PDF
(805KB)
Abstract
Background: Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date.
Results: We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations.
Conclusions: The development of statistical and computational methods for analyzing RNA-seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statistical models and exhibit different performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development.
Graphical abstract
Keywords
RNA-seq
/
statistical modeling
/
differentially expressed genes
/
alternatively spliced exons
/
isoform reconstruction and quantification
Cite this article
Download citation ▾
Wei Vivian Li, Jingyi Jessica Li.
Modeling and analysis of RNA-seq data: a review from a statistical perspective.
Quant. Biol., 2018, 6(3): 195-209 DOI:10.1007/s40484-018-0144-7
| [1] |
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
|
| [2] |
Zhao, S., Fung-Leung, W.-P., Bittner, A., Ngo, K. and Liu, X. (2014) Comparison of RNA-seq and microarray in transcriptome profiling of activated t cells. PLoS One, 9, e78644
|
| [3] |
Engström, P. G., Steijger, T., Sipos, B., Grant, G. R., Kahles, A., The RGASP Consortium, Rätsch, G., Goldman, N., Hubbard, T. J., Harrow, J., (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods, 10, 1185–1191
|
| [4] |
Soneson, C. and Delorenzi, M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91
|
| [5] |
Giorgi, F. M., Del Fabbro, C. and Licausi, F. (2013) Comparative study of RNA-seq- and microarray-derived coexpression networks in Arabidopsis thaliana. Bioinformatics, 29, 717–724
|
| [6] |
Kanitz, A., Gypas, F., Gruber, A. J., Gruber, A. R., Martin, G. and Zavolan, M (2015) Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol., 16, 1–26
|
| [7] |
Tourasse, N. J., Millet, J. R. M, and Dupuy, D. (2017) Quantitative RNA-seq meta-analysis of alternative exon usage in C. elegans. Genome Res., 27, 2120–2128
|
| [8] |
Li, J. J., Huang, H., Qian, M. and Zhang, X. (2015) Advanced Medical Statistics, 2nd ed., chapter 24, pp. 915–936. World Scientific
|
| [9] |
Seqc/Maqc-Iii Consortium (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol., 32, 903–914
|
| [10] |
Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X. (2016) A survey of best practices for RNA-seq data analysis. Genome Biol., 17, 1
|
| [11] |
Gao, R. and Li, J. J. (2017) Correspondence of D. melanogaster and C. elegans developmental stages revealed by alternative splicing characteristics of conserved exons. BMC Genomics, 18, 234
|
| [12] |
Arbeitman, M. N., Furlong, E. E. M., Imam, F., Johnson, E., Null, B. H., Baker, B. S., Krasnow, M. A., Scott, M. P., Davis, R. W. and White, K. P. (2002) Gene expression during the life cycle of Drosophila melanogaster. Science, 297, 2270–2275
|
| [13] |
Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., Baker, J. C., Grützner, F. and Kaessmann, H. (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature, 505, 635–640
|
| [14] |
Li, W. V., Chen, Y. and Li, J. J. (2017) Trom: a testing-based method for finding transcriptomic similarity of biological samples. Stat. Biosci., 9, 105–136
|
| [15] |
de la Fuente, A., Bing, N., Hoeschele, I. and Mendes, P. (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 20, 3565–3574
|
| [16] |
Wyner, A. D. (1978) A definition of conditional mutual information for arbitrary ensembles. Inf. Control, 38, 51–59
|
| [17] |
Zhao, J., Zhou, Y., Zhang, X. and Chen, L. (2016) Part mutual information for quantifying direct associations in networks. Proc. Natl. Acad. Sci. USA, 113, 5130–5135
|
| [18] |
van der Maaten, L. and Hinton, G. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res., 9, 2579–2605
|
| [19] |
Kruskal, J. B. and Wish, M. (1978) Multidimensional Scaling, volume 11. Sage
|
| [20] |
Evans, C., Hardin, J. and Stoebel, D. M. (2017) Selecting between-sample RNA-seq normalization methods from the perspective of their assumptions. Brief. Bioinform., bbx008
|
| [21] |
Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinformatics, 11, 94
|
| [22] |
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods, 5, 621–628
|
| [23] |
Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) Tophat: discovering splice junctions with RNA-seq. Bioinformatics, 25, 1105–1111
|
| [24] |
Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics, 12, 323
|
| [25] |
Wagner, G. P., Kin, K. and Lynch, V. J. (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci., 131, 281–285
|
| [26] |
Dillies, M.-A., Rau, A., Aubert, J., Hennequet-Antier, C., Jean-mougin, M., Servant, N., Keime, C., Marot, G., Castel, D., Estelle, J., (2013) A comprehensive evaluation of normalization methods for illumina high-throughput RNA sequencing data analysis. Brief. Bioinform., 14, 671–683
|
| [27] |
Bolstad, B. M., Irizarry, R. A., Astrand, M. and Speed, T. P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193
|
| [28] |
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
|
| [29] |
Robinson, M. D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25
|
| [30] |
Li, J., Witten, D. M., Johnstone, I. M. and Tibshirani, R. (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13, 523–538
|
| [31] |
Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D. and Betel, D. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, 3158
|
| [32] |
Bloom, J. S., Khan, Z., Kruglyak, L., Singh, M. and Caudy, A. A. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221
|
| [33] |
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
|
| [34] |
Hardcastle, T. J. and Kelly, K. A. (2010) baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422
|
| [35] |
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
|
| [36] |
Yu, D., Huber, W. and Vitek, O. (2013) Shrinkage estimation of dispersion in negative binomial models for RNA-seq experiments with small sample size. Bioinformatics, 29, 1275–1282
|
| [37] |
Leng, N., Dawson, J. A., Thomson, J. A., Ruotti, V., Rissman, A. I., Smits, B. M. G., Haag, J. D., Gould, M. N., Stewart, R. M. and Kendziorski, C. (2013) Ebseq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 29, 1035–1043
|
| [38] |
Van De Wiel, M. A., Leday, G. G. R., Pardo, L., Rue, H., Van Der Vaart, A. W. and Van Wieringen, W. N. (2013) Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics, 14, 113–128
|
| [39] |
Law, C. W., Chen, Y., Shi, W. and Smyth, G. K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29
|
| [40] |
Smyth, G. K.. (2005) Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor, pp. 397–420. Springer
|
| [41] |
Pimentel, H., Bray, N. L., Puente, S., Melsted, P. and Pachter, L. (2017) Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods, 14, 687–690
|
| [42] |
Schurch, N. J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A., Singh, V., Wrobel, N., Gharbi, K., Simpson, G. G., Owen-Hughes, T., (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA, 22, 839–851
|
| [43] |
Neyman, J. and Pearson, E. S. (1928) On the use and interpretation of certain test criteria for purposes of statistical inference: Part I. Biometrika, 20, 175–240
|
| [44] |
Holm, S. (1979) A simple sequentially rejective multiple test procedure. Scand. J. Stat., 6, 65–70
|
| [45] |
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300
|
| [46] |
Nueda, M. J., Martorell-Marugan, J., Martí C., Tarazona, S. and Conesa, A. (2018) Identification and visualization of differential isoform expression in RNA-seq time series. Bioinformatics, 34, 524–526
|
| [47] |
Tai, Y. C. and Speed, T. P. (2006) A multivariate empirical Bayes statistic for replicated microarray time course data. Ann. Stat., 34, 2387–2412
|
| [48] |
Stuart, J. M., Segal, E., Koller, D.and Kim, S. K. (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science, 302, 249–255
|
| [49] |
Langfelder, P. and Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559
|
| [50] |
Zhang, B. and Horvath, S. (2005) A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 4, Article 17
|
| [51] |
Ravasz, E., , Somera A. L., Mongru, D. A., Oltvai, Z. N. and Barabási, A. -L. (2002) Hierarchical organization of modularity in metabolic networks. Science, 297, 1551–1555
|
| [52] |
Oti, M., van Reeuwijk, J., Huynen, M. A. and Brunner, H. G. (2008) Conserved co-expression for candidate disease gene prioritization. BMC Bioinformatics, 9, 208
|
| [53] |
Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D. and Friedman, N. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166–176
|
| [54] |
Canzar, S., Andreotti, S., Weese, D., Reinert, K. and Klau, G. W. (2016) CIDANE: comprehensive isoform discovery and abundance estimation. Genome Biol., 17, 16
|
| [55] |
Jiang, H. and Wong, W. H. (2009) Statistical inferences for isoform expression in RNA-seq. Bioinformatics, 25, 1026–1032
|
| [56] |
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
|
| [57] |
Roberts, A. and Pachter, L. (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods, 10, 71–73
|
| [58] |
Bray, N. L., Pimentel, H., Melsted, P. and Pachter, L. (2016) Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol., 34, 525–527
|
| [59] |
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B, 39, 1–38
|
| [60] |
Zhang, J., Jay Kuo, C.-C. and Chen, L. (2014) WEMIQ: an accurate and robust isoform quantification method for RNA-seq data. Bioinformatics, 31, 878–885
|
| [61] |
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. and Kingsford, C. (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods, 14, 417–419
|
| [62] |
Mezlini, A.M., Smith, E. J. M., Fiume, M., Buske, O., Savich, G. L., Shah, S., Aparicio, S., Chiang, D.Y., Goldenberg, A. and Brudno, M. (2013) iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome Res., 23, 519–529
|
| [63] |
Li, W. V., Zhao, A., Zhang, S. and Li, J. J. (2017) Msiq: joint modeling of multiple RNA-seq samples for accurate isoform quantification. Ann. Appl. Stat., 12, 510–539
|
| [64] |
Katz, Y. and Eric, T. (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods, 7, 1009–1015
|
| [65] |
Love, M. I., Hogenesch, J. B. and Irizarry, R. A. (2016) Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat. Biotechnol., 34, 1287–1291
|
| [66] |
Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. and Pachter, L. (2011) Improving RNA-seq expression estimates by correcting for fragment bias. Genome Biol., 12, R22
|
| [67] |
Xia, Z., Wen, J., Chang, C.-C. and Zhou, X. (2011) Nsmap: a method for spliced isoforms identification and quantification from RNA-seq. BMC Bioinformatics, 12, 162
|
| [68] |
Bohnert, R. and Rätsch, G. (2010) rQuant. web: a tool for RNA-seq-based transcript quantitation. Nucleic Acids Res., 38, W348–W351
|
| [69] |
Li, J. J., Jiang, C.-R., Brown, J. B., Huang, H. and Bickel, P. J. (2011) Sparse linear modeling of next-generation mRNA sequencing (RNA-seq) data for isoform discovery and abundance estimation. Proc. Natl. Acad. Sci. USA, 108, 19867–19872
|
| [70] |
Li, W., Feng, J. and Jiang, T. (2011) IsoLasso: a LASSO regression approach to RNA-seq based transcriptome assembly. J. Comput. Biol., 18, 1693–1707
|
| [71] |
Meinshausen, N. and Bühlmann, P. (2010) Stability selection. J. R. Stat. Soc. Series B Stat. Methodol., 72, 417–473
|
| [72] |
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol., 29, 644–652
|
| [73] |
Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincrnas. Nat. Biotechnol., 28, 503–510
|
| [74] |
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T. and Salzberg, S. L. (2015) Stringtie enables improved reconstruction of a transcrip-tome from RNA-seq reads. Nat. Biotechnol., 33, 290–295
|
| [75] |
Wang, X., Wu, Z. and Zhang, X. (2010) Isoform abundance inference provides a more accurate estimation of gene expression levels in RNA-seq. J. Bioinform. Comput. Biol., 8 (Supp. 1), 177–192
|
| [76] |
Lin, Y.-Y., Dao, P., Hach, F., Bakhshi, M., Mo, F., Lapuk, A., Collins, C. and Cenk Sahinalp, S. (2012) Cliiq: accurate comparative detection and quantification of expressed isoforms in a population. In Algorithms in Bioinformatics, pp. 178–189. Springer
|
| [77] |
Behr, J., Kahles, A., Zhong, Y., Sreedharan, V. T., Drewe, P. and Rätsch, G. (2013) MITIE: Simultaneous RNA-seq-based transcript identification and quantification in multiple samples. Bioinformatics, 29, 2529–2538
|
| [78] |
Bernard, E., Jacob, L., Mairal, J. and Vert, J.-P. (2014) Efficient RNA isoform identification and quantification from RNA-seq data with network flows. Bioinformatics, 30, 2447–2455
|
| [79] |
