Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors
Lili Zhu, Zhenyu Qian
Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors
Background: Alzheimer’s disease (AD) is one of the most popular tauopathies. Neurofibrillary tangles and senile plaques are widely recognized as the pathological hallmarks of AD, which are mainly composed of tau and β-amyloid (Aβ) respectively. Recent failures of drugs targeting Aβ have led scientists to scrutinize the crucial impact of tau in neurodegenerative diseases. Mutated or abnormal phosphorylated tau protein loses affinity with microtubules and assembles into pathological accumulations. The aggregation process closely correlates to two amyloidogenic core of PHF6 (306VQIVYK311) and PHF6* (275VQIINK280) fragments. Moreover, tau accumulations display diverse morphological characteristics in different diseases, which increases the difficulty of providing a unifying neuropathological criterion for early diagnosis.
Results: This review mainly summarizes atomic-resolution structures of tau protein in the monomeric, oligomeric and fibrillar states, as well as the promising inhibitors designed to prevent tau aggregation or disaggregate tau accumulations, recently revealed by experimental and computational studies. We also systematically sort tau functions, their relationship with tau structures and the potential pathological processes of tau protein.
Conclusion: The current progress on tau structures at atomic level of detail expands our understanding of tau aggregation and related pathology. We discuss the difficulties in determining the source of neurotoxicity and screening effective inhibitors. We hope this review will inspire new clues for designing medicines against tau aggregation and shed light on AD diagnosis and therapies.
The accumulation of tau protein is closely related to the pathological process of Alzheimer’s disease (AD). At present, the source of tau neurotoxicity has not been fully clarified. It may come from the misfolding of tau in the early stage, oligomeric intermediates, or the aggregation process itself. Therefore, probing the atomic structures of tau, exploring key interactions, and screening potential inhibitors are crucial to the proposal of effective treatments. We hope this review can expand our understanding of tau pathology to accelerate medicine development for AD therapies.
tau / paired helical filaments / inhibitor / cryo-electron microscopy / molecular dynamics simulation
[1] |
ChenQ., DuY., ZhangK., LiangZ., LiJ., YuH., RenR., FengJ., JinZ., LiF.
CrossRef
Google scholar
|
[2] |
ZeiselJ., BennettK. (2020). World Alzheimer report 2020: Design, dignity, dementia: dementia-related design and the built environment. Accessed: February 1,
|
[3] |
Alzheimer’sAssociation (2021). 2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 17 : 327–406
CrossRef
Google scholar
|
[4] |
GrandyJ. (2013). Melatonin: Therapeutic intervention in mild cognitive impairment and Alzheimer disease. J. Neurol. Neurophysiol., 4 : 148
CrossRef
Google scholar
|
[5] |
UddinM. S., KabirM. T., Al MamunA., Abdel-DaimM. M., BarretoG. E. AshrafG. (2019). APOE and Alzheimer’s disease: Evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol. Neurobiol., 56 : 2450–2465
CrossRef
Google scholar
|
[6] |
HardyJ. A. HigginsG. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256 : 184–185
CrossRef
Google scholar
|
[7] |
RajasekharK., ChakrabartiM. (2015). Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem. Commun. (Camb.), 51 : 13434–13450
CrossRef
Google scholar
|
[8] |
RajasekharK. (2018). Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Advances, 8 : 23780–23804
CrossRef
Google scholar
|
[9] |
van der KantR., GoldsteinL. S. B. (2020). Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci., 21 : 21–35
CrossRef
Google scholar
|
[10] |
CongdonE. E. SigurdssonE. (2018). Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 14 : 399–415
CrossRef
Google scholar
|
[11] |
Alavi NainiS. M. (2015). Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid. Med. Cell. Longev., 2015 : 151979
CrossRef
Google scholar
|
[12] |
KerrJ. S., AdriaanseB. A., GreigN. H., MattsonM. P., CaderM. Z., BohrV. A. FangE. (2017). Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci., 40 : 151–166
CrossRef
Google scholar
|
[13] |
BuscheM. A. HymanB. (2020). Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci., 23 : 1183–1193
CrossRef
Google scholar
|
[14] |
