Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors

Lili Zhu, Zhenyu Qian

PDF(10788 KB)
PDF(10788 KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 17-34. DOI: 10.15302/J-QB-021-0271
REVIEW
REVIEW

Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors

Author information +
History +

Abstract

Background: Alzheimer’s disease (AD) is one of the most popular tauopathies. Neurofibrillary tangles and senile plaques are widely recognized as the pathological hallmarks of AD, which are mainly composed of tau and β-amyloid (Aβ) respectively. Recent failures of drugs targeting Aβ have led scientists to scrutinize the crucial impact of tau in neurodegenerative diseases. Mutated or abnormal phosphorylated tau protein loses affinity with microtubules and assembles into pathological accumulations. The aggregation process closely correlates to two amyloidogenic core of PHF6 (306VQIVYK311) and PHF6* (275VQIINK280) fragments. Moreover, tau accumulations display diverse morphological characteristics in different diseases, which increases the difficulty of providing a unifying neuropathological criterion for early diagnosis.

Results: This review mainly summarizes atomic-resolution structures of tau protein in the monomeric, oligomeric and fibrillar states, as well as the promising inhibitors designed to prevent tau aggregation or disaggregate tau accumulations, recently revealed by experimental and computational studies. We also systematically sort tau functions, their relationship with tau structures and the potential pathological processes of tau protein.

Conclusion: The current progress on tau structures at atomic level of detail expands our understanding of tau aggregation and related pathology. We discuss the difficulties in determining the source of neurotoxicity and screening effective inhibitors. We hope this review will inspire new clues for designing medicines against tau aggregation and shed light on AD diagnosis and therapies.

Author summary

The accumulation of tau protein is closely related to the pathological process of Alzheimer’s disease (AD). At present, the source of tau neurotoxicity has not been fully clarified. It may come from the misfolding of tau in the early stage, oligomeric intermediates, or the aggregation process itself. Therefore, probing the atomic structures of tau, exploring key interactions, and screening potential inhibitors are crucial to the proposal of effective treatments. We hope this review can expand our understanding of tau pathology to accelerate medicine development for AD therapies.

Graphical abstract

Keywords

tau / paired helical filaments / inhibitor / cryo-electron microscopy / molecular dynamics simulation

Cite this article

Download citation ▾
Lili Zhu, Zhenyu Qian. Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors. Quant. Biol., 2022, 10(1): 17‒34 https://doi.org/10.15302/J-QB-021-0271

References

[1]
ChenQ., DuY., ZhangK., LiangZ., LiJ., YuH., RenR., FengJ., JinZ., LiF. . (2018). A tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano, 12 : 1321–1338
CrossRef Google scholar
[2]
ZeiselJ., BennettK. (2020). World Alzheimer report 2020: Design, dignity, dementia: dementia-related design and the built environment. Accessed: February 1, 2021
[3]
Alzheimer’sAssociation (2021). 2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 17 : 327–406
CrossRef Google scholar
[4]
GrandyJ. (2013). Melatonin: Therapeutic intervention in mild cognitive impairment and Alzheimer disease. J. Neurol. Neurophysiol., 4 : 148
CrossRef Google scholar
[5]
UddinM. S., KabirM. T., Al MamunA., Abdel-DaimM. M., BarretoG. E. AshrafG. (2019). APOE and Alzheimer’s disease: Evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol. Neurobiol., 56 : 2450–2465
CrossRef Google scholar
[6]
HardyJ. A. HigginsG. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256 : 184–185
CrossRef Google scholar
[7]
RajasekharK., ChakrabartiM. (2015). Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem. Commun. (Camb.), 51 : 13434–13450
CrossRef Google scholar
[8]
RajasekharK. (2018). Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Advances, 8 : 23780–23804
CrossRef Google scholar
[9]
van der KantR., GoldsteinL. S. B. (2020). Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci., 21 : 21–35
CrossRef Google scholar
[10]
CongdonE. E. SigurdssonE. (2018). Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 14 : 399–415
CrossRef Google scholar
[11]
Alavi NainiS. M. (2015). Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid. Med. Cell. Longev., 2015 : 151979
CrossRef Google scholar
[12]
KerrJ. S., AdriaanseB. A., GreigN. H., MattsonM. P., CaderM. Z., BohrV. A. FangE. (2017). Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci., 40 : 151–166
CrossRef Google scholar
[13]
BuscheM. A. HymanB. (2020). Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci., 23 : 1183–1193
CrossRef Google scholar
[14]
MullardA. (2021). Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat. Rev. Drug Discov., 20 : 3–5
CrossRef Google scholar
[15]
DehmeltL. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome Biol., 6 : 204
CrossRef Google scholar
[16]
JamesonL., FreyT., ZeebergB., DalldorfF. (1980). Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry, 19 : 2472–2479
CrossRef Google scholar
[17]
GuY., OyamaF. (1996). Tau is widely expressed in rat tissues. J. Neurochem., 67 : 1235–1244
CrossRef Google scholar
[18]
BakotaL. (2016). Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs, 76 : 301–313
CrossRef Google scholar
[19]
GuoT., NobleW. HangerD. (2017). Roles of tau protein in health and disease. Acta Neuropathol., 133 : 665–704
CrossRef Google scholar
[20]
GoedertM., SpillantiniM. G., JakesR., RutherfordD. CrowtherR. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 3 : 519–526
CrossRef Google scholar
[21]
MandelkowE. (2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med., 2 : a006247
CrossRef Google scholar
[22]
CondeC. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci., 10 : 319–332
CrossRef Google scholar
[23]
WeingartenM. D., LockwoodA. H., HwoS. Y. KirschnerM. (1975). A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA, 72 : 1858–1862
CrossRef Google scholar
[24]
CastroT. G., MunteanuF. D. (2019). Electrostatics of tau protein by molecular dynamics. Biomolecules, 9 : 116
CrossRef Google scholar
[25]
KelloggE. H., HejabN. M. A., PoepselS., DowningK. H., DiMaioF. (2018). Near-atomic model of microtubule-tau interactions. Science, 360 : 1242–1246
CrossRef Google scholar
[26]
Qiang, L., Sun, X., Austin, T. O., Muralidharan, H., Jean, D. C., Liu, M., Yu, W., and Baas, P. W. (2018) Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr. Biol., 28, 2181−2189. e4
[27]
BaasP. W. (2019). Tau: It’s not what you think. Trends Cell Biol., 29 : 452–461
CrossRef Google scholar
[28]
WitmanG. B., ClevelandD. W., WeingartenM. D. KirschnerM. (1976). Tubulin requires tau for growth onto microtubule initiating sites. Proc. Natl. Acad. Sci. USA, 73 : 4070–4074
CrossRef Google scholar
[29]
ZhangB., CarrollJ., TrojanowskiJ. Q., YaoY., IbaM., PotuzakJ. S., HoganA. M., XieS. X., BallatoreC., Smith IIIA. B. . (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J. Neurosci., 32 : 3601–3611
CrossRef Google scholar
[30]
Mietelska-PorowskaA., WasikU., GorasM., FilipekA. (2014). Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci., 15 : 4671–4713
CrossRef Google scholar
[31]
