Single molecule fluorescence spectroscopy for quantitative biological applications

Ruchuan Liu , Yuliang Li , Liyu Liu

Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 177 -191.

PDF (1847KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 177 -191. DOI: 10.1007/s40484-016-0083-0
REVIEW
REVIEW

Single molecule fluorescence spectroscopy for quantitative biological applications

Author information +
History +
PDF (1847KB)

Abstract

Single molecule techniques emerge as powerful and quantitative approaches for scientific investigations in last decades. Among them, single molecule fluorescence spectroscopy (SMFS) is able to non-invasively characterize and track samples at the molecular level. Here, applications of SMFS to fundamental biological questions have been briefly summarized in catalogues of single-molecule counting, distance measurements, force sensors, molecular tracking, and ultrafast dynamics. In these SMFS applications, statistics and physical laws are utilized to quantitatively analyze the behaviors of biomolecules in cellular signaling pathways and the mechanisms of biological functions. This not only deepens our understanding of bio-systems, but also provides a fresh angle to those fundamental questions, leading to a more quantitative thinking in life science.

Graphical abstract

Keywords

single-molecule fluorescence spectroscopy / biomolecule detection / molecular tracking / molecular dynamics / molecular mechanism

Cite this article

Download citation ▾
Ruchuan Liu, Yuliang Li, Liyu Liu. Single molecule fluorescence spectroscopy for quantitative biological applications. Quant. Biol., 2016, 4(3): 177-191 DOI:10.1007/s40484-016-0083-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hanoian, P., Liu, C. T., Hammes-Schiffer, S. and Benkovic, S. (2015) Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc. Chem. Res., 48, 482–489

[2]

Liebherr, R. B. and Gorris, H. H. (2014) Enzyme molecules in solitary confinement. Molecules, 19, 14417–14445

[3]

Janssen, K. P. F., De Cremer, G., Neely, R. K., Kubarev, A. V., Van Loon, J., Martens, J. A., De Vos, D. E., Roeffaers, M. B. and Hofkens, J. (2014) Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chem. Soc. Rev., 43, 990–1006

[4]

Grima, R., Walter, N. G. and Schnell, S. (2014) Single-molecule enzymology à la Michaelis-Menten. FEBS J., 281, 518–530

[5]

Puchner, E. M. and Gaub, H. E. (2012) Single-molecule mechanoenzymatics. ANN. REV. BIOPHYS., 41, 497–518

[6]

Xie, S. and Lu, H. P. (1999) Single-molecule enzymology. J. Biol. Chem., 274, 15967–15970

[7]

Xie, S. (2001) Single-molecule approach to enzymology. Single Mol., 2, 229–236

[8]

Lu, H. P., Xun, L. and Xie, X. S. (1998) Single-molecule enzymatic dynamics. Science, 282, 1877–1882

[9]

English, D. S., Furube, A. and Barbara, P. F. (2000) Single-molecule spectroscopy in oxygen-depleted polymer films. Chem. Phys. Lett., 324, 15–19

[10]

Oukhaled, G., Mathé J., Biance, A. L., Bacri, L., Betton, J. M., Lairez, D., Pelta, J. and Auvray, L. (2007) Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett., 98, 158101

[11]

Kuzmenkina, E. V., Heyes, C. D. and Nienhaus, G. U. (2005) Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions. Proc. Natl. Acad. Sci. USA, 102, 15471–15476

[12]

Okumus, B., Wilson, T. J., Lilley, D. M. and Ha, T. (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J., 87, 2798–2806

[13]

Brucale, M., Schuler, B. and Samorì B. (2014) Single-molecule studies of intrinsically disordered proteins. Chem. Rev., 114, 3281–3317

[14]

Duzdevich, D., Redding, S. and Greene, E. C. (2014) DNA dynamics and single-molecule biology. Chem. Rev., 114, 3072–3086

[15]

Lu, H. P. (2014) Sizing up single-molecule enzymatic conformational dynamics. Chem. Soc. Rev., 43, 1118–1143

[16]

Sarkar, S. K., Andoy, N. M., Benítez, J. J., Chen, P. R., Kong, J. S., He, C. and Chen, P. (2007) Engineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator. J. Am. Chem. Soc., 129, 12461–12467

[17]

Weiss, S. (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol., 7, 724–729

[18]

Pressé S., Peterson, J., Lee, J., Elms, P., MacCallum, J. L., Marqusee, S., Bustamante, C. and Dill, K. (2014) Single molecule conformational memory extraction: p5ab RNA hairpin. J. Phys. Chem. B, 118, 6597–6603

[19]

Bavishi, K. and Hatzakis, N. S. (2014) Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules, 19, 19407–19434

[20]