MullardA. (2021). Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat. Rev. Drug Discov., 20 : 3–5
CrossRef
Google scholar
|
[15] |
DehmeltL. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome Biol., 6 : 204
CrossRef
Google scholar
|
[16] |
JamesonL., FreyT., ZeebergB., DalldorfF. (1980). Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry, 19 : 2472–2479
CrossRef
Google scholar
|
[17] |
GuY., OyamaF. (1996). Tau is widely expressed in rat tissues. J. Neurochem., 67 : 1235–1244
CrossRef
Google scholar
|
[18] |
BakotaL. (2016). Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs, 76 : 301–313
CrossRef
Google scholar
|
[19] |
GuoT., NobleW. HangerD. (2017). Roles of tau protein in health and disease. Acta Neuropathol., 133 : 665–704
CrossRef
Google scholar
|
[20] |
GoedertM., SpillantiniM. G., JakesR., RutherfordD. CrowtherR. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 3 : 519–526
CrossRef
Google scholar
|
[21] |
MandelkowE. (2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med., 2 : a006247
CrossRef
Google scholar
|
[22] |
CondeC. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci., 10 : 319–332
CrossRef
Google scholar
|
[23] |
WeingartenM. D., LockwoodA. H., HwoS. Y. KirschnerM. (1975). A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA, 72 : 1858–1862
CrossRef
Google scholar
|
[24] |
CastroT. G., MunteanuF. D. (2019). Electrostatics of tau protein by molecular dynamics. Biomolecules, 9 : 116
CrossRef
Google scholar
|
[25] |
KelloggE. H., HejabN. M. A., PoepselS., DowningK. H., DiMaioF. (2018). Near-atomic model of microtubule-tau interactions. Science, 360 : 1242–1246
CrossRef
Google scholar
|
[26] |
Qiang, L., Sun, X., Austin, T. O., Muralidharan, H., Jean, D. C., Liu, M., Yu, W., and Baas, P. W. (2018) Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr. Biol., 28, 2181−2189. e4
|
[27] |
BaasP. W. (2019). Tau: It’s not what you think. Trends Cell Biol., 29 : 452–461
CrossRef
Google scholar
|
[28] |
WitmanG. B., ClevelandD. W., WeingartenM. D. KirschnerM. (1976). Tubulin requires tau for growth onto microtubule initiating sites. Proc. Natl. Acad. Sci. USA, 73 : 4070–4074
CrossRef
Google scholar
|
[29] |
ZhangB., CarrollJ., TrojanowskiJ. Q., YaoY., IbaM., PotuzakJ. S., HoganA. M., XieS. X., BallatoreC., Smith IIIA. B.
CrossRef
Google scholar
|
[30] |
Mietelska-PorowskaA., WasikU., GorasM., FilipekA. (2014). Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci., 15 : 4671–4713
CrossRef
Google scholar
|
[31] |
MedinaM. (2014). The role of extracellular tau in the spreading of neurofibrillary pathology. Front. Cell. Neurosci., 8 : 113
CrossRef
Google scholar
|
[32] |
ElieA., PrezelE., rinC., DenarierE., Ramirez-RiosS., SerreL., AndrieuxA., Fourest-LieuvinA., BlanchoinL. (2015). Tau co-organizes dynamic microtubule and actin networks. Sci. Rep., 5 : 9964
CrossRef
Google scholar
|
[33] |
VioletM., DelattreL., TardivelM., SultanA., ChauderlierA., CaillierezR., TalahariS., NesslanyF., LefebvreB., BonnefoyE.
CrossRef
Google scholar
|
[34] |
SultanA., NesslanyF., VioletM., gardS., LoyensA., TalahariS., MansurogluZ., MarzinD., SergeantN., HumezS.
CrossRef
Google scholar
|
[35] |
BulicB., PickhardtM., MandelkowE. M. (2010). Tau protein and tau aggregation inhibitors. Neuropharmacology, 59 : 276–289
CrossRef
Google scholar
|
[36] |
SeidlerP. M., BoyerD. R., RodriguezJ. A., SawayaM. R., CascioD., MurrayK., GonenT. EisenbergD. (2018). Structure-based inhibitors of tau aggregation. Nat. Chem., 10 : 170–176
CrossRef
Google scholar
|
[37] |
NizynskiB., DzwolakW. (2017). Amyloidogenesis of tau protein. Protein Sci., 26 : 2126–2150
CrossRef
Google scholar
|
[38] |
LiuY., NguyenM., RobertA. (2019). Metal ions in Alzheimer’s disease: A key role or not? Acc. Chem. Res., 52 : 2026–2035
CrossRef
Google scholar
|
[39] |
FanniA. M., Vander ZandenC. M., MajewskaP. V., MajewskiJ. ChiE. (2019). Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. J. Biol. Chem., 294 : 15304–15317
CrossRef
Google scholar
|
[40] |
ZhuH. L., ndezC., FanJ. B., ShewmakerF., ChenJ., MintonA. P. (2010). Quantitative characterization of heparin binding to tau protein: implication for inducer-mediated tau filament formation. J. Biol. Chem., 285 : 3592–3599
CrossRef
Google scholar
|
[41] |
KfouryN., HolmesB. B., JiangH., HoltzmanD. M. DiamondM. (2012). Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem., 287 : 19440–19451
CrossRef
Google scholar
|
[42] |
La JoieR., VisaniA. V., BakerS. L., BrownJ. A., BourakovaV., ChaJ., ChaudharyK., EdwardsL., IaccarinoL., JanabiM.
CrossRef
Google scholar
|
[43] |
LeeC. C., NayakA., SethuramanA., BelfortG. McRaeG. (2007). A three-stage kinetic model of amyloid fibrillation. Biophys. J., 92 : 3448–3458
CrossRef
Google scholar
|
[44] |
IannuzziC., BorrielloM., IraceG., CammarotaM., Di MaroA. (2017). Vanillin affects amyloid aggregation and non-enzymatic glycation in human insulin. Sci. Rep., 7 : 15086
CrossRef
Google scholar
|
[45] |
MirbahaH., ChenD., MorazovaO. A., RuffK. M., SharmaA. M., LiuX., GoodarziM., PappuR. V., ColbyD. W., MirzaeiH.
CrossRef
Google scholar
|
[46] |
ShammasS. L., GarciaG. A., KumarS., KjaergaardM., HorrocksM. H., ShivjiN., MandelkowE., KnowlesT. P., MandelkowE. (2015). A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nat. Commun., 6 : 7025
CrossRef
Google scholar
|
[47] |
KjaergaardM., DearA. J., KundelF., QamarS., MeislG., KnowlesT. P. J. (2018). Oligomer diversity during the aggregation of the repeat region of tau. ACS Chem. Neurosci., 9 : 3060–3071
CrossRef
Google scholar
|
[48] |
RomanA. Y., DevredF., ByrneD., La RoccaR., NinkinaN. N., PeyrotV. TsvetkovP. (2019). Zinc induces temperature-dependent reversible self-assembly of tau. J. Mol. Biol., 431 : 687–695
CrossRef
Google scholar
|
[49] |
SonawaneS. K., ChidambaramH., BoralD., GorantlaN. V., BalmikA. A., DangiA., RamasamyS., MarelliU. K. (2020). EGCG impedes human tau aggregation and interacts with Tau. Sci. Rep., 10 : 12579
CrossRef
Google scholar
|
[50] |
RamachandranG. UdgaonkarJ. (2011). Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by tau protein. J. Biol. Chem., 286 : 38948–38959
CrossRef
Google scholar
|
[51] |
ChiritaC. N., CongdonE. E., YinH. (2005). Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry, 44 : 5862–5872
CrossRef
Google scholar
|
[52] |
LuoY., DinkelP., YuX., MargittaiM., ZhengJ., NussinovR., WeiG. (2013). Molecular insights into the reversible formation of tau protein fibrils. Chem. Commun. (Camb.), 49 : 3582–3584
CrossRef
Google scholar
|
[53] |
GoedertM., EisenbergD. S. CrowtherR. (2017). Propagation of tau aggregates and neurodegeneration. Annu. Rev. Neurosci., 40 : 189–210
CrossRef
Google scholar
|
[54] |
FitzpatrickA. W. P., FalconB., HeS., MurzinA. G., MurshudovG., GarringerH. J., CrowtherR. A., GhettiB., GoedertM. ScheresS. H. (2017). Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature, 547 : 185–190
CrossRef
Google scholar
|
[55] |
FalconB., ZhangW., SchweighauserM., MurzinA. G., VidalR., GarringerH. J., GhettiB., ScheresS. H. W. (2018). Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol., 136 : 699–708
CrossRef
Google scholar
|
[56] |
GoedertM., FalconB., ZhangW., GhettiB. ScheresS. H. (2018). Distinct conformers of assembled tau in Alzheimer’s and Pick’s diseases. Cold Spring Harb. Symp. Quant. Biol., 83 : 163–171
CrossRef
Google scholar
|
[57] |
FalconB., ZhangW., MurzinA. G., MurshudovG., GarringerH. J., VidalR., CrowtherR. A., GhettiB., ScheresS. H. W. (2018). Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature, 561 : 137–140
CrossRef
Google scholar
|
[58] |
QiB., JinS., QianH. (2020). Bibliometric analysis of chronic traumatic encephalopathy research from 1999 to 2019. Int. J. Environ. Res. Public Health, 17 : 5411
CrossRef
Google scholar
|
[59] |
FalconB., ZivanovJ., ZhangW., MurzinA. G., GarringerH. J., VidalR., CrowtherR. A., NewellK. L., GhettiB., GoedertM.
CrossRef
Google scholar
|
[60] |
SergeantN., WattezA. (1999). Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusively “exon 10” isoforms. J. Neurochem., 72 : 1243–1249
CrossRef
Google scholar
|
[61] |
ZhangW., TarutaniA., NewellK. L., MurzinA. G., MatsubaraT., FalconB., VidalR., GarringerH. J., ShiY., IkeuchiT.
CrossRef
Google scholar
|
[62] |
MukraschM. D., von BergenM., BiernatJ., FischerD., GriesingerC., MandelkowE. (2007). The “jaws” of the tau-microtubule interaction. J. Biol. Chem., 282 : 12230–12239
CrossRef
Google scholar
|
[63] |
MukraschM. D., BibowS., KorukottuJ., JeganathanS., BiernatJ., GriesingerC., MandelkowE. (2009). Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol., 7 : e34
CrossRef
Google scholar
|
[64] |
ChenD., DromboskyK. W., HouZ., SariL., KashmerO. M., RyderB. D., PerezV. A., WoodardD. R., LinM. M., DiamondM. I.
CrossRef
Google scholar
|
[65] |
NelsonR., SawayaM. R., BalbirnieM., MadsenA. O., RiekelC., GrotheR. (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature, 435 : 773–778
CrossRef
Google scholar
|
[66] |
SawayaM. R., SambashivanS., NelsonR., IvanovaM. I., SieversS. A., ApostolM. I., ThompsonM. J., BalbirnieM., WiltziusJ. J., McFarlaneH. T.
CrossRef
Google scholar
|
[67] |
KrishnaKumarV. G., PaulA., GazitE. (2018). Mechanistic insights into remodeled tau-derived PHF6 peptide fibrils by Naphthoquinone-Tryptophan hybrids. Sci. Rep., 8 : 71
CrossRef
Google scholar
|
[68] |
SieversS. A., KaranicolasJ., ChangH. W., ZhaoA., JiangL., ZirafiO., StevensJ. T., nchJ., BakerD. (2011). Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 475 : 96–100
CrossRef
Google scholar
|
[69] |
Chemerovski-GlikmanM., Frenkel-PinterM., MdahR., Abu-MokhA., GazitE. (2017). Inhibition of the aggregation and toxicity of the minimal amyloidogenic fragment of tau by its pro-substituted analogues. Chemistry, 23 : 9618–9624
CrossRef
Google scholar
|
[70] |
PickhardtM., NeumannT., SchwizerD., CallawayK., VendruscoloM., SchenkD., St George-HyslopP., MandelkowE. M., DobsonC. M., McConlogueL.
CrossRef
Google scholar
|
[71] |
DavidowitzE. J., KrishnamurthyP. K., LopezP., JimenezH., AdrienL., DaviesP. MoeJ. (2020). In vivo validation of a small molecule inhibitor of tau self-association in htau mice. J. Alzheimers Dis., 73 : 147–161
CrossRef
Google scholar
|
[72] |
KundelF., DeS., FlagmeierP., HorrocksM. H., KjaergaardM., ShammasS. L., JacksonS. E., DobsonC. M. (2018). Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem. Biol., 13 : 636–646
CrossRef
Google scholar
|
[73] |
SeidlerP. M., BoyerD. R., MurrayK. A., YangT. P., BentzelM., SawayaM. R., RosenbergG., CascioD., WilliamsC. K., NewellK. L.
CrossRef
Google scholar
|
[74] |
LarbigG., PickhardtM., LloydD. G., SchmidtB. (2007). Screening for inhibitors of tau protein aggregation into Alzheimer paired helical filaments: a ligand based approach results in successful scaffold hopping. Curr. Alzheimer Res., 4 : 315–323
CrossRef
Google scholar
|
[75] |
ViswanathanG. K., ShwartzD., LosevY., AradE., ShemeshC., PichinukE., EngelH., RavehA., JelinekR., CooperI.
CrossRef
Google scholar
|
[76] |
PoratY., AbramowitzA. (2006). Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 67 : 27–37
CrossRef
Google scholar
|
[77] |
BijariN., BalalaieS., AkbariV., GolmohammadiF., MoradiS., AdibiH. (2018). Effective suppression of the modified PHF6 peptide/1N4R Tau amyloid aggregation by intact curcumin, not its degradation products: Another evidence for the pigment as preventive/therapeutic “functional food”. Int. J. Biol. Macromol., 120 : 1009–1022
CrossRef
Google scholar
|
[78] |
RaneJ. S., BhaumikP. (2017). Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis., 60 : 999–1014
CrossRef
Google scholar
|
[79] |
AnandP., KunnumakkaraA. B., NewmanR. A. AggarwalB. (2007). Bioavailability of curcumin: problems and promises. Mol. Pharm., 4 : 807–818
CrossRef
Google scholar
|
[80] |
Lo CascioF., PuangmalaiN., EllsworthA., BucchieriF., PaceA., Palumbo PiccionelloA. (2019). Toxic tau oligomers modulated by novel curcumin derivatives. Sci. Rep., 9 : 19011
CrossRef
Google scholar
|
[81] |
SatoR., VohraS., YamamotoS., SuzukiK., PavelK., ShulgaS., BlumeY. (2020). Specific interactions between tau protein and curcumin derivatives: Molecular docking and ab initio molecular orbital simulations. J. Mol. Graph. Model., 98 : 107611
CrossRef
Google scholar
|
[82] |
OkudaM., HijikuroI., FujitaY., WuX., NakayamaS., SakataY., NoguchiY., OgoM., AkasofuS., ItoY.
CrossRef
Google scholar
|
[83] |
OkudaM., HijikuroI., FujitaY., TeruyaT., KawakamiH., TakahashiT. (2016). Design and synthesis of curcumin derivatives as tau and amyloid β dual aggregation inhibitors. Bioorg. Med. Chem. Lett., 26 : 5024–5028
CrossRef
Google scholar
|
[84] |
LiuW., HuX., ZhouL., TuY., ShiS. (2020). Orientation-inspired perspective on molecular inhibitor of tau aggregation by curcumin conjugated with ruthenium(ii) complex scaffold. J. Phys. Chem. B, 124 : 2343–2353
CrossRef
Google scholar
|
[85] |
YuK. C., KwanP., CheungS. K. K., HoA. (2018). Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Transl. Neurosci., 9 : 54–60
CrossRef
Google scholar
|
[86] |
SunX. Y., DongQ. X., ZhuJ., SunX., ZhangL. F., QiuM., YuX. L. LiuR. (2019). Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr. Alzheimer Res., 16 : 710–722
CrossRef
Google scholar
|
[87] |
PasinettiG. M., WangJ., HoL., ZhaoW. (2015). Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta, 1852 : 1202–1208
CrossRef
Google scholar
|
[88] |
CornejoA., Aguilar SandovalF., CaballeroL., MachucaL., ozP., CaballeroJ., PerryG., ArdilesA., ArecheC. (2017). Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 32 : 945–953
CrossRef
Google scholar
|
[89] |
GuoY., ZhaoY., NanY., WangX., ChenY. (2017). (‒)-Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport, 28 : 590–597
CrossRef
Google scholar
|
[90] |
KumarS., KrishnakumarV. G., MoryaV., GuptaS. (2019). Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation. Int. J. Biol. Macromol., 138 : 168–180
CrossRef
Google scholar
|
[91] |
SonawaneS. K., BalmikA. A., BoralD., RamasamyS. (2019). Baicalein suppresses repeat tau fibrillization by sequestering oligomers. Arch. Biochem. Biophys., 675 : 108119
CrossRef
Google scholar
|
[92] |
ZhangM., WuQ., YaoX., ZhaoJ., ZhongW., LiuQ. (2019). Xanthohumol inhibits tau protein aggregation and protects cells against tau aggregates. Food Funct., 10 : 7865–7874
CrossRef
Google scholar
|
[93] |
PickhardtM., GazovaZ., von BergenM., KhlistunovaI., WangY., HascherA., MandelkowE. BiernatJ. (2005). Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J. Biol. Chem., 280 : 3628–3635
CrossRef
Google scholar
|
[94] |
NepovimovaE., UliassiE., KorabecnyJ., a-AltamiraL. E., SamezS., PesaresiA., GarciaG. E., BartoliniM., AndrisanoV., BergaminiC.
CrossRef
Google scholar
|
[95] |
CornejoA., SalgadoF., CaballeroJ., VargasR., SimirgiotisM. (2016). Secondary metabolites in ramalina terebrata detected by UHPLC/ESI/MS/MS and identification of parietin as tau protein inhibitor. Int. J. Mol. Sci., 17 : 1303
CrossRef
Google scholar
|
[96] |
Frenkel-PinterM., TalS., Scherzer-AttaliR., Abu-HussienM., AlyagorI., EisenbaumT., GazitE., SegalD. (2016). Naphthoquinone-tryptophan hybrid inhibits aggregation of the tau-derived peptide PHF6 and reduces neurotoxicity. J. Alzheimers Dis., 51 : 165–178
CrossRef
Google scholar
|
[97] |
SalgadoF., CaballeroJ., VargasR., CornejoA. (2020). Continental and antarctic lichens: isolation, identification and molecular modeling of the depside tenuiorin from the Antarctic lichen Umbilicaria antarctica as tau protein inhibitor. Nat. Prod. Res., 34 : 646–650
CrossRef
Google scholar
|
[98] |
ShiC. J., PengW., ZhaoJ. H., YangH. L., QuL. L., WangC., KongL. Y. WangX. (2020). Usnic acid derivatives as tau-aggregation and neuroinflammation inhibitors. Eur. J. Med. Chem., 187 : 111961
CrossRef
Google scholar
|
[99] |
GorantlaN. V., DasR., MulaniF. A., ThulasiramH. V. (2019). Neem derivatives inhibits tau aggregation. J. Alzheimers Dis. Rep., 3 : 169–178
CrossRef
Google scholar
|
[100] |
XiaoS., WuQ., YaoX., ZhangJ., ZhongW., ZhaoJ., LiuQ. (2021). Inhibitory effects of isobavachalcone on tau protein aggregation, tau phosphorylation, and oligomeric tau-induced apoptosis. ACS Chem. Neurosci., 12 : 123–132
CrossRef
Google scholar
|
[101] |
RafieeS., AsadollahiK., RiaziG., AhmadianS. SabouryA. (2017). Vitamin B12 inhibits tau fibrillization via binding to cysteine residues of tau. ACS Chem. Neurosci., 8 : 2676–2682
CrossRef
Google scholar
|
[102] |
GhasemzadehS. RiaziG. (2020). Inhibition of tau amyloid fibril formation by folic acid: In-vitro and theoretical studies. Int. J. Biol. Macromol., 154 : 1505–1516
CrossRef
Google scholar
|
[103] |
KifleL., OrtizD. SheaT. (2009). Deprivation of folate and B12 increases neurodegeneration beyond that accompanying deprivation of either vitamin alone. J. Alzheimers Dis., 16 : 533–540
CrossRef
Google scholar
|
[104] |
DubeyT., GorantlaN. V., ChandrashekaraK. T. (2019). Photoexcited toluidine blue inhibits tau aggregation in Alzheimer’s disease. ACS Omega, 4 : 18793–18802
CrossRef
Google scholar
|
[105] |
HajE.,, Losev Y., Guru KrishnaKumarV.,, PichinukE.,, Engel H.,, RavehA.,, GazitE.. (2018) Integrating in vitro and in silico approaches to evaluate the “dual functionality” of palmatine chloride in inhibiting and disassembling tau-derived VQIVYK peptide fibrils. Biochim. Biophys. Acta Gen. Subj., 1862, 1565−1575
|
[106] |
LoC. H., LimC. K., DingZ., WickramasingheS. P., BraunA. R., AsheK. H., RhoadesE., ThomasD. D. SachsJ. (2019). Targeting the ensemble of heterogeneous tau oligomers in cells: A novel small molecule screening platform for tauopathies. Alzheimers Dement., 15 : 1489–1502
CrossRef
Google scholar
|
[107] |
HallidayM., RadfordH., ZentsK. A. M., MolloyC., MorenoJ. A., VerityN. C., SmithE., OrtoriC. A., BarrettD. A., BushellM.
CrossRef
Google scholar
|
[108] |
LaA. L., WalshC. M., NeylanT. C., VosselK. A., YaffeK., KrystalA. D., MillerB. L. (2019). Long-term trazodone use and cognition: A potential therapeutic role for slow-wave sleep enhancers. J. Alzheimers Dis., 67 : 911–921
CrossRef
Google scholar
|
[109] |
KumarP., KaloniaH. (2011). Novel protective mechanisms of antidepressants against 3-nitropropionic acid induced Huntington’s-like symptoms: a comparative study. J. Psychopharmacol., 25 : 1399–1411
CrossRef
Google scholar
|
[110] |
GrippeT. C., alvesB. S. B., LouzadaL. L., QuintasJ. L., NavesJ. O. S., CamargosE. F. bregaO. (2015). Circadian rhythm in Alzheimer disease after trazodone use. Chronobiol. Int., 32 : 1311–1314
CrossRef
Google scholar
|
[111] |
AkbariV., GhobadiS., MohammadiS. (2020). The antidepressant drug; trazodone inhibits tau amyloidogenesis: Prospects for prophylaxis and treatment of AD. Arch. Biochem. Biophys., 679 : 108218
CrossRef
Google scholar
|
[112] |
CorpasR., valosV., PorquetD., a de FrutosP., Franciscato CozzolinoS. M., SanfeliuC. CardosoB. (2018). Melatonin induces mechanisms of brain resilience against neurodegeneration. J. Pineal Res., 65 : e12515
CrossRef
Google scholar
|
[113] |
BalmikA. A.,, DasR.,, DangiA.,, GorantlaN. V.,, MarelliU. K.. (2020) Melatonin interacts with repeat domain of tau to mediate disaggregation of paired helical filaments. Biochim. Biophys. Acta, Gen. Subj., 1864, 129467
|
[114] |
DasR., BalmikA. A. (2020). Effect of melatonin on tau aggregation and tau-mediated cell surface morphology. Int. J. Biol. Macromol., 152 : 30–39
CrossRef
Google scholar
|
[115] |
RenS. C.,, Suo Q. F.,, DuW. T.,, PanH.,, YangM. M.,, WangR. H.. (2010) Quercetin permeability across blood-brain barrier and its effect on the viability of U251 cells. Sichuan Da Xue Xue Bao Yi Xue Ban (in Chinese), 41, 751–754, 759
|
[116] |
HabtemariamS. (2018). Molecular pharmacology of rosmarinic and salvianolic acids: Potential seeds for Alzheimer’s and vascular dementia drugs. Int. J. Mol. Sci., 19 : 458
CrossRef
Google scholar
|
[117] |
WangJ., TangC., FerruzziM. G., GongB., SongB. J., JanleE. M., ChenT. Y., CooperB., VargheseM., ChengA.
CrossRef
Google scholar
|
[118] |
RahmaniS., MogharizadehL., AttarF., RezayatS. M., MousaviS. E. (2018). Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models. J. Biomol. Struct. Dyn., 36 : 4057–4071
CrossRef
Google scholar
|
[119] |
ZamanM., AhmadE., QadeerA., RabbaniG. KhanR. (2014). Nanoparticles in relation to peptide and protein aggregation. Int J Nanomedicine, 9 : 899–912
|
[120] |
NiuL., ZouY., LinY., ZhengY., YangY. (2019). Regulation mechanism of nanobiointerfaces in amyloid peptide assembly and aggregation structures. Sci. Sin. Chim., 49 : 500–515
CrossRef
Google scholar
|
[121] |
HajsalimiG., TaheriS., ShahiF., AttarF., AhmadiH. (2018). Interaction of iron nanoparticles with nervous system: an in vitro study. J. Biomol. Struct. Dyn., 36 : 928–937
CrossRef
Google scholar
|
[122] |
VakilinezhadM. A., AminiA., Akbari JavarH., addini Beigi ZarandiB. F., MontaseriH. (2018). Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru, 26 : 165–177
CrossRef
Google scholar
|
[123] |
VimalS. K., ZuoH., WangZ., WangH., LongZ. (2020). Self-therapeutic nanoparticle that alters tau protein and ameliorates tauopathy toward a functional nanomedicine to tackle Alzheimer’s. Small, 16 : e1906861
CrossRef
Google scholar
|
[124] |
SonawaneS. K., AhmadA. (2019). Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega, 4 : 12833–12840
CrossRef
Google scholar
|
[125] |
SoedaY., SaitoM., MaedaS., IshidaK., NakamuraA., KojimaS. (2019). Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: A plausible key to understanding failure of a clinical trial for Alzheimer’s disease. J. Alzheimers Dis., 68 : 1677–1686
CrossRef
Google scholar
|
[126] |
ZhaoJ., YinF., JiL., WangC., ShiC., LiuX., YangH., WangX. (2020). Development of a tau-targeted drug delivery system using a multifunctional nanoscale metal-organic framework for Alzheimer’s disease therapy. ACS Appl. Mater. Interfaces, 12 : 44447–44458
CrossRef
Google scholar
|
[127] |
ManjuS. (2011). Hollow microcapsules built by layer by layer assembly for the encapsulation and sustained release of curcumin. Colloids Surf. B Biointerfaces, 82 : 588–593
CrossRef
Google scholar
|
[128] |
ChenX., ZouL. Q., NiuJ., LiuW., PengS. F. LiuC. (2015). The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules, 20 : 14293–14311
CrossRef
Google scholar
|
[129] |
FanS., ZhengY., LiuX., FangW., ChenX., LiaoW., JingX., LeiM., TaoE., MaQ.
CrossRef
Google scholar
|
[130] |
GaoC., ChuX., GongW., ZhengJ., XieX., WangY., YangM., LiZ., GaoC. (2020). Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J. Nanobiotechnology, 18 : 71
CrossRef
Google scholar
|
[131] |
HuY., HuX., LuY., ShiS., YangD. (2020). New strategy for reducing tau aggregation cytologically by a hairpinlike molecular inhibitor, tannic acid encapsulated in liposome. ACS Chem. Neurosci., 11 : 3623–3634
CrossRef
Google scholar
|
[132] |
SinghN. A., BhardwajV., RaviC., RameshN., MandalA. K. A. KhanZ. (2018). EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front. Aging Neurosci., 10 : 244
CrossRef
Google scholar
|
[133] |
ArmientoV., SpanopoulouA. (2020). Peptide-based molecular strategies to interfere with protein misfolding, aggregation, and cell degeneration. Angew. Chem. Int. Ed. Engl., 59 : 3372–3384
CrossRef
Google scholar
|
[134] |
RauscherS., BaudS., MiaoM., KeeleyF. W. (2006). Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure, 14 : 1667–1676
CrossRef
Google scholar
|
[135] |
LiS. C., GotoN. K., WilliamsK. A. DeberC. (1996). Alpha-helical, but not β-sheet, propensity of proline is determined by peptide environment. Proc. Natl. Acad. Sci. USA., 93 : 6676–6681
CrossRef
Google scholar
|
[136] |
PandeyG.,, Morla S.,, KumarS.. (2020) Modulation of tau protein aggregation using ‘Trojan’ sequences. Biochim. Biophys. Acta, Gen. Subj., 1864, 129569
|
[137] |
ChengI. H., Scearce-LevieK., LegleiterJ., PalopJ. J., GersteinH., Bien-LyN., liJ., AsheK. H., MuchowskiP. J.
