction of robust fluorescent polymeric hydrogel actuators with spatially anisotropic structures. On the basis of this ISA approach, diverse 2D/3D soft fluorescent hydrogel actuators, including chameleon- and octopi-shaped ones with spatially anisotropic structures, were facilely assembled from two different fluorescent hydrogel building blocks sharing the same physically cross-linked agar network. Spatially control over synergistic shape/color-changing behaviors was then realized in one single anisotropic hydrogel actuator. The proposed ISA approach is universal and expected to open promising avenues for developing powerful bioinspired intelligent soft actuators/robotics with selective spatial shape/color-changing behaviors.

Keywords

actuator / anisotropic structure / interfacial supramolecular assembly / multicolor fluorescent hydrogels / self-gluing

Cite this article

Download citation ▾
Wei Lu, Ruijia Wang, Muqing Si, Yi Zhang, Shuangshuang Wu, Ning Zhu, Wenqin Wang, Tao Chen. Synergistic fluorescent hydrogel actuators with selective spatial shape/color-changing behaviors via interfacial supramolecular assembly. SmartMat, 2024, 5(2): e1190 https://doi.org/10.1002/smm2.1190

References

[1]
Lu W, Si M, Le X, Chen T. Mimicking color-changing organisms to enable the multicolors and multifunctions of smart fluorescent polymeric hydrogels. Acc Chem Res. 2022;55(16):2291-2303.
[2]
Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O. Fluorescent pigments in corals are photoprotective. Nature. 2000;408(6814):850-853.
[3]
Sparks JS, Schelly RC, Smith WL, et al. The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS One. 2014;9(1):e83259.
[4]
Widder EA. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science. 2010;328(5979):704-708.
[5]
Wei S, Li Z, Lu W, et al. Multicolor fluorescent polymeric hydrogels. Angew Chem Int Ed. 2021;60(16):8608-8624.
[6]
Li X, Liu J, Li D, Huang S, Huang K, Zhang X. Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities. Adv Sci. 2021;8(16):2101295.
[7]
Du X, Cui H, Xu T, et al. Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Adv Funct Mater. 2020;30(10):1909202.
[8]
Kim H, Lee H, Ha I, et al. Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv Funct Mater. 2018;28(32):1801847.
[9]
Ma C, Lu W, Yang X, et al. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv Funct Mater. 2018;28(7):1704568.
[10]
Wang J, Wang Z, Song Z, Ren L, Liu Q, Ren L. Biomimetic shape–color double-responsive 4D printing. Adv Mater Technol. 2019;4(9):1900293.
[11]
Huang Y, Bisoyi HK, Huang S, et al. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angew Chem Int Ed. 2021;60(20):11247-11251.
[12]
Zhang L, Naumov P. Light- and humidity-induced motion of an acidochromic film. Angew Chem Int Ed. 2015;54(30):8642-8647.
[13]
Yao Y, Yin C, Hong S, et al. Lanthanide-ion-coordinated supramolecular hydrogel inks for 3D printed full-color luminescence and opacity-tuning soft actuators. Chem Mater. 2020;32(20):8868-8876.
[14]
Wang Y, Cui H, Zhao Q, Du X. Chameleon-inspired structural-color actuators. Matter. 2019;1(3):626-638.
[15]
Mu J, Wang G, Yan H, et al. Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat Commun. 2018;9(1):590.
[16]
Zhang Z, Chen Z, Wang Y, Chi J, Wang Y, Zhao Y. Bioinspired bilayer structural color hydrogel actuator with multienvironment responsiveness and survivability. Small Methods. 2019;3(12):1900519.
[17]
Dai CF, Khoruzhenko O, Zhang C, et al. Magneto-orientation of magnetic double stacks for patterned anisotropic hydrogels with multiple responses and modulable motions. Angew Chem Int Ed. 2022;61(35):e202207272.
[18]
Du X, Cui H, Zhao Q, Wang J, Chen H, Wang Y. Inside-out 3D reversible ion-triggered shape-morphing hydrogels. Research. 2019;2019(1):1-12.
[19]
Fan W, Shan C, Guo H, et al. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci Adv. 2019;5(4):eaav7174.
[20]
Hu L, Zhang Q, Li X, Serpe MJ. Stimuli-responsive polymers for sensing and actuation. Mater Horiz. 2019;6(9):1774-1793.
[21]
Kim J, Hanna JA, Byun M, Santangelo CD, Hayward RC. Designing responsive buckled surfaces by halftone gel lithography. Science. 2012;335(6073):1201-1205.
[22]
Löwenberg C, Balk M, Wischke C, Behl M, Lendlein A. Shape-memory hydrogels: evolution of structural principles to enable shape switching of hydrophilic polymer networks. Acc Chem Res. 2017;50(4):723-732.
[23]
Lu W, Wei S, Shi H, et al. Progress in aggregation-induced emission-active fluorescent polymeric hydrogels. Aggregate. 2021;2(3):e37.
[24]
Matsuda T, Kawakami R, Namba R, Nakajima T, Gong JP. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science. 2019;363(6426):504-508.
[25]
Sano K, Ishida Y, Aida T. Synthesis of anisotropic hydrogels and their applications. Angew Chem Int Ed. 2018;57(10):2532-2543.
[26]
Stoychev G, Reuther C, Diez S, Ionov L. Controlled retention and release of biomolecular transport systems using shape-changing polymer bilayers. Angew Chem Int Ed. 2016;55(52):16106-16109.
[27]
Wang C, Liu X, Wulf V, Vázquez-González M, Fadeev M, Willner I. DNA-based hydrogels loaded with Au nanoparticles or Au nanorods: thermoresponsive plasmonic matrices for shape-memory, self-healing, controlled release, and mechanical applications. ACS Nano. 2019;13(3):3424-3433.
[28]
Zhang Q, Zhang Y, Wan Y, Carvalho W, Hu L, Serpe MJ. Stimuli-responsive polymers for sensing and reacting to environmental conditions. Prog Polym Sci. 2021;116(1):101386.
[29]
Zhang Y, Liu K, Liu T, et al. Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels. Nat Commun. 2021;12(1):6155.
[30]
Zhao C, Zhang P, Zhou J, et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature. 2020;580(7802):210-215.
[31]
Zhao T, Wang G, Hao D, Chen L, Liu K, Liu M. Macroscopic layered organogel-hydrogel hybrids with controllable wetting and swelling performance. Adv Funct Mater. 2018;28(49):1800793.
[32]
Zhu CN, Bai T, Wang H, et al. Dual-encryption in a shape-memory hydrogel with tunable fluorescence and reconfigurable architecture. Adv Mater. 2021;33(29):2102023.
[33]
Li Z, Liu P, Ji X, et al. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens. Adv Mater. 2020;32(11):1906493.
[34]
Wei S, Lu W, Le X, et al. Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew Chem Int Ed. 2019;58(45):16243-16251.
[35]
Wu S, Shi H, Lu W, et al. Aggregation induced emissive carbon dots gels for octopus-inspired shape/color synergistically adjustable actuator. Angew Chem Int Ed. 2021;60(40):21890-21898.
[36]
Shi H, Wu S, Si M, et al. Cephalopod-inspired design of photomechanically modulated display systems for on-demand fluorescent patterning. Adv Mater. 2022;34(4):2107452.
[37]
Ma C, Li T, Zhao Q, et al. Supramolecular LEGO assembly towards three-dimensional multi-responsive hydrogels. Adv Mater. 2014;26(32):5665-5669.
[38]
Zhao Q, Yang X, Ma C, et al. A bioinspired reversible snapping hydrogel assembly. Mater Horiz. 2016;3(5):422-428.
[39]
Chen H, Liu Y, Ren B, et al. Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. Adv Funct Mater. 2017;27(44):1703086.
[40]
Lu W, Si M, Liu H, et al. A panther chameleon skin-inspired core@shell supramolecular hydrogel with spatially organized multi-luminogens enables programmable color change. Cell Rep Phys Sci. 2021;2(5):100417.
[41]
Qiu H, Wei S, Liu H, et al. Programming multistate aggregation-induced emissive polymeric hydrogel into 3D structures for on-demand information decryption and transmission. Adv Intell Syst. 2021;3(6):2000239.

RIGHTS & PERMISSIONS

2023 2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/