Hofmann, H. (2014) Single-molecule spectroscopy of unfolded proteins and chaperonin action. Biol. Chem., 395, 689–698

[21]

Lipman, E. A., Schuler, B., Bakajin, O. and Eaton, W. A. (2003) Single-molecule measurement of protein folding kinetics. Science, 301, 1233–1235

[22]

Schuler, B. and Eaton, W. A. (2008) Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol., 18, 16–26

[23]

Borgia, A., Williams, P. M. and Clarke, J. (2008) Single-molecule studies of protein folding. Annu. Rev. Biochem., 77, 101–125

[24]

Kisley, L. and Landes, C. F. (2015) Molecular approaches to chromatography using single molecule spectroscopy. Anal. Chem., 87, 83–98

[25]

Zhang, H. and Guo, P. (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods, 67, 169–176

[26]

Bharill, S., Fu, Z., Palty, R. and Isacoff, E. Y. (2014) Stoichiometry and specific assembly of Best ion channels. Proc. Natl. Acad. Sci. USA, 111, 6491–6496

[27]

Arant, R. J. and Ulbrich, M. H. (2014) Deciphering the subunit composition of multimeric proteins by counting photobleaching steps. ChemPhysChem, 15, 600–605

[28]

Bumb, A., Sarkar, S. K., Wu, X. S., Brechbiel, M. W. and Neuman, K. C. (2011) Quantitative characterization of fluorophores in multi-component nanoprobes by single-molecule fluorescence. Biomed. Opt. Express, 2, 2761–2769

[29]

Kneipp, K., Kneipp, H. and Kneipp, J. (2015) Probing plasmonic nanostructures by photons and electrons. Chem. Sci. (Camb.), 6, 2721–2726

[30]

Dutta Choudhury, S., Badugu, R. and Lakowicz, J. R. (2015) Directing fluorescence with plasmonic and photonic structures. Acc. Chem. Res., 48, 2171–2180

[31]

Zohar, N., Chuntonov, L. and Haran, G. (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J. Photochem. Photobiol. Photochem. Rev., 21, 26–39

[32]

Alemany, A., Mossa, A., Junier, I. and Ritort, F. (2012) Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nat. Phys., 8, 688–694

[33]

Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2005) Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature, 437, 231–234

[34]

Gieseler, J., Quidant, R., Dellago, C. and Novotny, L. (2014) Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol., 9, 358–364

[35]

Seifert, U. (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75, 126001

[36]

Gore, J., Ritort, F. and Bustamante, C. (2003) Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc. Natl. Acad. Sci. USA, 100, 12564–12569

[37]

Jarzynski, C. (1997) Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78, 2690–2693

[38]

Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2002) Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science, 296, 1832–1835

[39]

Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. and Evans, D. J. (2002) Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett., 89, 050601

[40]

Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2001) Reversible unfolding of single RNA molecules by mechanical force. Science, 292, 733–737

[41]

Margadant, F., Chew, L. L., Hu, X., Yu, H., Bate, N., Zhang, X. and Sheetz, M. (2011) Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol., 9, e1001223

[42]

Yu, J., Xiao, J., Ren, X., Lao, K. and Xie, X. S. (2006) Probing gene expression in live cells, one protein molecule at a time. Science, 311, 1600–1603

[43]

Rasnik, I., McKinney, S. A. and Ha, T. (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods, 3, 891–893

[44]

Liu, R., Hu, D., Tan, X. and Lu, H. P. (2006) Revealing two-state protein-protein interactions of calmodulin by single-molecule spectroscopy. J. Am. Chem. Soc., 128, 10034–10042

[45]

Shao, L., Kner, P., Rego, E. H. and Gustafsson, M. G. (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044–1046

[46]

Eggeling, C., Willig, K. I. and Barrantes, F. J. (2013) STED microscopy of living cells—new frontiers in membrane and neurobiology. J. Neurochem., 126, 203–212

[47]

Rust, M. J., Bates, M. and Zhuang, X. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793–796

[48]

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. and Hess, H. F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645

[49]

Small, A. and Stahlheber, S. (2014) Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods, 11, 267–279

[50]

Vandenberg, W., Leutenegger, M., Lasser, T., Hofkens, J. and Dedecker, P. (2015) Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res., 360, 151–178

[51]

Eggeling, C., Willig, K. I., Sahl, S. J. and Hell, S. W. (2015) Lens-based fluorescence nanoscopy. Q. Rev. Biophys., 48, 178–243

[52]

Shivanandan, A., Deschout, H., Scarselli, M. and Radenovic, A. (2014) Challenges in quantitative single molecule localization microscopy. FEBS Lett., 588, 3595–3602

[53]