MedinaM. (2014). The role of extracellular tau in the spreading of neurofibrillary pathology. Front. Cell. Neurosci., 8 : 113
CrossRef Google scholar
[32]
ElieA., PrezelE., rinC., DenarierE., Ramirez-RiosS., SerreL., AndrieuxA., Fourest-LieuvinA., BlanchoinL. (2015). Tau co-organizes dynamic microtubule and actin networks. Sci. Rep., 5 : 9964
CrossRef Google scholar
[33]
VioletM., DelattreL., TardivelM., SultanA., ChauderlierA., CaillierezR., TalahariS., NesslanyF., LefebvreB., BonnefoyE. . (2014). A major role for tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front. Cell. Neurosci., 8 : 84
CrossRef Google scholar
[34]
SultanA., NesslanyF., VioletM., gardS., LoyensA., TalahariS., MansurogluZ., MarzinD., SergeantN., HumezS. . (2011). Nuclear tau, a key player in neuronal DNA protection. J. Biol. Chem., 286 : 4566–4575
CrossRef Google scholar
[35]
BulicB., PickhardtM., MandelkowE. M. (2010). Tau protein and tau aggregation inhibitors. Neuropharmacology, 59 : 276–289
CrossRef Google scholar
[36]
SeidlerP. M., BoyerD. R., RodriguezJ. A., SawayaM. R., CascioD., MurrayK., GonenT. EisenbergD. (2018). Structure-based inhibitors of tau aggregation. Nat. Chem., 10 : 170–176
CrossRef Google scholar
[37]
NizynskiB., DzwolakW. (2017). Amyloidogenesis of tau protein. Protein Sci., 26 : 2126–2150
CrossRef Google scholar
[38]
LiuY., NguyenM., RobertA. (2019). Metal ions in Alzheimer’s disease: A key role or not? Acc. Chem. Res., 52 : 2026–2035
CrossRef Google scholar
[39]
FanniA. M., Vander ZandenC. M., MajewskaP. V., MajewskiJ. ChiE. (2019). Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. J. Biol. Chem., 294 : 15304–15317
CrossRef Google scholar
[40]
ZhuH. L., ndezC., FanJ. B., ShewmakerF., ChenJ., MintonA. P. (2010). Quantitative characterization of heparin binding to tau protein: implication for inducer-mediated tau filament formation. J. Biol. Chem., 285 : 3592–3599
CrossRef Google scholar
[41]
KfouryN., HolmesB. B., JiangH., HoltzmanD. M. DiamondM. (2012). Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem., 287 : 19440–19451
CrossRef Google scholar
[42]
La JoieR., VisaniA. V., BakerS. L., BrownJ. A., BourakovaV., ChaJ., ChaudharyK., EdwardsL., IaccarinoL., JanabiM. . (2020). Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci. Transl. Med., 12 : eaau5732
CrossRef Google scholar
[43]
LeeC. C., NayakA., SethuramanA., BelfortG. McRaeG. (2007). A three-stage kinetic model of amyloid fibrillation. Biophys. J., 92 : 3448–3458
CrossRef Google scholar
[44]
IannuzziC., BorrielloM., IraceG., CammarotaM., Di MaroA. (2017). Vanillin affects amyloid aggregation and non-enzymatic glycation in human insulin. Sci. Rep., 7 : 15086
CrossRef Google scholar
[45]
MirbahaH., ChenD., MorazovaO. A., RuffK. M., SharmaA. M., LiuX., GoodarziM., PappuR. V., ColbyD. W., MirzaeiH. . (2018). Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife, 7 : e36584
CrossRef Google scholar
[46]
ShammasS. L., GarciaG. A., KumarS., KjaergaardM., HorrocksM. H., ShivjiN., MandelkowE., KnowlesT. P., MandelkowE. (2015). A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nat. Commun., 6 : 7025
CrossRef Google scholar
[47]
KjaergaardM., DearA. J., KundelF., QamarS., MeislG., KnowlesT. P. J. (2018). Oligomer diversity during the aggregation of the repeat region of tau. ACS Chem. Neurosci., 9 : 3060–3071
CrossRef Google scholar
[48]
RomanA. Y., DevredF., ByrneD., La RoccaR., NinkinaN. N., PeyrotV. TsvetkovP. (2019). Zinc induces temperature-dependent reversible self-assembly of tau. J. Mol. Biol., 431 : 687–695
CrossRef Google scholar
[49]
SonawaneS. K., ChidambaramH., BoralD., GorantlaN. V., BalmikA. A., DangiA., RamasamyS., MarelliU. K. (2020). EGCG impedes human tau aggregation and interacts with Tau. Sci. Rep., 10 : 12579
CrossRef Google scholar
[50]
RamachandranG. UdgaonkarJ. (2011). Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by tau protein. J. Biol. Chem., 286 : 38948–38959
CrossRef Google scholar
[51]
ChiritaC. N., CongdonE. E., YinH. (2005). Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry, 44 : 5862–5872
CrossRef Google scholar
[52]
LuoY., DinkelP., YuX., MargittaiM., ZhengJ., NussinovR., WeiG. (2013). Molecular insights into the reversible formation of tau protein fibrils. Chem. Commun. (Camb.), 49 : 3582–3584
CrossRef Google scholar
[53]
GoedertM., EisenbergD. S. CrowtherR. (2017). Propagation of tau aggregates and neurodegeneration. Annu. Rev. Neurosci., 40 : 189–210
CrossRef Google scholar
[54]
FitzpatrickA. W. P., FalconB., HeS., MurzinA. G., MurshudovG., GarringerH. J., CrowtherR. A., GhettiB., GoedertM. ScheresS. H. (2017). Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature, 547 : 185–190
CrossRef Google scholar
[55]
FalconB., ZhangW., SchweighauserM., MurzinA. G., VidalR., GarringerH. J., GhettiB., ScheresS. H. W. (2018). Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol., 136 : 699–708
CrossRef Google scholar
[56]
GoedertM., FalconB., ZhangW., GhettiB. ScheresS. H. (2018). Distinct conformers of assembled tau in Alzheimer’s and Pick’s diseases. Cold Spring Harb. Symp. Quant. Biol., 83 : 163–171
CrossRef Google scholar
[57]
FalconB., ZhangW., MurzinA. G., MurshudovG., GarringerH. J., VidalR., CrowtherR. A., GhettiB., ScheresS. H. W. (2018). Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature, 561 : 137–140
CrossRef Google scholar
[58]
QiB., JinS., QianH. (2020). Bibliometric analysis of chronic traumatic encephalopathy research from 1999 to 2019. Int. J. Environ. Res. Public Health, 17 : 5411
CrossRef Google scholar
[59]
FalconB., ZivanovJ., ZhangW., MurzinA. G., GarringerH. J., VidalR., CrowtherR. A., NewellK. L., GhettiB., GoedertM. . (2019). Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature, 568 : 420–423
CrossRef Google scholar
[60]
SergeantN., WattezA. (1999). Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusively “exon 10” isoforms. J. Neurochem., 72 : 1243–1249
CrossRef Google scholar
[61]
ZhangW., TarutaniA., NewellK. L., MurzinA. G., MatsubaraT., FalconB., VidalR., GarringerH. J., ShiY., IkeuchiT. . (2020). Novel tau filament fold in corticobasal degeneration. Nature, 580 : 283–287
CrossRef Google scholar
[62]
MukraschM. D., von BergenM., BiernatJ., FischerD., GriesingerC., MandelkowE. (2007). The “jaws” of the tau-microtubule interaction. J. Biol. Chem., 282 : 12230–12239
CrossRef Google scholar
[63]
MukraschM. D., BibowS., KorukottuJ., JeganathanS., BiernatJ., GriesingerC., MandelkowE. (2009). Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol., 7 : e34
CrossRef Google scholar
[64]
ChenD., DromboskyK. W., HouZ., SariL., KashmerO. M., RyderB. D., PerezV. A., WoodardD. R., LinM. M., DiamondM. I. . (2019). Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat. Commun., 10 : 2493
CrossRef Google scholar
[65]
NelsonR., SawayaM. R., BalbirnieM., MadsenA. O., RiekelC., GrotheR. (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature, 435 : 773–778
CrossRef Google scholar
[66]
SawayaM. R., SambashivanS., NelsonR., IvanovaM. I., SieversS. A., ApostolM. I., ThompsonM. J., BalbirnieM., WiltziusJ. J., McFarlaneH. T. . (2007). Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature, 447 : 453–457
CrossRef Google scholar
[67]
KrishnaKumarV. G., PaulA., GazitE. (2018). Mechanistic insights into remodeled tau-derived PHF6 peptide fibrils by Naphthoquinone-Tryptophan hybrids. Sci. Rep., 8 : 71
CrossRef Google scholar
[68]
SieversS. A., KaranicolasJ., ChangH. W., ZhaoA., JiangL., ZirafiO., StevensJ. T., nchJ., BakerD. (2011). Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 475 : 96–100
CrossRef Google scholar
[69]
Chemerovski-GlikmanM., Frenkel-PinterM., MdahR., Abu-MokhA., GazitE. (2017). Inhibition of the aggregation and toxicity of the minimal amyloidogenic fragment of tau by its pro-substituted analogues. Chemistry, 23 : 9618–9624
CrossRef Google scholar
[70]
PickhardtM., NeumannT., SchwizerD., CallawayK., VendruscoloM., SchenkD., St George-HyslopP., MandelkowE. M., DobsonC. M., McConlogueL. . (2015). Identification of small molecule inhibitors of tau aggregation by targeting monomeric tau as a potential therapeutic approach for tauopathies. Curr. Alzheimer Res., 12 : 814–828
CrossRef Google scholar
[71]
DavidowitzE. J., KrishnamurthyP. K., LopezP., JimenezH., AdrienL., DaviesP. MoeJ. (2020). In vivo validation of a small molecule inhibitor of tau self-association in htau mice. J. Alzheimers Dis., 73 : 147–161
CrossRef Google scholar
[72]
KundelF., DeS., FlagmeierP., HorrocksM. H., KjaergaardM., ShammasS. L., JacksonS. E., DobsonC. M. (2018). Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem. Biol., 13 : 636–646
CrossRef Google scholar
[73]
SeidlerP. M., BoyerD. R., MurrayK. A., YangT. P., BentzelM., SawayaM. R., RosenbergG., CascioD., WilliamsC. K., NewellK. L. . (2019). Structure-based inhibitors halt prion-like seeding by Alzheimer’s disease-and tauopathy-derived brain tissue samples. J. Biol. Chem., 294 : 16451–16464
CrossRef Google scholar
[74]