Steijger, T., Abril, J. F., Engström, P. G., Kokocinski, F., Abril, J. F., Akerman, M., Alioto, T., Ambrosini, G., Antonarakis, S. E., Behr, J., (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods, 10, 1177–1184
|
| [80] |
Wu, J., Akerman, M., Sun, S., McCombie, W. R., Krainer, A. R. and Zhang, M. Q. (2011) Splicetrap: a method to quantify alternative splicing under single cellular conditions. Bioinformatics, 27, 3010–3016
|
| [81] |
Shen, S., Park, J. W., Lu, Z., Lin, L., Henry, M. D., Wu, Y. N., Zhou, Q. and Xing, Y. (2014) rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl. Acad. Sci. USA., 111, E5593–E5601
|
| [82] |
Hu, Y., Huang, Y., Du, Y., Orellana, C. F., Singh, D., Johnson, A. R., Monroy, A., Kuan, P.-F., Hammond, S. M., Makowski, L., (2013) Diffsplice: the genome-wide detection of differential splicing events with RNA-seq. Nucleic Acids Res., 41, e39–e39
|
| [83] |
Anders, S., Reyes, A. and Huber, W. (2012) Detecting differential usage of exons from RNA-seq data. Genome Res., 22, 2008–2017
|
| [84] |
Harrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B. L., Barrell, D., Zadissa, A., Searle, S., (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res., 22, 1760–1774
|
| [85] |
Rhoads, A. and Au, K. F. (2015) Pacbio sequencing and its applications. Genom. Proteom. Bioinf ., 13, 278–289
|
| [86] |
Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., (2008) The potential and challenges of nanopore sequencing. Nat. Biotechnol., 26, 1146–1153
|
| [87] |
Byrne, A., Beaudin, A. E., Olsen, H. E., Jain, M., Cole, C., Palmer, T., DuBois, R. M., Forsberg, E. C., Akeson, M. and Vollmers, C. (2017) Nanopore long-read RNA-seq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun., 8, 16027
|
| [88] |
Au, K. F., Sebastiano, V., Afshar, P. T., Durruthy, J. D. and Lee, L.Williams, B.A., van Bakel, H., Schadt, E. E., Reijo-Pera, R. A., Underwood, J.G., (2013) Characterization of the human ESC transcriptome by hybrid sequencing. Proc. Natl. Acad. Sci. USA, 110, E4821–E4830
|
| [89] |
Bleidorn, C. (2016) Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst. Biodivers., 14, 1–8
|
| [90] |
Ramaswami, G., Lin, W., Piskol, R., Tan, M. H., Davis, C. and Li, J. B. (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods, 9, 579–581
|
| [91] |
Bahn, J. H., Lee, J.-H., Li, G., Greer, C., Peng, G. and Xiao, X. (2012) Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res., 22, 142–150
|
| [92] |
Iyer, M. K., Niknafs, Y. S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T. R., Prensner, J. R., Evans, J. R., Zhao, S., (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet., 47, 199–208
|
| [93] |
Hezroni, H., Koppstein, D., Schwartz, M. G., Avrutin, A., Bartel, D. P. and Ulitsky, I. (2015) Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Reports, 11, 1110–1122
|
| [94] |
Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., Veyrieras, J. -B., Stephens, M., Gilad, Y. and Pritchard, J. K. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464, 768–772.
|
| [95] |
Zak, D. E., Penn-Nicholson, A., Scriba, T. J., Thompson, E., Suliman, S., Amon, L. M., Mahomed, H., Erasmus, M., Whatney, W., Hussey, G. D., (2016) A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 387, 2312–2322
|
| [96] |
Hawkins, R. D., Hon, G. C. and Ren, B. (2010) Next-generation genomics: an integrative approach. Nat. Rev. Genet., 11, 476–486
|
| [97] |
Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. and Teichmann, S. A. (2015) The technology and biology of single-cell RNA sequencing. Mol. Cell, 58, 610–620
|
| [98] |
Xu, C. and Su, Z. (2015) Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics, 31, 1974–1980
|
| [99] |
Pierson, E. and Yau, C. (2015) Zifa: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol., 16, 241
|
| [100] |
Li, W. V. and Li, J. J. (2018) An accurate and robust imputation method scimpute for single-cell RNA-seq data. Nat. Commun., 9, 997
|
| [101] |
Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., (2017) The human cell atlas. eLife, 6, e27041
|
| [102] |
The Human Cell Atlas Consortium. (2017) The human cell atlas white paper
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature