The indigenous populations as the model by nature to understand human genomic-phenomics interactions

Boon-Peng Hoh, Thuhairah Abdul Rahman

PDF(357 KB)
PDF(357 KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 35-43. DOI: 10.15302/J-QB-021-0251
REVIEW
REVIEW

The indigenous populations as the model by nature to understand human genomic-phenomics interactions

Author information +
History +

Abstract

Background: The advancement of genomics has progressed in lightning speed over the past two decades. Numerous large-scale genome sequencing initiatives were announced, along with the rise of the holistic precision medicine approach. However, the field of genomic medicine has now come to a bottleneck since genomic-phenomic interactions are not fully comprehended due to the complexity of the human systems biology and environmental influence, hence the emergence of human phenomics.

Results: This review attempts to provide an overview of the potential advantages of investigating the human phenomics of indigenous populations and the challenges ahead.

Conclusion: We believe that the indigenous populations serve as an ideal model to excavate our understanding of genomic-environmental-phenomics interactions.

Author summary

The advancement of genomic technology has progressed in a lightning speed. However, the understanding of genotype-phenotype interactions has come to a bottleneck owing to the complex interplays between the human biology and environment, hence posing hindrance to materialising precision medicine in a holistic manner. The newly emerging discipline on human phenomics may be the solution. We argue that the indigenous populations serve as an ideal model to excavate our understanding on genomic-environmental-phenomics interactions. This review provides an overview on the potential advantages of investigating the human phenomics in the indigenous populations, and the challenges ahead.

Graphical abstract

Keywords

indigenous populations / Orang Asli / genomics / phenomics

Cite this article

Download citation ▾
Boon-Peng Hoh, Thuhairah Abdul Rahman. The indigenous populations as the model by nature to understand human genomic-phenomics interactions. Quant. Biol., 2022, 10(1): 35‒43 https://doi.org/10.15302/J-QB-021-0251

References

[1]
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., (2001) The sequence of the human genome. Science, 291, 1304–1351
CrossRef Pubmed Google scholar
[2]
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921
CrossRef Pubmed Google scholar
[3]
International HapMap Consortium. (2003) The International HapMap Project. Nature, 426, 789–796
CrossRef Pubmed Google scholar
[4]
Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., Leal, S. M., (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851–861
CrossRef Pubmed Google scholar
[5]
The International HapMap 3 Consortium. (2010) Integrating common and rare genetic variation in diverse human populations. Nature., 467, 52–58
[6]
Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678
CrossRef Pubmed Google scholar
[7]
Fujimoto, A., Nakagawa, H., Hosono, N., Nakano, K., Abe, T., Boroevich, K. A., Nagasaki, M., Yamaguchi, R., Shibuya, T., Kubo, M., (2010) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat. Genet., 42, 931–936
CrossRef Pubmed Google scholar
[8]
Ahn, S. M., Kim, T. H., Lee, S., Kim, D., Ghang, H., Kim, D. S., Kim, B. C., Kim, S. Y., Kim, W. Y., Kim, C., (2009) The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res., 19, 1622–1629
CrossRef Pubmed Google scholar
[9]
Kim, J. I., Ju, Y. S., Park, H., Kim, S., Lee, S., Yi, J. H., Mudge, J., Miller, N. A., Hong, D., Bell, C. J., (2009) A highly annotated whole-genome sequence of a Korean individual. Nature, 460, 1011–1015
CrossRef Pubmed Google scholar
[10]
The 1000 Genomes Project Consortium. (2010) A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073
[11]
The 1000 Genomes Project Consortium. (2015) A global reference for human genetic variation. Nature, 526, 68–74
[12]
The UK10K Consortium. (2015) The UK10K project identifies rare variants in health and disease. Nature, 526, 82–89
[13]
Wu, D., Dou, J., Chai, X., Bellis, C., Wilm, A., Shih, C. C., Soon, W. W. J., Bertin, N., Lin, C. B., Khor, C. C., (2019) Large-scale whole-genome sequencing of three diverse Asian populations in Singapore. Cell, 179, 736–749.e15
CrossRef Pubmed Google scholar
[14]
The GenomeAsia 100K Consortium. (2019) The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature, 576, 106–111
[15]
Cao, Y., Li, L., Xu, M., Feng, Z., Sun, X., Lu, J., Xu, Y., Du, P., Wang, T., Hu, R., (2020) The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals. Cell Res., 30, 717–731
CrossRef Pubmed Google scholar
[16]
Jeon, S., Bhak, Y., Choi, Y., Jeon, Y., Kim, S., Jang, J., Jang, J., Blazyte, A., Kim, C., Kim, Y., (2020) Korean Genome Project: 1094 Korean personal genomes with clinical information. Sci. Adv., 6, eaaz7835
CrossRef Pubmed Google scholar
[17]
Houle, D., Govindaraju, D. R. and Omholt, S. (2010) Phenomics: the next challenge. Nat. Rev. Genet., 11, 855–866
CrossRef Pubmed Google scholar
[18]
Cano-Gamez, E. and Trynka, G. (2020) From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet., 11, 424
CrossRef Pubmed Google scholar
[19]
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., (2009) Finding the missing heritability of complex diseases. Nature, 461, 747–753
CrossRef Pubmed Google scholar
[20]
Altshuler, D., Daly, M. J. and Lander, E. S. (2008) Genetic mapping in human disease. Science, 322, 881–888
CrossRef Pubmed Google scholar
[21]
Bustamante, C. D., De La Vega, F. M. and Burchard, E. G. (2011) Genomics for the world. Nature, 475, 163–165
CrossRef Pubmed Google scholar
[22]
Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato, H., Sato, H., Hori, M., Nakamura, Y., (2002) Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet., 32, 650–654
CrossRef Pubmed Google scholar
[23]
Lango Allen, H., Estrada, K., Lettre, G., Berndt, S. I., Weedon, M. N., Rivadeneira, F., Willer, C. J., Jackson, A. U., Vedantam, S., Raychaudhuri, S., (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 467, 832–838
CrossRef Pubmed Google scholar
[24]
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., (2010) Common SNPs explain a large proportion of the heritability for human height. Nat. Genet., 42, 565–569
CrossRef Pubmed Google scholar
[25]
Nikpay, M., Goel, A., Won, H.-H., Hall, L. M., Willenborg, C., Kanoni, S., Saleheen, D., Kyriakou, T., Nelson, C. P., Hopewell, J. C., (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet., 47, 1121–1130
CrossRef Pubmed Google scholar
[26]
Doherty, A., Smith-Byrne, K., Ferreira, T., Holmes, M. V., Holmes, C., Pulit, S. L. and Lindgren, C. M. (2018) GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat. Commun., 9, 5257
CrossRef Pubmed Google scholar
[27]
Band, G., Le, Q. S., Jostins, L., Pirinen, M., Kivinen, K., Jallow, M., Sisay-Joof, F., Bojang, K., Pinder, M., Sirugo, G., (2013) Imputation-based meta-analysis of severe malaria in three African populations. PLoS Genet., 9, e1003509
CrossRef Pubmed Google scholar
[28]
Klarin, D., Lynch, J., Aragam, K., Chaffin, M., Assimes, T. L., Huang, J., Lee, K. M., Shao, Q., Huffman, J. E., Natarajan, P., (2019) Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nat. Med., 25, 1274–1279
CrossRef Pubmed Google scholar
[29]
Zhang, K., Weder, A. B., Eskin, E. and O’Connor, D. T. (2010) Genome-wide case/control studies in hypertension: only the ‘tip of the iceberg’. J. Hypertens., 28, 1115–1123
CrossRef Pubmed Google scholar
[30]
Wang, Y. and Wang, J.-G. (2019) Genome-wide association studies of hypertension and several other cardiovascular diseases. Pulse (Basel), 6, 169–186
CrossRef Pubmed Google scholar
[31]
Freimer, N. and Sabatti, C. (2003) The human phenome project. Nat. Genet., 34, 15–21
CrossRef Pubmed Google scholar
[32]
Dominiczak, A., Delles, C. and Padmanabhan, S. (2017) Genomics and precision medicine for clinicians and scientists in hypertension. Hypertension, 69, e10–e13
CrossRef Pubmed Google scholar
[33]
Peck, R. W. (2018) Precision medicine is not just genomics: the right dose for every patient. Annu. Rev. Pharmacol. Toxicol., 58, 105–122
CrossRef Pubmed Google scholar
[34]
Hoh, B. P., Abdul Rahman, T. and Yusoff, K. (2019) Natural selection and local adaptation of blood pressure regulation and their perspectives on precision medicine in hypertension. Hereditas, 156, 1
CrossRef Pubmed Google scholar
[35]
Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., Chen, J. and He, J. (2016) Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation, 134, 441–450
CrossRef Pubmed Google scholar
[36]
Manosroi, W. and Williams, G. H. (2019) Genetics of Human Primary Hypertension: Focus on Hormonal Mechanisms. Endocr. Rev., 40, 825–856
CrossRef Pubmed Google scholar
[37]
Tocci, G., Ferrucci, A., Pontremoli, R., Ferri, C., Rosei, E. A., Morganti, A., Trimarco, B., Mancia, G., Borghi, C. and Volpe, M. (2015) Blood pressure levels and control in Italy: comprehensive analysis of clinical data from 2000‒2005 and 2005‒2011 hypertension surveys. J. Hum. Hypertens., 29, 696–701
CrossRef Pubmed Google scholar
[38]
Korner, P. I. (2010) The phenotypic patterns of essential hypertension are the key to identifying “high blood pressure” genes. Physiol. Res., 59, 841–857
CrossRef Pubmed Google scholar
[39]
Basting, T. and Lazartigues, E. (2017) DOCA-salt hypertension: an update. Curr Hypertens Rep., 19, 1–8
CrossRef Google scholar
[40]
Coffman, T. M. (2011) Under pressure: the search for the essential mechanisms of hypertension. Nat. Med., 17, 1402–1409
CrossRef Pubmed Google scholar
[41]
Kato, N. (2012) Ethnic differences in genetic predisposition to hypertension. Hypertens. Res., 35, 574–581
CrossRef Pubmed Google scholar
[42]
Thompson, E. E., Kuttab-Boulos, H., Witonsky, D., Yang, L., Roe, B. A. and Di Rienzo, A. (2004) CYP3A variation and the evolution of salt-sensitivity variants. Am. J. Hum. Genet., 75, 1059–1069
CrossRef Pubmed Google scholar
[43]
Nakajima, T., Wooding, S., Sakagami, T., Emi, M., Tokunaga, K., Tamiya, G., Ishigami, T., Umemura, S., Munkhbat, B., Jin, F., (2004) Natural selection and population history in the human angiotensinogen gene (AGT): 736 complete AGT sequences in chromosomes from around the world. Am. J. Hum. Genet., 74, 898–916
CrossRef Pubmed Google scholar
[44]
Young, J.H., Chang, Y.P.C., Kim, J.D.O., Chretien, J.P., Klag, M.J., Levine, M.A., Ruff, C.B., Wang, N.Y., Chakravarti, A. (2005) Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet., 1, e82
[45]
Verma, A., Lucas, A., Verma, S. S., Zhang, Y., Josyula, N., Khan, A., Hartzel, D. N., Lavage, D. R., Leader, J., Ritchie, M. D., (2018) PheWAS and beyond: the landscape of associations with medical diagnoses and clinical measures across 38,662 individuals from geisinger. Am. J. Hum. Genet., 102, 592–608
CrossRef Pubmed Google scholar
[46]
Safarova, M. S., Satterfield, B. A., Fan, X., Austin, E. E., Ye, Z., Bastarache, L., Zheng, N., Ritchie, M. D., Borthwick, K. M., Williams, M. S., (2019) A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR. NPJ Genom. Med., 4, 3
CrossRef Pubmed Google scholar
[47]
Denny, J. C., Bastarache, L., Ritchie, M. D., Carroll, R. J., Zink, R., Mosley, J. D., Field, J. R., Pulley, J. M., Ramirez, A. H., Bowton, E., (2013) Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol., 31, 1102–1111
CrossRef Pubmed Google scholar
[48]
Diogo, D., Tian, C., Franklin, C. S., Alanne-Kinnunen, M., March, M., Spencer, C. C. A., Vangjeli, C., Weale, M. E., Mattsson, H., Kilpeläinen, E., (2018) Phenome-wide association studies across large population cohorts support drug target validation. Nat. Commun., 9, 4285
CrossRef Pubmed Google scholar
[49]
Zhao, X., Geng, X., Srinivasasainagendra, V., Chaudhary, N., Judd, S., Wadley, V., Gutiérrez, O. M., Wang, H., Lange, E. M., Lange, L. A., (2019) A PheWAS study of a large observational epidemiological cohort of African Americans from the REGARDS study. BMC Med. Genomics, 12, 26
CrossRef Pubmed Google scholar
[50]
Pendergrass, S. A., Buyske, S., Jeff, J. M., Frase, A., Dudek, S., Bradford, Y., Ambite, J. L., Avery, C. L., Buzkova, P., Deelman, E., (2019) A phenome-wide association study (PheWAS) in the Population Architecture using Genomics and Epidemiology (PAGE) study reveals potential pleiotropy in African Americans. PLoS One, 14, e0226771
CrossRef Pubmed Google scholar
[51]
Mashimo, T., Voigt, B., Kuramoto, T. and Serikawa, T. (2005) Rat Phenome Project: the untapped potential of existing rat strains. J. Appl. Physiol., 98, 371–379
CrossRef Pubmed Google scholar
[52]
Bogue, M. A., Grubb, S. C., Walton, D. O., Philip, V. M., Kolishovski, G., Stearns, T., Dunn, M. H., Skelly, D. A., Kadakkuzha, B., TeHennepe, G., (2018) Mouse Phenome Database: an integrative database and analysis suite for curated empirical phenotype data from laboratory mice. Nucleic Acids Res., 46, D843–D850
CrossRef Pubmed Google scholar
[53]
FitzGerald, G., Botstein, D., Califf, R., Collins, R., Peters, K., Van Bruggen, N. and Rader, D. (2018) The future of humans as model organisms. Science, 361, 552–553
CrossRef Pubmed Google scholar
[54]
Yew, C. W., Lu, D., Deng, L., Wong, L. P., Ong, R. T., Lu, Y., Wang, X., Yunus, Y., Aghakhanian, F., Mokhtar, S. S., (2018) Genomic structure of the native inhabitants of Peninsular Malaysia and North Borneo suggests complex human population history in Southeast Asia. Hum. Genet., 137, 161–173
CrossRef Pubmed Google scholar
[55]
Hill, C., Soares, P., Mormina, M., Macaulay, V., Meehan, W., Blackburn, J., Clarke, D., Raja, J. M., Ismail, P., Bulbeck, D., (2006) Phylogeography and ethnogenesis of aboriginal Southeast Asians. Mol. Biol. Evol., 23, 2480–2491
CrossRef Pubmed Google scholar
[56]
Deng, L., Lou, H., Zhang, X., Thiruvahindrapuram, B., Lu, D., Marshall, C. R., Liu, C., Xie, B., Xu, W., Wong, L. P., (2019) Analysis of five deep-sequenced trio-genomes of the Peninsular Malaysia Orang Asli and North Borneo populations. BMC Genomics, 20, 842
CrossRef Pubmed Google scholar
[57]
Endicott, K. (2016) Malaysia’s Original People: Past, Present and Future of the Orang Asli. Singapore: NUS Press
[58]
Mokhsin, A., Mokhtar, S. S., Mohd Ismail, A., M Nor, F., Shaari, S. A., Nawawi, H., Yusoff, K., Abdul Rahman, T. and Hoh, B. P. (2018) Observational study of the status of coronary risk biomarkers among Negritos with metabolic syndrome in the east coast of Malaysia. BMJ Open, 8, e021580
CrossRef Pubmed Google scholar
[59]
Aghakhanian, F., Wong, C., Tan, J. S. Y., Yeo, L. F., Ramadas, A., Edo, J., Hoh, B. P., Khalid, B. A. K. and Phipps, M. E. (2019) Metabolic syndrome and cardiometabolic risk factors among indigenous Malaysians. Public Health, 176, 106–113
CrossRef Pubmed Google scholar
[60]
Tuan Abdul Aziz, T. A., Teh, L. K., Md Idris, M. H., Bannur, Z., Ashari, L. S., Ismail, A. I., Ahmad, A., Isa, K. M., Nor, F. M., Rahman, T. H., (2016) Increased risks of cardiovascular diseases and insulin resistance among the Orang Asli in Peninsular Malaysia. BMC Public Health, 16, 284
CrossRef Pubmed Google scholar
[61]
Mills, M. C. and Rahal, C. (2019) A scientometric review of genome-wide association studies. Comm Biol., doi:10.1038/s42003-018-0261-x
CrossRef Google scholar
[62]
Garrison, N. A., Hudson, M., Ballantyne, L. L., Garba, I., Martinez, A., Taualii, M., Arbour, L., Caron, N. R. and Rainie, S. C. (2019) Genomic research through an indigenous lens: understanding the expectations. Annu. Rev. Genomics Hum. Genet., 20, 495–517
CrossRef Pubmed Google scholar
[63]
Jinam, T. A., Phipps, M. E., Aghakhanian, F., Majumder, P. P., Datar, F., Stoneking, M., Sawai, H., Nishida, N., Tokunaga, K., Kawamura, S., (2017) Discerning the origins of the negritos, first sundaland people: deep divergence and archaic admixture. Genome Biol. Evol., 9, 2013–2022
CrossRef Pubmed Google scholar
[64]
Scholes, C., Siddle, K., Ducourneau, A., Crivellaro, F., Järve, M., Rootsi, S., Bellatti, M., Tabbada, K., Mormina, M., Reidla, M., (2011) Genetic diversity and evidence for population admixture in Batak Negritos from Palawan. Am. J. Phys. Anthropol., 146, 62–72
CrossRef Pubmed Google scholar
[65]
Kusuma, P., Brucato, N., Cox, M. P., Letellier, T., Manan, A., Nuraini, C., Grangé, P., Sudoyo, H. and Ricaut, F. X. (2017) The last sea nomads of the Indonesian archipelago: genomic origins and dispersal. Eur. J. Hum. Genet., 25, 1004–1010
CrossRef Pubmed Google scholar
[66]
Deng, L., Hoh, B. P., Lu, D., Fu, R., Phipps, M. E., Li, S., Nur-Shafawati, A. R., Hatin, W. I., Ismail, E., Mokhtar, S. S., (2014) The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia. Hum. Genet., 133, 1169–1185
CrossRef Pubmed Google scholar
[67]
Aghakhanian, F., Yunus, Y., Naidu, R., Jinam, T., Manica, A., Hoh, B. P. and Phipps, M. E. (2015) Unravelling the genetic history of Negritos and indigenous populations of Southeast Asia. Genome Biol. Evol., 7, 1206–1215
CrossRef Pubmed Google scholar
[68]
McEvoy, B. P., Lind, J. M., Wang, E. T., Moyzis, R. K., Visscher, P. M., van Holst Pellekaan, S. M. and Wilton, A. N. (2010) Whole-genome genetic diversity in a sample of Australians with deep Aboriginal ancestry. Am. J. Hum. Genet., 87, 297–305
CrossRef Pubmed Google scholar
[69]
Tokunaga, K., Ohashi, J., Bannai, M. and Juji, T. (2001) Genetic link between Asians and native Americans: evidence from HLA genes and haplotypes. Hum. Immunol., 62, 1001–1008
CrossRef Pubmed Google scholar
[70]
Zhou, S., Xie, P., Quoibion, A., Ambalavanan, A., Dionne-Laporte, A., Spiegelman, D., Bourassa, C. V., Xiong, L., Dion, P. A. and Rouleau, G. A. (2019) Genetic architecture and adaptations of Nunavik Inuit. Proc. Natl. Acad. Sci. USA, 116, 16012–16017
CrossRef Pubmed Google scholar
[71]
Fumagalli, M., Moltke, I., Grarup, N., Racimo, F., Bjerregaard, P., Jørgensen, M. E., Korneliussen, T. S., Gerbault, P., Skotte, L., Linneberg, A., (2015) Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 349, 1343–1347
CrossRef Pubmed Google scholar
[72]
Liu, X., Yunus, Y., Lu, D., Aghakhanian, F., Saw, W. Y., Deng, L., Ali, M., Wang, X., Nor, F. M., Rahman, T. A., (2015) Differential positive selection of malaria resistance genes in three indigenous populations of Peninsular Malaysia. Hum. Genet., 134, 375–392
CrossRef Pubmed Google scholar
[73]
Ilardo, M. A., Moltke, I., Korneliussen, T. S., Cheng, J., Stern, A. J., Racimo, F., de Barros Damgaard, P., Sikora, M., Seguin-Orlando, A., Rasmussen, S., (2018) Physiological and genetic adaptations to diving in sea nomads. Cell, 173, 569–580.e15
CrossRef Pubmed Google scholar
[74]
Kapoor, A. K. and Kaur, J. (2012) Natural selection in a population group of Andaman and Nicobar Islands. J. Nat. Sci. Biol. Med., 3, 71–77
CrossRef Pubmed Google scholar
[75]
Roberts-Thomson, R. A. and Roberts-Thomson, P. J. (1999) Rheumatic disease and the Australian aborigine. Ann. Rheum. Dis., 58, 266–270
CrossRef Pubmed Google scholar
[76]
Leung, L. (2016) Diabetes mellitus and the Aboriginal diabetic initiative in Canada: An update review. J. Family Med. Prim. Care, 5, 259–265
CrossRef Pubmed Google scholar
[77]
Wong, E. C. L. and Kapoor, A. (2017) Epidemiology of prostate and kidney cancer in the Aboriginal population of Canada: A systematic review. Can. Urol. Assoc. J., 11, E222–E232
CrossRef Pubmed Google scholar
[78]
Thomas, V., Sng, K. H. and Yap, P. L. (1980) Seroepidemiology of Malaria in Orang Asli (Aborgines) Children in Kelantan, Malaysia. Geneva, available from: http://apps.who.int/iris/handle/10665/65793
[79]
Baer, A. S. (1999) Health, disease, and survival : a biomedical and genetic analysis of the Orang Asli of Malaysia. 1st ed. Subang Jaya: Center for Orang Asli Concerns
[80]
Kaur, G. (2009) Prevalence of clinical malaria among an Orang Asli community in Malaysia. Southeast Asian J Trop Med Public Health, 40, 665–673
Pubmed
[81]
Muslim, A., Mohd Sofian, S., Shaari, S. A., Hoh, B. P. and Lim, Y. A. L. (2019) Prevalence, intensity and associated risk factors of soil transmitted helminth infections: A comparison between Negritos (indigenous) in inland jungle and those in resettlement at town peripheries. PLoS Negl. Trop. Dis., 13, e0007331
CrossRef Pubmed Google scholar
[82]
Sahlan, N., Fadzilah, M. N., Muslim, A., Shaari, S. A., Abdul Rahman, T. and Hoh, B. P. (2019) Hepatitis B virus infection: Epidemiology and seroprevalence rate amongst Negrito tribe in Malaysia. Med. J. Malaysia, 74, 320–325
Pubmed
[83]
Ishida, T., Yamamoto, K. and Omoto, K. (1988) A seroepidemiological survey of HTLV-1 in the Philippines. Int. J. Epidemiol., 17, 625–628
CrossRef Pubmed Google scholar
[84]
Phipps, M. E., Chan, K. K. L., Naidu, R., Mohamad, N. W., Hoh, B.-P., Quek, K.-F., Ahmad, B., Harnida, S. M., Zain, A. Z. and Kadir, K. A. (2015) Cardio-metabolic health risks in indigenous populations of Southeast Asia and the influence of urbanization. BMC Public Health, 15, 47
CrossRef Pubmed Google scholar
[85]
Rønn, P. F., Lucas, M., Laouan Sidi, E. A., Tvermosegaard, M., Andersen, G. S., Lauritzen, T., Toft, U., Carstensen, B., Christensen, D. L. and Jørgensen, M. E. (2017) The obesity-associated risk of cardiovascular disease and all-cause mortality is not lower in Inuit compared to Europeans: A cohort study of Greenlandic Inuit, Nunavik Inuit and Danes. Atherosclerosis, 265, 207–214
CrossRef Pubmed Google scholar
[86]
Appel, E. V. R., Moltke, I., Jørgensen, M. E., Bjerregaard, P., Linneberg, A., Pedersen, O., Albrechtsen, A., Hansen, T. and Grarup, N. (2018) Genetic determinants of glycated hemoglobin levels in the Greenlandic Inuit population. Eur. J. Hum. Genet., 26, 868–875
CrossRef Pubmed Google scholar
[87]
Lu, D. and Xu, S. (2013) Principal component analysis reveals the 1000 Genomes Project does not sufficiently cover the human genetic diversity in Asia. Front. Genet., 4, 127
CrossRef Pubmed Google scholar
[88]
Wang, L., Olson, J. E., Bielinski, S. J., St Sauver, J. L., Fu, S., He, H., Cicek, M. S., Hathcock, M. A., Cerhan, J. R. and Liu, H. (2020) Impact of diverse data sources on computational phenotyping. Front. Genet., 11, 556
CrossRef Pubmed Google scholar
[89]
Caron, N. R., Chongo, M., Hudson, M., Arbour, L., Wasserman, W. W., Robertson, S., Correard, S. and Wilcox, P. (2020) Indigenous Genomic Databases: pragmatic considerations and cultural contexts. Front. Public Health, 8, 111
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

The author acknowledges the Department of Orang Asli Development (JKOA) of Malaysia and the Orang Asli communities for their participation and engagement in earlier studies.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Boon-Peng Hoh and Thuhairah Abdul Rahman declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. Published by Higher Education Press
AI Summary AI Mindmap
PDF(357 KB)

Accesses

Citations

Detail

Sections
Recommended

/