LarbigG., PickhardtM., LloydD. G., SchmidtB. (2007). Screening for inhibitors of tau protein aggregation into Alzheimer paired helical filaments: a ligand based approach results in successful scaffold hopping. Curr. Alzheimer Res., 4 : 315–323
CrossRef Google scholar
[75]
ViswanathanG. K., ShwartzD., LosevY., AradE., ShemeshC., PichinukE., EngelH., RavehA., JelinekR., CooperI. . (2020). Purpurin modulates tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model. Cell. Mol. Life Sci., 77 : 2795–2813
CrossRef Google scholar
[76]
PoratY., AbramowitzA. (2006). Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 67 : 27–37
CrossRef Google scholar
[77]
BijariN., BalalaieS., AkbariV., GolmohammadiF., MoradiS., AdibiH. (2018). Effective suppression of the modified PHF6 peptide/1N4R Tau amyloid aggregation by intact curcumin, not its degradation products: Another evidence for the pigment as preventive/therapeutic “functional food”. Int. J. Biol. Macromol., 120 : 1009–1022
CrossRef Google scholar
[78]
RaneJ. S., BhaumikP. (2017). Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis., 60 : 999–1014
CrossRef Google scholar
[79]
AnandP., KunnumakkaraA. B., NewmanR. A. AggarwalB. (2007). Bioavailability of curcumin: problems and promises. Mol. Pharm., 4 : 807–818
CrossRef Google scholar
[80]
Lo CascioF., PuangmalaiN., EllsworthA., BucchieriF., PaceA., Palumbo PiccionelloA. (2019). Toxic tau oligomers modulated by novel curcumin derivatives. Sci. Rep., 9 : 19011
CrossRef Google scholar
[81]
SatoR., VohraS., YamamotoS., SuzukiK., PavelK., ShulgaS., BlumeY. (2020). Specific interactions between tau protein and curcumin derivatives: Molecular docking and ab initio molecular orbital simulations. J. Mol. Graph. Model., 98 : 107611
CrossRef Google scholar
[82]
OkudaM., HijikuroI., FujitaY., WuX., NakayamaS., SakataY., NoguchiY., OgoM., AkasofuS., ItoY. . (2015). PE859, a novel tau aggregation inhibitor, reduces aggregated tau and prevents onset and progression of neural dysfunction in vivo. PLoS One, 10 : e0117511
CrossRef Google scholar
[83]
OkudaM., HijikuroI., FujitaY., TeruyaT., KawakamiH., TakahashiT. (2016). Design and synthesis of curcumin derivatives as tau and amyloid β dual aggregation inhibitors. Bioorg. Med. Chem. Lett., 26 : 5024–5028
CrossRef Google scholar
[84]
LiuW., HuX., ZhouL., TuY., ShiS. (2020). Orientation-inspired perspective on molecular inhibitor of tau aggregation by curcumin conjugated with ruthenium(ii) complex scaffold. J. Phys. Chem. B, 124 : 2343–2353
CrossRef Google scholar
[85]
YuK. C., KwanP., CheungS. K. K., HoA. (2018). Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Transl. Neurosci., 9 : 54–60
CrossRef Google scholar
[86]
SunX. Y., DongQ. X., ZhuJ., SunX., ZhangL. F., QiuM., YuX. L. LiuR. (2019). Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr. Alzheimer Res., 16 : 710–722
CrossRef Google scholar
[87]
PasinettiG. M., WangJ., HoL., ZhaoW. (2015). Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta, 1852 : 1202–1208
CrossRef Google scholar
[88]
CornejoA., Aguilar SandovalF., CaballeroL., MachucaL., ozP., CaballeroJ., PerryG., ArdilesA., ArecheC. (2017). Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 32 : 945–953
CrossRef Google scholar
[89]
GuoY., ZhaoY., NanY., WangX., ChenY. (2017). (‒)-Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport, 28 : 590–597
CrossRef Google scholar
[90]
KumarS., KrishnakumarV. G., MoryaV., GuptaS. (2019). Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation. Int. J. Biol. Macromol., 138 : 168–180
CrossRef Google scholar
[91]
SonawaneS. K., BalmikA. A., BoralD., RamasamyS. (2019). Baicalein suppresses repeat tau fibrillization by sequestering oligomers. Arch. Biochem. Biophys., 675 : 108119
CrossRef Google scholar
[92]
ZhangM., WuQ., YaoX., ZhaoJ., ZhongW., LiuQ. (2019). Xanthohumol inhibits tau protein aggregation and protects cells against tau aggregates. Food Funct., 10 : 7865–7874
CrossRef Google scholar
[93]
PickhardtM., GazovaZ., von BergenM., KhlistunovaI., WangY., HascherA., MandelkowE. BiernatJ. (2005). Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J. Biol. Chem., 280 : 3628–3635
CrossRef Google scholar
[94]
NepovimovaE., UliassiE., KorabecnyJ., a-AltamiraL. E., SamezS., PesaresiA., GarciaG. E., BartoliniM., AndrisanoV., BergaminiC. . (2014). Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem., 57 : 8576–8589
CrossRef Google scholar
[95]
CornejoA., SalgadoF., CaballeroJ., VargasR., SimirgiotisM. (2016). Secondary metabolites in ramalina terebrata detected by UHPLC/ESI/MS/MS and identification of parietin as tau protein inhibitor. Int. J. Mol. Sci., 17 : 1303
