REVIEW

Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors

  • Lili Zhu ,
  • Zhenyu Qian
Expand
  • Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China

Received date: 26 Feb 2021

Revised date: 02 Jun 2021

Accepted date: 30 Jun 2021

Published date: 15 Mar 2022

Copyright

2021 The Author(s) 2022. Published by Higher Education Press.

Abstract

Background: Alzheimer’s disease (AD) is one of the most popular tauopathies. Neurofibrillary tangles and senile plaques are widely recognized as the pathological hallmarks of AD, which are mainly composed of tau and β-amyloid (Aβ) respectively. Recent failures of drugs targeting Aβ have led scientists to scrutinize the crucial impact of tau in neurodegenerative diseases. Mutated or abnormal phosphorylated tau protein loses affinity with microtubules and assembles into pathological accumulations. The aggregation process closely correlates to two amyloidogenic core of PHF6 (306VQIVYK311) and PHF6* (275VQIINK280) fragments. Moreover, tau accumulations display diverse morphological characteristics in different diseases, which increases the difficulty of providing a unifying neuropathological criterion for early diagnosis.

Results: This review mainly summarizes atomic-resolution structures of tau protein in the monomeric, oligomeric and fibrillar states, as well as the promising inhibitors designed to prevent tau aggregation or disaggregate tau accumulations, recently revealed by experimental and computational studies. We also systematically sort tau functions, their relationship with tau structures and the potential pathological processes of tau protein.

Conclusion: The current progress on tau structures at atomic level of detail expands our understanding of tau aggregation and related pathology. We discuss the difficulties in determining the source of neurotoxicity and screening effective inhibitors. We hope this review will inspire new clues for designing medicines against tau aggregation and shed light on AD diagnosis and therapies.

Cite this article

Lili Zhu , Zhenyu Qian . Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors[J]. Quantitative Biology, 2022 , 10(1) : 17 -34 . DOI: 10.15302/J-QB-021-0271

ACKNOWLEDGEMENTS

We thank Prof. Guanghong Wei for helpful discussion. This work was supported by the National Natural Science Foundation of China (Nos. 11704256 and 11932013).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Lili Zhu and Zhenyu Qian declare that they have no conflict of interest or financial conflicts to disclose.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.
1
ChenQ., DuY., ZhangK., LiangZ., LiJ., YuH., RenR., FengJ., JinZ., LiF. . (2018). A tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano, 12 : 1321–1338

DOI

2
ZeiselJ., BennettK. (2020). World Alzheimer report 2020: Design, dignity, dementia: dementia-related design and the built environment. Accessed: February 1, 2021

3
Alzheimer’sAssociation (2021). 2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 17 : 327–406

DOI

4
GrandyJ. (2013). Melatonin: Therapeutic intervention in mild cognitive impairment and Alzheimer disease. J. Neurol. Neurophysiol., 4 : 148

DOI

5
UddinM. S., KabirM. T., Al MamunA., Abdel-DaimM. M., BarretoG. E. AshrafG. (2019). APOE and Alzheimer’s disease: Evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol. Neurobiol., 56 : 2450–2465

DOI

6
HardyJ. A. HigginsG. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256 : 184–185

DOI

7
RajasekharK., ChakrabartiM. (2015). Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem. Commun. (Camb.), 51 : 13434–13450

DOI

8
RajasekharK. (2018). Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Advances, 8 : 23780–23804

DOI

9
van der KantR., GoldsteinL. S. B. (2020). Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci., 21 : 21–35

DOI

10
CongdonE. E. SigurdssonE. (2018). Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 14 : 399–415

DOI

11
Alavi NainiS. M. (2015). Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid. Med. Cell. Longev., 2015 : 151979

DOI

12
KerrJ. S., AdriaanseB. A., GreigN. H., MattsonM. P., CaderM. Z., BohrV. A. FangE. (2017). Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci., 40 : 151–166

DOI

13
BuscheM. A. HymanB. (2020). Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci., 23 : 1183–1193

DOI

14
MullardA. (2021). Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat. Rev. Drug Discov., 20 : 3–5

DOI

15
DehmeltL. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome Biol., 6 : 204

DOI

16
JamesonL., FreyT., ZeebergB., DalldorfF. (1980). Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry, 19 : 2472–2479

DOI

17
GuY., OyamaF. (1996). Tau is widely expressed in rat tissues. J. Neurochem., 67 : 1235–1244

DOI

18
BakotaL. (2016). Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs, 76 : 301–313

DOI

19
GuoT., NobleW. HangerD. (2017). Roles of tau protein in health and disease. Acta Neuropathol., 133 : 665–704

DOI

20
GoedertM., SpillantiniM. G., JakesR., RutherfordD. CrowtherR. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 3 : 519–526

DOI

21
MandelkowE. (2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med., 2 : a006247

DOI

22
CondeC. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci., 10 : 319–332

DOI

23
WeingartenM. D., LockwoodA. H., HwoS. Y. KirschnerM. (1975). A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA, 72 : 1858–1862

DOI

24
CastroT. G., MunteanuF. D. (2019). Electrostatics of tau protein by molecular dynamics. Biomolecules, 9 : 116

DOI

25
KelloggE. H., HejabN. M. A., PoepselS., DowningK. H., DiMaioF. (2018). Near-atomic model of microtubule-tau interactions. Science, 360 : 1242–1246

DOI

26
Qiang, L., Sun, X., Austin, T. O., Muralidharan, H., Jean, D. C., Liu, M., Yu, W., and Baas, P. W. (2018) Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr. Biol., 28, 2181−2189. e4

27
BaasP. W. (2019). Tau: It’s not what you think. Trends Cell Biol., 29 : 452–461

DOI

28
WitmanG. B., ClevelandD. W., WeingartenM. D. KirschnerM. (1976). Tubulin requires tau for growth onto microtubule initiating sites. Proc. Natl. Acad. Sci. USA, 73 : 4070–4074

DOI

29
ZhangB., CarrollJ., TrojanowskiJ. Q., YaoY., IbaM., PotuzakJ. S., HoganA. M., XieS. X., BallatoreC., Smith IIIA. B. . (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J. Neurosci., 32 : 3601–3611

DOI

30
Mietelska-PorowskaA., WasikU., GorasM., FilipekA. (2014). Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci., 15 : 4671–4713

DOI

31
MedinaM. (2014). The role of extracellular tau in the spreading of neurofibrillary pathology. Front. Cell. Neurosci., 8 : 113

DOI

32
ElieA., PrezelE., rinC., DenarierE., Ramirez-RiosS., SerreL., AndrieuxA., Fourest-LieuvinA., BlanchoinL. (2015). Tau co-organizes dynamic microtubule and actin networks. Sci. Rep., 5 : 9964

DOI

33
VioletM., DelattreL., TardivelM., SultanA., ChauderlierA., CaillierezR., TalahariS., NesslanyF., LefebvreB., BonnefoyE. . (2014). A major role for tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front. Cell. Neurosci., 8 : 84

DOI

34
SultanA., NesslanyF., VioletM., gardS., LoyensA., TalahariS., MansurogluZ., MarzinD., SergeantN., HumezS. . (2011). Nuclear tau, a key player in neuronal DNA protection. J. Biol. Chem., 286 : 4566–4575

DOI

35
BulicB., PickhardtM., MandelkowE. M. (2010). Tau protein and tau aggregation inhibitors. Neuropharmacology, 59 : 276–289

DOI

36
SeidlerP. M., BoyerD. R., RodriguezJ. A., SawayaM. R., CascioD., MurrayK., GonenT. EisenbergD. (2018). Structure-based inhibitors of tau aggregation. Nat. Chem., 10 : 170–176

DOI

37
NizynskiB., DzwolakW. (2017). Amyloidogenesis of tau protein. Protein Sci., 26 : 2126–2150

DOI

38
LiuY., NguyenM., RobertA. (2019). Metal ions in Alzheimer’s disease: A key role or not? Acc. Chem. Res., 52 : 2026–2035

DOI

39
FanniA. M., Vander ZandenC. M., MajewskaP. V., MajewskiJ. ChiE. (2019). Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. J. Biol. Chem., 294 : 15304–15317

DOI

40
ZhuH. L., ndezC., FanJ. B., ShewmakerF., ChenJ., MintonA. P. (2010). Quantitative characterization of heparin binding to tau protein: implication for inducer-mediated tau filament formation. J. Biol. Chem., 285 : 3592–3599

DOI

41
KfouryN., HolmesB. B., JiangH., HoltzmanD. M. DiamondM. (2012). Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem., 287 : 19440–19451

DOI

42
La JoieR., VisaniA. V., BakerS. L., BrownJ. A., BourakovaV., ChaJ., ChaudharyK., EdwardsL., IaccarinoL., JanabiM. . (2020). Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci. Transl. Med., 12 : eaau5732

DOI

43
LeeC. C., NayakA., SethuramanA., BelfortG. McRaeG. (2007). A three-stage kinetic model of amyloid fibrillation. Biophys. J., 92 : 3448–3458

DOI

44
IannuzziC., BorrielloM., IraceG., CammarotaM., Di MaroA. (2017). Vanillin affects amyloid aggregation and non-enzymatic glycation in human insulin. Sci. Rep., 7 : 15086

DOI

45
MirbahaH., ChenD., MorazovaO. A., RuffK. M., SharmaA. M., LiuX., GoodarziM., PappuR. V., ColbyD. W., MirzaeiH. . (2018). Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife, 7 : e36584

DOI

46
ShammasS. L., GarciaG. A., KumarS., KjaergaardM., HorrocksM. H., ShivjiN., MandelkowE., KnowlesT. P., MandelkowE. (2015). A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nat. Commun., 6 : 7025

DOI

47
KjaergaardM., DearA. J., KundelF., QamarS., MeislG., KnowlesT. P. J. (2018). Oligomer diversity during the aggregation of the repeat region of tau. ACS Chem. Neurosci., 9 : 3060–3071

DOI

48
RomanA. Y., DevredF., ByrneD., La RoccaR., NinkinaN. N., PeyrotV. TsvetkovP. (2019). Zinc induces temperature-dependent reversible self-assembly of tau. J. Mol. Biol., 431 : 687–695

DOI

49
SonawaneS. K., ChidambaramH., BoralD., GorantlaN. V., BalmikA. A., DangiA., RamasamyS., MarelliU. K. (2020). EGCG impedes human tau aggregation and interacts with Tau. Sci. Rep., 10 : 12579

DOI

50
RamachandranG. UdgaonkarJ. (2011). Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by tau protein. J. Biol. Chem., 286 : 38948–38959

DOI

51
ChiritaC. N., CongdonE. E., YinH. (2005). Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry, 44 : 5862–5872

DOI

52
LuoY., DinkelP., YuX., MargittaiM., ZhengJ., NussinovR., WeiG. (2013). Molecular insights into the reversible formation of tau protein fibrils. Chem. Commun. (Camb.), 49 : 3582–3584

DOI

53
GoedertM., EisenbergD. S. CrowtherR. (2017). Propagation of tau aggregates and neurodegeneration. Annu. Rev. Neurosci., 40 : 189–210

DOI

54
FitzpatrickA. W. P., FalconB., HeS., MurzinA. G., MurshudovG., GarringerH. J., CrowtherR. A., GhettiB., GoedertM. ScheresS. H. (2017). Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature, 547 : 185–190

DOI

55
FalconB., ZhangW., SchweighauserM., MurzinA. G., VidalR., GarringerH. J., GhettiB., ScheresS. H. W. (2018). Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol., 136 : 699–708

DOI

56
GoedertM., FalconB., ZhangW., GhettiB. ScheresS. H. (2018). Distinct conformers of assembled tau in Alzheimer’s and Pick’s diseases. Cold Spring Harb. Symp. Quant. Biol., 83 : 163–171

DOI

57
FalconB., ZhangW., MurzinA. G., MurshudovG., GarringerH. J., VidalR., CrowtherR. A., GhettiB., ScheresS. H. W. (2018). Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature, 561 : 137–140

DOI

58
QiB., JinS., QianH. (2020). Bibliometric analysis of chronic traumatic encephalopathy research from 1999 to 2019. Int. J. Environ. Res. Public Health, 17 : 5411

DOI

59
FalconB., ZivanovJ., ZhangW., MurzinA. G., GarringerH. J., VidalR., CrowtherR. A., NewellK. L., GhettiB., GoedertM. . (2019). Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature, 568 : 420–423

DOI

60
SergeantN., WattezA. (1999). Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusively “exon 10” isoforms. J. Neurochem., 72 : 1243–1249

DOI

61
ZhangW., TarutaniA., NewellK. L., MurzinA. G., MatsubaraT., FalconB., VidalR., GarringerH. J., ShiY., IkeuchiT. . (2020). Novel tau filament fold in corticobasal degeneration. Nature, 580 : 283–287

DOI

62
MukraschM. D., von BergenM., BiernatJ., FischerD., GriesingerC., MandelkowE. (2007). The “jaws” of the tau-microtubule interaction. J. Biol. Chem., 282 : 12230–12239

DOI

63
MukraschM. D., BibowS., KorukottuJ., JeganathanS., BiernatJ., GriesingerC., MandelkowE. (2009). Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol., 7 : e34

DOI

64
ChenD., DromboskyK. W., HouZ., SariL., KashmerO. M., RyderB. D., PerezV. A., WoodardD. R., LinM. M., DiamondM. I. . (2019). Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat. Commun., 10 : 2493

DOI

65
NelsonR., SawayaM. R., BalbirnieM., MadsenA. O., RiekelC., GrotheR. (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature, 435 : 773–778

DOI

66
SawayaM. R., SambashivanS., NelsonR., IvanovaM. I., SieversS. A., ApostolM. I., ThompsonM. J., BalbirnieM., WiltziusJ. J., McFarlaneH. T. . (2007). Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature, 447 : 453–457

DOI

67
KrishnaKumarV. G., PaulA., GazitE. (2018). Mechanistic insights into remodeled tau-derived PHF6 peptide fibrils by Naphthoquinone-Tryptophan hybrids. Sci. Rep., 8 : 71

DOI

68
SieversS. A., KaranicolasJ., ChangH. W., ZhaoA., JiangL., ZirafiO., StevensJ. T., nchJ., BakerD. (2011). Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 475 : 96–100

DOI

69
Chemerovski-GlikmanM., Frenkel-PinterM., MdahR., Abu-MokhA., GazitE. (2017). Inhibition of the aggregation and toxicity of the minimal amyloidogenic fragment of tau by its pro-substituted analogues. Chemistry, 23 : 9618–9624

DOI

70
PickhardtM., NeumannT., SchwizerD., CallawayK., VendruscoloM., SchenkD., St George-HyslopP., MandelkowE. M., DobsonC. M., McConlogueL. . (2015). Identification of small molecule inhibitors of tau aggregation by targeting monomeric tau as a potential therapeutic approach for tauopathies. Curr. Alzheimer Res., 12 : 814–828

DOI

71
DavidowitzE. J., KrishnamurthyP. K., LopezP., JimenezH., AdrienL., DaviesP. MoeJ. (2020). In vivo validation of a small molecule inhibitor of tau self-association in htau mice. J. Alzheimers Dis., 73 : 147–161

DOI

72
KundelF., DeS., FlagmeierP., HorrocksM. H., KjaergaardM., ShammasS. L., JacksonS. E., DobsonC. M. (2018). Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem. Biol., 13 : 636–646

DOI

73
SeidlerP. M., BoyerD. R., MurrayK. A., YangT. P., BentzelM., SawayaM. R., RosenbergG., CascioD., WilliamsC. K., NewellK. L. . (2019). Structure-based inhibitors halt prion-like seeding by Alzheimer’s disease-and tauopathy-derived brain tissue samples. J. Biol. Chem., 294 : 16451–16464

DOI

74
LarbigG., PickhardtM., LloydD. G., SchmidtB. (2007). Screening for inhibitors of tau protein aggregation into Alzheimer paired helical filaments: a ligand based approach results in successful scaffold hopping. Curr. Alzheimer Res., 4 : 315–323

DOI

75
ViswanathanG. K., ShwartzD., LosevY., AradE., ShemeshC., PichinukE., EngelH., RavehA., JelinekR., CooperI. . (2020). Purpurin modulates tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model. Cell. Mol. Life Sci., 77 : 2795–2813

DOI

76
PoratY., AbramowitzA. (2006). Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 67 : 27–37

DOI

77
BijariN., BalalaieS., AkbariV., GolmohammadiF., MoradiS., AdibiH. (2018). Effective suppression of the modified PHF6 peptide/1N4R Tau amyloid aggregation by intact curcumin, not its degradation products: Another evidence for the pigment as preventive/therapeutic “functional food”. Int. J. Biol. Macromol., 120 : 1009–1022

DOI

78
RaneJ. S., BhaumikP. (2017). Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis., 60 : 999–1014

DOI

79
AnandP., KunnumakkaraA. B., NewmanR. A. AggarwalB. (2007). Bioavailability of curcumin: problems and promises. Mol. Pharm., 4 : 807–818

DOI

80
Lo CascioF., PuangmalaiN., EllsworthA., BucchieriF., PaceA., Palumbo PiccionelloA. (2019). Toxic tau oligomers modulated by novel curcumin derivatives. Sci. Rep., 9 : 19011

DOI

81
SatoR., VohraS., YamamotoS., SuzukiK., PavelK., ShulgaS., BlumeY. (2020). Specific interactions between tau protein and curcumin derivatives: Molecular docking and ab initio molecular orbital simulations. J. Mol. Graph. Model., 98 : 107611

DOI

82
OkudaM., HijikuroI., FujitaY., WuX., NakayamaS., SakataY., NoguchiY., OgoM., AkasofuS., ItoY. . (2015). PE859, a novel tau aggregation inhibitor, reduces aggregated tau and prevents onset and progression of neural dysfunction in vivo. PLoS One, 10 : e0117511

DOI

83
OkudaM., HijikuroI., FujitaY., TeruyaT., KawakamiH., TakahashiT. (2016). Design and synthesis of curcumin derivatives as tau and amyloid β dual aggregation inhibitors. Bioorg. Med. Chem. Lett., 26 : 5024–5028

DOI

84
LiuW., HuX., ZhouL., TuY., ShiS. (2020). Orientation-inspired perspective on molecular inhibitor of tau aggregation by curcumin conjugated with ruthenium(ii) complex scaffold. J. Phys. Chem. B, 124 : 2343–2353

DOI

85
YuK. C., KwanP., CheungS. K. K., HoA. (2018). Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Transl. Neurosci., 9 : 54–60

DOI

86
SunX. Y., DongQ. X., ZhuJ., SunX., ZhangL. F., QiuM., YuX. L. LiuR. (2019). Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr. Alzheimer Res., 16 : 710–722

DOI

87
PasinettiG. M., WangJ., HoL., ZhaoW. (2015). Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta, 1852 : 1202–1208

DOI

88
CornejoA., Aguilar SandovalF., CaballeroL., MachucaL., ozP., CaballeroJ., PerryG., ArdilesA., ArecheC. (2017). Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 32 : 945–953

DOI

89
GuoY., ZhaoY., NanY., WangX., ChenY. (2017). (‒)-Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport, 28 : 590–597

DOI

90
KumarS., KrishnakumarV. G., MoryaV., GuptaS. (2019). Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation. Int. J. Biol. Macromol., 138 : 168–180

DOI

91
SonawaneS. K., BalmikA. A., BoralD., RamasamyS. (2019). Baicalein suppresses repeat tau fibrillization by sequestering oligomers. Arch. Biochem. Biophys., 675 : 108119

DOI

92
ZhangM., WuQ., YaoX., ZhaoJ., ZhongW., LiuQ. (2019). Xanthohumol inhibits tau protein aggregation and protects cells against tau aggregates. Food Funct., 10 : 7865–7874

DOI

93
PickhardtM., GazovaZ., von BergenM., KhlistunovaI., WangY., HascherA., MandelkowE. BiernatJ. (2005). Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J. Biol. Chem., 280 : 3628–3635

DOI

94
NepovimovaE., UliassiE., KorabecnyJ., a-AltamiraL. E., SamezS., PesaresiA., GarciaG. E., BartoliniM., AndrisanoV., BergaminiC. . (2014). Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem., 57 : 8576–8589

DOI

95
CornejoA., SalgadoF., CaballeroJ., VargasR., SimirgiotisM. (2016). Secondary metabolites in ramalina terebrata detected by UHPLC/ESI/MS/MS and identification of parietin as tau protein inhibitor. Int. J. Mol. Sci., 17 : 1303

DOI

96
Frenkel-PinterM., TalS., Scherzer-AttaliR., Abu-HussienM., AlyagorI., EisenbaumT., GazitE., SegalD. (2016). Naphthoquinone-tryptophan hybrid inhibits aggregation of the tau-derived peptide PHF6 and reduces neurotoxicity. J. Alzheimers Dis., 51 : 165–178

DOI

97
SalgadoF., CaballeroJ., VargasR., CornejoA. (2020). Continental and antarctic lichens: isolation, identification and molecular modeling of the depside tenuiorin from the Antarctic lichen Umbilicaria antarctica as tau protein inhibitor. Nat. Prod. Res., 34 : 646–650

DOI

98
ShiC. J., PengW., ZhaoJ. H., YangH. L., QuL. L., WangC., KongL. Y. WangX. (2020). Usnic acid derivatives as tau-aggregation and neuroinflammation inhibitors. Eur. J. Med. Chem., 187 : 111961

DOI

99
GorantlaN. V., DasR., MulaniF. A., ThulasiramH. V. (2019). Neem derivatives inhibits tau aggregation. J. Alzheimers Dis. Rep., 3 : 169–178

DOI

100
XiaoS., WuQ., YaoX., ZhangJ., ZhongW., ZhaoJ., LiuQ. (2021). Inhibitory effects of isobavachalcone on tau protein aggregation, tau phosphorylation, and oligomeric tau-induced apoptosis. ACS Chem. Neurosci., 12 : 123–132

DOI

101
RafieeS., AsadollahiK., RiaziG., AhmadianS. SabouryA. (2017). Vitamin B12 inhibits tau fibrillization via binding to cysteine residues of tau. ACS Chem. Neurosci., 8 : 2676–2682

DOI

102
GhasemzadehS. RiaziG. (2020). Inhibition of tau amyloid fibril formation by folic acid: In-vitro and theoretical studies. Int. J. Biol. Macromol., 154 : 1505–1516

DOI

103
KifleL., OrtizD. SheaT. (2009). Deprivation of folate and B12 increases neurodegeneration beyond that accompanying deprivation of either vitamin alone. J. Alzheimers Dis., 16 : 533–540

DOI

104
DubeyT., GorantlaN. V., ChandrashekaraK. T. (2019). Photoexcited toluidine blue inhibits tau aggregation in Alzheimer’s disease. ACS Omega, 4 : 18793–18802

DOI

105
HajE.,, Losev Y., Guru KrishnaKumarV.,, PichinukE.,, Engel H.,, RavehA.,, GazitE.. (2018) Integrating in vitro and in silico approaches to evaluate the “dual functionality” of palmatine chloride in inhibiting and disassembling tau-derived VQIVYK peptide fibrils. Biochim. Biophys. Acta Gen. Subj., 1862, 1565−1575

106
LoC. H., LimC. K., DingZ., WickramasingheS. P., BraunA. R., AsheK. H., RhoadesE., ThomasD. D. SachsJ. (2019). Targeting the ensemble of heterogeneous tau oligomers in cells: A novel small molecule screening platform for tauopathies. Alzheimers Dement., 15 : 1489–1502

DOI

107
HallidayM., RadfordH., ZentsK. A. M., MolloyC., MorenoJ. A., VerityN. C., SmithE., OrtoriC. A., BarrettD. A., BushellM. . (2017). Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain, 140 : 1768–1783

DOI

108
LaA. L., WalshC. M., NeylanT. C., VosselK. A., YaffeK., KrystalA. D., MillerB. L. (2019). Long-term trazodone use and cognition: A potential therapeutic role for slow-wave sleep enhancers. J. Alzheimers Dis., 67 : 911–921

DOI

109
KumarP., KaloniaH. (2011). Novel protective mechanisms of antidepressants against 3-nitropropionic acid induced Huntington’s-like symptoms: a comparative study. J. Psychopharmacol., 25 : 1399–1411

DOI

110
GrippeT. C., alvesB. S. B., LouzadaL. L., QuintasJ. L., NavesJ. O. S., CamargosE. F. bregaO. (2015). Circadian rhythm in Alzheimer disease after trazodone use. Chronobiol. Int., 32 : 1311–1314

DOI

111
AkbariV., GhobadiS., MohammadiS. (2020). The antidepressant drug; trazodone inhibits tau amyloidogenesis: Prospects for prophylaxis and treatment of AD. Arch. Biochem. Biophys., 679 : 108218

DOI

112
CorpasR., valosV., PorquetD., a de FrutosP., Franciscato CozzolinoS. M., SanfeliuC. CardosoB. (2018). Melatonin induces mechanisms of brain resilience against neurodegeneration. J. Pineal Res., 65 : e12515

DOI

113
BalmikA. A.,, DasR.,, DangiA.,, GorantlaN. V.,, MarelliU. K.. (2020) Melatonin interacts with repeat domain of tau to mediate disaggregation of paired helical filaments. Biochim. Biophys. Acta, Gen. Subj., 1864, 129467

114
DasR., BalmikA. A. (2020). Effect of melatonin on tau aggregation and tau-mediated cell surface morphology. Int. J. Biol. Macromol., 152 : 30–39

DOI

115
RenS. C.,, Suo Q. F.,, DuW. T.,, PanH.,, YangM. M.,, WangR. H.. (2010) Quercetin permeability across blood-brain barrier and its effect on the viability of U251 cells. Sichuan Da Xue Xue Bao Yi Xue Ban (in Chinese), 41, 751–754, 759

116
HabtemariamS. (2018). Molecular pharmacology of rosmarinic and salvianolic acids: Potential seeds for Alzheimer’s and vascular dementia drugs. Int. J. Mol. Sci., 19 : 458