CrossRef
Google scholar
|
[138] |
DammersC., YolcuD., KukukL., WillboldD., PickhardtM., MandelkowE., HornA. H., StichtH., MalhisM. N., WillN.
CrossRef
Google scholar
|
[139] |
GorantlaN. V., SunnyL. P., RajasekharK., NagarajuP. G., CgP. P., GovindarajuT. (2021). Amyloid-β-derived peptidomimetics inhibits tau aggregation. ACS Omega, 6 : 11131–11138
CrossRef
Google scholar
|
[140] |
BestR. (2017). Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol., 42 : 147–154
CrossRef
Google scholar
|
[141] |
Meneksedag-ErolD. (2019). Atomistic simulation tools to study protein self-aggregation. Methods Mol. Biol., 2039 : 243–262
CrossRef
Google scholar
|
[142] |
PopovK. I., MakepeaceK. A. T., PetrotchenkoE. V., DokholyanN. V. BorchersC. (2019). Insight into the structure of the “unstructured” tau protein. Structure, 27 : 1710–1715.e4
CrossRef
Google scholar
|
[143] |
LariniL., GesselM. M., LaPointeN. E., DoT. D., BowersM. T., FeinsteinS. C. SheaJ. (2013). Initiation of assembly of tau (273‒284) and its ΔK280 mutant: an experimental and computational study. Phys. Chem. Chem. Phys., 15 : 8916–8928
CrossRef
Google scholar
|
[144] |
DaebelV., ChinnathambiS., BiernatJ., SchwalbeM., HabensteinB., LoquetA., AkouryE., TepperK., llerH., BaldusM.
CrossRef
Google scholar
|
[145] |
AdamcikJ., nchez-FerrerA., Ait-BouziadN., ReynoldsN. P., LashuelH. A. (2016). Microtubule-binding R3 fragment from tau self-assembles into giant multistranded amyloid ribbons. Angew. Chem. Int. Ed. Engl., 55 : 618–622
CrossRef
Google scholar
|
[146] |
LiuH., ZhongH., XuZ., ZhangQ., ShahS. J. A., LiuH. (2020). The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Phys. Chem. Chem. Phys., 22 : 10968–10980
CrossRef
Google scholar
|
[147] |
LiX., DongX., WeiG., MargittaiM., NussinovR. (2018). The distinct structural preferences of tau protein repeat domains. Chem. Commun. (Camb.), 54 : 5700–5703
CrossRef
Google scholar
|
[148] |
SmitF. X., LuikenJ. A. BolhuisP. (2017). Primary fibril nucleation of aggregation prone tau fragments PHF6 and PHF6*. J. Phys. Chem. B, 121 : 3250–3261
CrossRef
Google scholar
|
[149] |
LiuH., ZhongH., LiuX., ZhouS., TanS., LiuH. (2019). Disclosing the mechanism of spontaneous aggregation and template-induced misfolding of the key hexapeptide (PHF6) of tau protein based on molecular dynamics simulation. ACS Chem. Neurosci., 10 : 4810–4823
CrossRef
Google scholar
|
[150] |
EschmannN. A., GeorgievaE. R., GangulyP., BorbatP. P., RappaportM. D., AkdoganY., FreedJ. H., SheaJ. E. (2017). Signature of an aggregation-prone conformation of tau. Sci. Rep., 7 : 44739
CrossRef
Google scholar
|
[151] |
GuoJ. P., AraiT., MiklossyJ. McGeerP. (2006). Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 103 : 1953–1958
CrossRef
Google scholar
|
[152] |
RojasA. V., MaisuradzeG. G. ScheragaH. (2018). Dependence of the formation of tau and Aβ peptide mixed aggregates on the secondary structure of the N-terminal region of Aβ. J. Phys. Chem. B, 122 : 7049–7056
CrossRef
Google scholar
|
[153] |
MillerY., MaB. (2011). Synergistic interactions between repeats in tau protein and Aβ amyloids may be responsible for accelerated aggregation via polymorphic states. Biochemistry, 50 : 5172–5181
CrossRef
Google scholar
|
[154] |
DoT. D., EconomouN. J., ChamasA., BurattoS. K., SheaJ. E. BowersM. (2014). Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity. J. Phys. Chem. B, 118 : 11220–11230
CrossRef
Google scholar
|
[155] |
ShinW. S., DiJ., MurrayK. A., SunC., LiB., BitanG. (2019). Different amyloid-beta self-assemblies have distinct effects on intracellular tau aggregation. Front. Mol. Neurosci., 12 : 268
CrossRef
Google scholar
|
/
〈 | 〉 |