CrossRef Google scholar
[96]
Frenkel-PinterM., TalS., Scherzer-AttaliR., Abu-HussienM., AlyagorI., EisenbaumT., GazitE., SegalD. (2016). Naphthoquinone-tryptophan hybrid inhibits aggregation of the tau-derived peptide PHF6 and reduces neurotoxicity. J. Alzheimers Dis., 51 : 165–178
CrossRef Google scholar
[97]
SalgadoF., CaballeroJ., VargasR., CornejoA. (2020). Continental and antarctic lichens: isolation, identification and molecular modeling of the depside tenuiorin from the Antarctic lichen Umbilicaria antarctica as tau protein inhibitor. Nat. Prod. Res., 34 : 646–650
CrossRef Google scholar
[98]
ShiC. J., PengW., ZhaoJ. H., YangH. L., QuL. L., WangC., KongL. Y. WangX. (2020). Usnic acid derivatives as tau-aggregation and neuroinflammation inhibitors. Eur. J. Med. Chem., 187 : 111961
CrossRef Google scholar
[99]
GorantlaN. V., DasR., MulaniF. A., ThulasiramH. V. (2019). Neem derivatives inhibits tau aggregation. J. Alzheimers Dis. Rep., 3 : 169–178
CrossRef Google scholar
[100]
XiaoS., WuQ., YaoX., ZhangJ., ZhongW., ZhaoJ., LiuQ. (2021). Inhibitory effects of isobavachalcone on tau protein aggregation, tau phosphorylation, and oligomeric tau-induced apoptosis. ACS Chem. Neurosci., 12 : 123–132
CrossRef Google scholar
[101]
RafieeS., AsadollahiK., RiaziG., AhmadianS. SabouryA. (2017). Vitamin B12 inhibits tau fibrillization via binding to cysteine residues of tau. ACS Chem. Neurosci., 8 : 2676–2682
CrossRef Google scholar
[102]
GhasemzadehS. RiaziG. (2020). Inhibition of tau amyloid fibril formation by folic acid: In-vitro and theoretical studies. Int. J. Biol. Macromol., 154 : 1505–1516
CrossRef Google scholar
[103]
KifleL., OrtizD. SheaT. (2009). Deprivation of folate and B12 increases neurodegeneration beyond that accompanying deprivation of either vitamin alone. J. Alzheimers Dis., 16 : 533–540
CrossRef Google scholar
[104]
DubeyT., GorantlaN. V., ChandrashekaraK. T. (2019). Photoexcited toluidine blue inhibits tau aggregation in Alzheimer’s disease. ACS Omega, 4 : 18793–18802
CrossRef Google scholar
[105]
HajE.,, Losev Y., Guru KrishnaKumarV.,, PichinukE.,, Engel H.,, RavehA.,, GazitE.. (2018) Integrating in vitro and in silico approaches to evaluate the “dual functionality” of palmatine chloride in inhibiting and disassembling tau-derived VQIVYK peptide fibrils. Biochim. Biophys. Acta Gen. Subj., 1862, 1565−1575
[106]
LoC. H., LimC. K., DingZ., WickramasingheS. P., BraunA. R., AsheK. H., RhoadesE., ThomasD. D. SachsJ. (2019). Targeting the ensemble of heterogeneous tau oligomers in cells: A novel small molecule screening platform for tauopathies. Alzheimers Dement., 15 : 1489–1502
CrossRef Google scholar
[107]
HallidayM., RadfordH., ZentsK. A. M., MolloyC., MorenoJ. A., VerityN. C., SmithE., OrtoriC. A., BarrettD. A., BushellM. . (2017). Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain, 140 : 1768–1783
CrossRef Google scholar
[108]
LaA. L., WalshC. M., NeylanT. C., VosselK. A., YaffeK., KrystalA. D., MillerB. L. (2019). Long-term trazodone use and cognition: A potential therapeutic role for slow-wave sleep enhancers. J. Alzheimers Dis., 67 : 911–921
CrossRef Google scholar
[109]
KumarP., KaloniaH. (2011). Novel protective mechanisms of antidepressants against 3-nitropropionic acid induced Huntington’s-like symptoms: a comparative study. J. Psychopharmacol., 25 : 1399–1411
CrossRef Google scholar
[110]
GrippeT. C., alvesB. S. B., LouzadaL. L., QuintasJ. L., NavesJ. O. S., CamargosE. F. bregaO. (2015). Circadian rhythm in Alzheimer disease after trazodone use. Chronobiol. Int., 32 : 1311–1314
CrossRef Google scholar
[111]
AkbariV., GhobadiS., MohammadiS. (2020). The antidepressant drug; trazodone inhibits tau amyloidogenesis: Prospects for prophylaxis and treatment of AD. Arch. Biochem. Biophys., 679 : 108218
CrossRef Google scholar
[112]
CorpasR., valosV., PorquetD., a de FrutosP., Franciscato CozzolinoS. M., SanfeliuC. CardosoB. (2018). Melatonin induces mechanisms of brain resilience against neurodegeneration. J. Pineal Res., 65 : e12515
CrossRef Google scholar
[113]
BalmikA. A.,, DasR.,, DangiA.,, GorantlaN. V.,, MarelliU. K.. (2020) Melatonin interacts with repeat domain of tau to mediate disaggregation of paired helical filaments. Biochim. Biophys. Acta, Gen. Subj., 1864, 129467
[114]
DasR., BalmikA. A. (2020). Effect of melatonin on tau aggregation and tau-mediated cell surface morphology. Int. J. Biol. Macromol., 152 : 30–39
CrossRef Google scholar
[115]