DOI

117
WangJ., TangC., FerruzziM. G., GongB., SongB. J., JanleE. M., ChenT. Y., CooperB., VargheseM., ChengA. . (2013). Role of standardized grape polyphenol preparation as a novel treatment to improve synaptic plasticity through attenuation of features of metabolic syndrome in a mouse model. Mol. Nutr. Food Res., 57 : 2091–2102

DOI

118
RahmaniS., MogharizadehL., AttarF., RezayatS. M., MousaviS. E. (2018). Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models. J. Biomol. Struct. Dyn., 36 : 4057–4071

DOI

119
ZamanM., AhmadE., QadeerA., RabbaniG. KhanR. (2014). Nanoparticles in relation to peptide and protein aggregation. Int J Nanomedicine, 9 : 899–912

120
NiuL., ZouY., LinY., ZhengY., YangY. (2019). Regulation mechanism of nanobiointerfaces in amyloid peptide assembly and aggregation structures. Sci. Sin. Chim., 49 : 500–515

DOI

121
HajsalimiG., TaheriS., ShahiF., AttarF., AhmadiH. (2018). Interaction of iron nanoparticles with nervous system: an in vitro study. J. Biomol. Struct. Dyn., 36 : 928–937

DOI

122
VakilinezhadM. A., AminiA., Akbari JavarH., addini Beigi ZarandiB. F., MontaseriH. (2018). Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru, 26 : 165–177

DOI

123
VimalS. K., ZuoH., WangZ., WangH., LongZ. (2020). Self-therapeutic nanoparticle that alters tau protein and ameliorates tauopathy toward a functional nanomedicine to tackle Alzheimer’s. Small, 16 : e1906861

DOI

124
SonawaneS. K., AhmadA. (2019). Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega, 4 : 12833–12840

DOI

125
SoedaY., SaitoM., MaedaS., IshidaK., NakamuraA., KojimaS. (2019). Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: A plausible key to understanding failure of a clinical trial for Alzheimer’s disease. J. Alzheimers Dis., 68 : 1677–1686

DOI

126
ZhaoJ., YinF., JiL., WangC., ShiC., LiuX., YangH., WangX. (2020). Development of a tau-targeted drug delivery system using a multifunctional nanoscale metal-organic framework for Alzheimer’s disease therapy. ACS Appl. Mater. Interfaces, 12 : 44447–44458

DOI

127
ManjuS. (2011). Hollow microcapsules built by layer by layer assembly for the encapsulation and sustained release of curcumin. Colloids Surf. B Biointerfaces, 82 : 588–593

DOI

128
ChenX., ZouL. Q., NiuJ., LiuW., PengS. F. LiuC. (2015). The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules, 20 : 14293–14311

DOI

129
FanS., ZhengY., LiuX., FangW., ChenX., LiaoW., JingX., LeiM., TaoE., MaQ. . (2018). Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv., 25 : 1091–1102

DOI

130
GaoC., ChuX., GongW., ZhengJ., XieX., WangY., YangM., LiZ., GaoC. (2020). Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J. Nanobiotechnology, 18 : 71

DOI

131
HuY., HuX., LuY., ShiS., YangD. (2020). New strategy for reducing tau aggregation cytologically by a hairpinlike molecular inhibitor, tannic acid encapsulated in liposome. ACS Chem. Neurosci., 11 : 3623–3634

DOI

132
SinghN. A., BhardwajV., RaviC., RameshN., MandalA. K. A. KhanZ. (2018). EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front. Aging Neurosci., 10 : 244

DOI

133
ArmientoV., SpanopoulouA. (2020). Peptide-based molecular strategies to interfere with protein misfolding, aggregation, and cell degeneration. Angew. Chem. Int. Ed. Engl., 59 : 3372–3384

DOI

134
RauscherS., BaudS., MiaoM., KeeleyF. W. (2006). Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure, 14 : 1667–1676

DOI

135
LiS. C., GotoN. K., WilliamsK. A. DeberC. (1996). Alpha-helical, but not β-sheet, propensity of proline is determined by peptide environment. Proc. Natl. Acad. Sci. USA., 93 : 6676–6681

DOI

136
PandeyG.,, Morla S.,, KumarS.. (2020) Modulation of tau protein aggregation using ‘Trojan’ sequences. Biochim. Biophys. Acta, Gen. Subj., 1864, 129569

137
ChengI. H., Scearce-LevieK., LegleiterJ., PalopJ. J., GersteinH., Bien-LyN., liJ., AsheK. H., MuchowskiP. J. . (2007). Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem., 282 : 23818–23828

DOI

138
DammersC., YolcuD., KukukL., WillboldD., PickhardtM., MandelkowE., HornA. H., StichtH., MalhisM. N., WillN. . (2016). Selection and characterization of tau binding D-enantiomeric peptides with potential for therapy of Alzheimer disease. PLoS One, 11 : e0167432

DOI

139
GorantlaN. V., SunnyL. P., RajasekharK., NagarajuP. G., CgP. P., GovindarajuT. (2021). Amyloid-β-derived peptidomimetics inhibits tau aggregation. ACS Omega, 6 : 11131–11138

DOI

140
BestR. (2017). Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol., 42 : 147–154

DOI

141
Meneksedag-ErolD. (2019). Atomistic simulation tools to study protein self-aggregation. Methods Mol. Biol., 2039 : 243–262

DOI

142
PopovK. I., MakepeaceK. A. T., PetrotchenkoE. V., DokholyanN. V. BorchersC. (2019). Insight into the structure of the “unstructured” tau protein. Structure, 27 : 1710–1715.e4

DOI

143
LariniL., GesselM. M., LaPointeN. E., DoT. D., BowersM. T., FeinsteinS. C. SheaJ. (2013). Initiation of assembly of tau (273‒284) and its ΔK280 mutant: an experimental and computational study. Phys. Chem. Chem. Phys., 15 : 8916–8928

DOI

144
DaebelV., ChinnathambiS., BiernatJ., SchwalbeM., HabensteinB., LoquetA., AkouryE., TepperK., llerH., BaldusM. . (2012). β-Sheet core of tau paired helical filaments revealed by solid-state NMR. J. Am. Chem. Soc., 134 : 13982–13989

DOI

145
AdamcikJ., nchez-FerrerA., Ait-BouziadN., ReynoldsN. P., LashuelH. A. (2016). Microtubule-binding R3 fragment from tau self-assembles into giant multistranded amyloid ribbons. Angew. Chem. Int. Ed. Engl., 55 : 618–622

DOI

146
LiuH., ZhongH., XuZ., ZhangQ., ShahS. J. A., LiuH. (2020). The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Phys. Chem. Chem. Phys., 22 : 10968–10980

DOI

147
LiX., DongX., WeiG., MargittaiM., NussinovR. (2018). The distinct structural preferences of tau protein repeat domains. Chem. Commun. (Camb.), 54 : 5700–5703

DOI

148
SmitF. X., LuikenJ. A. BolhuisP. (2017). Primary fibril nucleation of aggregation prone tau fragments PHF6 and PHF6*. J. Phys. Chem. B, 121 : 3250–3261

DOI

149
LiuH., ZhongH., LiuX., ZhouS., TanS., LiuH. (2019). Disclosing the mechanism of spontaneous aggregation and template-induced misfolding of the key hexapeptide (PHF6) of tau protein based on molecular dynamics simulation. ACS Chem. Neurosci., 10 : 4810–4823

DOI

150
EschmannN. A., GeorgievaE. R., GangulyP., BorbatP. P., RappaportM. D., AkdoganY., FreedJ. H., SheaJ. E. (2017). Signature of an aggregation-prone conformation of tau. Sci. Rep., 7 : 44739

DOI

151
GuoJ. P., AraiT., MiklossyJ. McGeerP. (2006). Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 103 : 1953–1958

DOI

152
RojasA. V., MaisuradzeG. G. ScheragaH. (2018). Dependence of the formation of tau and Aβ peptide mixed aggregates on the secondary structure of the N-terminal region of Aβ. J. Phys. Chem. B, 122 : 7049–7056

DOI

153
MillerY., MaB. (2011). Synergistic interactions between repeats in tau protein and Aβ amyloids may be responsible for accelerated aggregation via polymorphic states. Biochemistry, 50 : 5172–5181

DOI

154
DoT. D., EconomouN. J., ChamasA., BurattoS. K., SheaJ. E. BowersM. (2014). Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity. J. Phys. Chem. B, 118 : 11220–11230

DOI

155
ShinW. S., DiJ., MurrayK. A., SunC., LiB., BitanG. (2019). Different amyloid-beta self-assemblies have distinct effects on intracellular tau aggregation. Front. Mol. Neurosci., 12 : 268

DOI

Outlines

/