RenS. C.,, Suo Q. F.,, DuW. T.,, PanH.,, YangM. M.,, WangR. H.. (2010) Quercetin permeability across blood-brain barrier and its effect on the viability of U251 cells. Sichuan Da Xue Xue Bao Yi Xue Ban (in Chinese), 41, 751–754, 759
[116]
HabtemariamS. (2018). Molecular pharmacology of rosmarinic and salvianolic acids: Potential seeds for Alzheimer’s and vascular dementia drugs. Int. J. Mol. Sci., 19 : 458
CrossRef Google scholar
[117]
WangJ., TangC., FerruzziM. G., GongB., SongB. J., JanleE. M., ChenT. Y., CooperB., VargheseM., ChengA. . (2013). Role of standardized grape polyphenol preparation as a novel treatment to improve synaptic plasticity through attenuation of features of metabolic syndrome in a mouse model. Mol. Nutr. Food Res., 57 : 2091–2102
CrossRef Google scholar
[118]
RahmaniS., MogharizadehL., AttarF., RezayatS. M., MousaviS. E. (2018). Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models. J. Biomol. Struct. Dyn., 36 : 4057–4071
CrossRef Google scholar
[119]
ZamanM., AhmadE., QadeerA., RabbaniG. KhanR. (2014). Nanoparticles in relation to peptide and protein aggregation. Int J Nanomedicine, 9 : 899–912
[120]
NiuL., ZouY., LinY., ZhengY., YangY. (2019). Regulation mechanism of nanobiointerfaces in amyloid peptide assembly and aggregation structures. Sci. Sin. Chim., 49 : 500–515
CrossRef Google scholar
[121]
HajsalimiG., TaheriS., ShahiF., AttarF., AhmadiH. (2018). Interaction of iron nanoparticles with nervous system: an in vitro study. J. Biomol. Struct. Dyn., 36 : 928–937
CrossRef Google scholar
[122]
VakilinezhadM. A., AminiA., Akbari JavarH., addini Beigi ZarandiB. F., MontaseriH. (2018). Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru, 26 : 165–177
CrossRef Google scholar
[123]
VimalS. K., ZuoH., WangZ., WangH., LongZ. (2020). Self-therapeutic nanoparticle that alters tau protein and ameliorates tauopathy toward a functional nanomedicine to tackle Alzheimer’s. Small, 16 : e1906861
CrossRef Google scholar
[124]
SonawaneS. K., AhmadA. (2019). Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega, 4 : 12833–12840
CrossRef Google scholar
[125]
SoedaY., SaitoM., MaedaS., IshidaK., NakamuraA., KojimaS. (2019). Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: A plausible key to understanding failure of a clinical trial for Alzheimer’s disease. J. Alzheimers Dis., 68 : 1677–1686
CrossRef Google scholar
[126]
ZhaoJ., YinF., JiL., WangC., ShiC., LiuX., YangH., WangX. (2020). Development of a tau-targeted drug delivery system using a multifunctional nanoscale metal-organic framework for Alzheimer’s disease therapy. ACS Appl. Mater. Interfaces, 12 : 44447–44458
CrossRef Google scholar
[127]
ManjuS. (2011). Hollow microcapsules built by layer by layer assembly for the encapsulation and sustained release of curcumin. Colloids Surf. B Biointerfaces, 82 : 588–593
CrossRef Google scholar
[128]
ChenX., ZouL. Q., NiuJ., LiuW., PengS. F. LiuC. (2015). The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules, 20 : 14293–14311
CrossRef Google scholar
[129]
FanS., ZhengY., LiuX., FangW., ChenX., LiaoW., JingX., LeiM., TaoE., MaQ. . (2018). Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv., 25 : 1091–1102
CrossRef Google scholar
[130]
GaoC., ChuX., GongW., ZhengJ., XieX., WangY., YangM., LiZ., GaoC. (2020). Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J. Nanobiotechnology, 18 : 71
CrossRef Google scholar
[131]
HuY., HuX., LuY., ShiS., YangD. (2020). New strategy for reducing tau aggregation cytologically by a hairpinlike molecular inhibitor, tannic acid encapsulated in liposome. ACS Chem. Neurosci., 11 : 3623–3634
CrossRef Google scholar
[132]
SinghN. A., BhardwajV., RaviC., RameshN., MandalA. K. A. KhanZ. (2018). EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front. Aging Neurosci., 10 : 244
CrossRef Google scholar
[133]
ArmientoV., SpanopoulouA. (2020). Peptide-based molecular strategies to interfere with protein misfolding, aggregation, and cell degeneration. Angew. Chem. Int. Ed. Engl., 59 : 3372–3384
CrossRef Google scholar
[134]
RauscherS., BaudS., MiaoM., KeeleyF. W. (2006). Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure, 14 : 1667–1676
CrossRef Google scholar
[135]
LiS. C., GotoN. K., WilliamsK. A. DeberC. (1996). Alpha-helical, but not β-sheet, propensity of proline is determined by peptide environment. Proc. Natl. Acad. Sci. USA., 93 : 6676–6681
CrossRef Google scholar
[136]
PandeyG.,, Morla S.,, KumarS.. (2020) Modulation of tau protein aggregation using ‘Trojan’ sequences. Biochim. Biophys. Acta, Gen. Subj., 1864, 129569
[137]
ChengI. H., Scearce-LevieK., LegleiterJ., PalopJ. J., GersteinH., Bien-LyN., liJ., AsheK. H., MuchowskiP. J. . (2007). Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem., 282 : 23818–23828
CrossRef Google scholar
[138]
DammersC., YolcuD., KukukL., WillboldD., PickhardtM., MandelkowE., HornA. H., StichtH., MalhisM. N., WillN. . (2016). Selection and characterization of tau binding D-enantiomeric peptides with potential for therapy of Alzheimer disease. PLoS One, 11 : e0167432
CrossRef Google scholar
[139]
GorantlaN. V., SunnyL. P., RajasekharK., NagarajuP. G., CgP. P., GovindarajuT. (2021). Amyloid-β-derived peptidomimetics inhibits tau aggregation. ACS Omega, 6 : 11131–11138
CrossRef Google scholar
[140]
BestR. (2017). Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol., 42 : 147–154
CrossRef Google scholar
[141]
Meneksedag-ErolD. (2019). Atomistic simulation tools to study protein self-aggregation. Methods Mol. Biol., 2039 : 243–262
CrossRef Google scholar
[142]
PopovK. I., MakepeaceK. A. T., PetrotchenkoE. V., DokholyanN. V. BorchersC. (2019). Insight into the structure of the “unstructured” tau protein. Structure, 27 : 1710–1715.e4
CrossRef Google scholar
[143]
LariniL., GesselM. M., LaPointeN. E., DoT. D., BowersM. T., FeinsteinS. C. SheaJ. (2013). Initiation of assembly of tau (273‒284) and its ΔK280 mutant: an experimental and computational study. Phys. Chem. Chem. Phys., 15 : 8916–8928
CrossRef Google scholar
[144]
DaebelV., ChinnathambiS., BiernatJ., SchwalbeM., HabensteinB., LoquetA., AkouryE., TepperK., llerH., BaldusM. . (2012). β-Sheet core of tau paired helical filaments revealed by solid-state NMR. J. Am. Chem. Soc., 134 : 13982–13989
CrossRef Google scholar
[145]
AdamcikJ., nchez-FerrerA., Ait-BouziadN., ReynoldsN. P., LashuelH. A. (2016). Microtubule-binding R3 fragment from tau self-assembles into giant multistranded amyloid ribbons. Angew. Chem. Int. Ed. Engl., 55 : 618–622
CrossRef Google scholar
[146]
LiuH., ZhongH., XuZ., ZhangQ., ShahS. J. A., LiuH. (2020). The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Phys. Chem. Chem. Phys., 22 : 10968–10980
CrossRef Google scholar
[147]
LiX., DongX., WeiG., MargittaiM., NussinovR. (2018). The distinct structural preferences of tau protein repeat domains. Chem. Commun. (Camb.), 54 : 5700–5703
CrossRef Google scholar
[148]
SmitF. X., LuikenJ. A. BolhuisP. (2017). Primary fibril nucleation of aggregation prone tau fragments PHF6 and PHF6*. J. Phys. Chem. B, 121 : 3250–3261
CrossRef Google scholar
[149]
LiuH., ZhongH., LiuX., ZhouS., TanS., LiuH. (2019). Disclosing the mechanism of spontaneous aggregation and template-induced misfolding of the key hexapeptide (PHF6) of tau protein based on molecular dynamics simulation. ACS Chem. Neurosci., 10 : 4810–4823
CrossRef Google scholar
[150]
EschmannN. A., GeorgievaE. R., GangulyP., BorbatP. P., RappaportM. D., AkdoganY., FreedJ. H., SheaJ. E. (2017). Signature of an aggregation-prone conformation of tau. Sci. Rep., 7 : 44739
CrossRef Google scholar
[151]
GuoJ. P., AraiT., MiklossyJ. McGeerP. (2006). Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 103 : 1953–1958
CrossRef Google scholar
[152]
RojasA. V., MaisuradzeG. G. ScheragaH. (2018). Dependence of the formation of tau and Aβ peptide mixed aggregates on the secondary structure of the N-terminal region of Aβ. J. Phys. Chem. B, 122 : 7049–7056
CrossRef Google scholar
[153]
MillerY., MaB. (2011). Synergistic interactions between repeats in tau protein and Aβ amyloids may be responsible for accelerated aggregation via polymorphic states. Biochemistry, 50 : 5172–5181
CrossRef Google scholar
[154]
DoT. D., EconomouN. J., ChamasA., BurattoS. K., SheaJ. E. BowersM. (2014). Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity. J. Phys. Chem. B, 118 : 11220–11230
CrossRef Google scholar
[155]
ShinW. S., DiJ., MurrayK. A., SunC., LiB., BitanG. (2019). Different amyloid-beta self-assemblies have distinct effects on intracellular tau aggregation. Front. Mol. Neurosci., 12 : 268
CrossRef Google scholar

ACKNOWLEDGEMENTS

We thank Prof. Guanghong Wei for helpful discussion. This work was supported by the National Natural Science Foundation of China (Nos. 11704256 and 11932013).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Lili Zhu and Zhenyu Qian declare that they have no conflict of interest or financial conflicts to disclose.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2022. Published by Higher Education Press.
AI Summary AI Mindmap
PDF(10788 KB)

Accesses

Citations

Detail

Sections
Recommended

/