Horrocks, M. H., Palayret, M., Klenerman, D. and Lee, S. F. (2014) The changing point-spread function: single-molecule-based super-resolution imaging. Histochem. Cell Biol., 141, 577–585

[54]

Jiang, D., Liu, C., Wang, L. and Jiang, W. (2010) Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling. Anal. Chim. Acta, 662, 170–176

[55]

Földes-Papp, Z. and Baumann, G. (2011) Fluorescence molecule counting for single-molecule studies in crowded environment of living cells without and with broken ergodicity. Curr. Pharm. Biotechnol., 12, 824–833

[56]

Fricke, F., Beaudouin, J., Eils, R. and Heilemann, M. (2015) One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci. Rep., 5, 14072

[57]

Durisic, N., Laparra-Cuervo, L., Sandoval-Álvarez, A., Borbely, J. S. and Lakadamyali, M. (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods, 11, 156–162

[58]

Lee, S. H., Shin, J. Y., Lee, A. and Bustamante, C. (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl. Acad. Sci. USA, 109, 17436–17441

[59]

Lu, C., Wu, F., Qiu, W. and Liu, R. (2013) P130Cas substrate domain is intrinsically disordered as characterized by single-molecule force measurements. Biophys. Chem., 180–181, 37–43

[60]

Yao, M., Qiu, W., Liu, R., Efremov, A. K., Cong, P., Seddiki, R., Payre, M., Lim, C. T., Ladoux, B., Mège, R. M., (2014) Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun., 5, 4525

[61]

Grashoff, C., Hoffman, B. D., Brenner, M. D., Zhou, R., Parsons, M., Yang, M. T., McLean, M. A., Sligar, S. G., Chen, C. S., Ha, T., (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 466, 263–266

[62]

del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J. M. and Sheetz, M. P. (2009) Stretching single talin rod molecules activates vinculin binding. Science, 323, 638–641

[63]

Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362

[64]

Chong, S., Chen, C., Ge, H. and Xie, X. S. (2014) Mechanism of transcriptional bursting in bacteria. Cell, 158, 314–326

[65]

Elf, J., Li, G.-W. and Xie, X. S. (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316, 1191–1194

[66]

Zong, C., Lu, S., Chapman, A. R. and Xie, X. S. (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338, 1622–1626

[67]

Jensen, E. (2014) Technical review: colocalization of antibodies using confocal microscopy. Anat. Rec., 297, 183–187

[68]

Cordelières, F. P. and Bolte, S. (2014) Experimenters’ guide to colocalization studies: finding a way through indicators and quantifiers, in practice. Methods Cell Biol., 123, 395–408

[69]

Zadran, S., Standley, S., Wong, K., Otiniano, E., Amighi, A. and Baudry, M. (2012) Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl. Microbiol. Biotechnol., 96, 895–902

[70]

Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R. and Weiss, S. (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA, 93, 6264–6268

[71]

Cornish, P. V. and Ha, T. (2007) A survey of single-molecule techniques in chemical biology. ACS Chem. Biol., 2, 53–61

[72]

Deniz, A. A., Mukhopadhyay, S. and Lemke, E. A. (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface, 5, 15–45

[73]

Slaughter, B. D., Unruh, J. R., Allen, M. W., Bieber Urbauer, R. J. and Johnson, C. K. (2005) Conformational substates of calmodulin revealed by single-pair fluorescence resonance energy transfer: influence of solution conditions and oxidative modification. Biochemistry, 44, 3694–3707

[74]

Hohng, S. and Ha, T. (2005) Single-molecule quantum-dot fluorescence resonance energy transfer. ChemPhysChem, 6, 956–960

[75]

Ha, T. (2001) Single-molecule fluorescence resonance energy transfer. Methods, 25, 78–86

[76]

Hohng, S., Lee, S., Lee, J. and Jo, M. H. (2014) Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev., 43, 1007–1013

[77]

Masson, J.-B., Dionne, P., Salvatico, C., Renner, M., Specht, C. G., Triller, A. and Dahan, M. (2014) Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J., 106, 74–83

[78]

Mazurkiewicz, J. E., Herrick-Davis, K., Barroso, M., Ulloa-Aguirre, A., Lindau-Shepard, B., Thomas, R. M. and Dias, J. A. (2015) Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biol. Reprod., 92, 100

[79]

Jurchenko, C. and Salaita, K. S. (2015) Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol., 35, 2570–2582

[80]

Lu, H. P., Iakoucheva, L. M. and Ackerman, E. J. (2001) Single-molecule conformational dynamics of fluctuating noncovalent DNA-protein interactions in DNA damage recognition. J. Am. Chem. Soc., 123, 9184–9185

[81]

Tan, X., Nalbant, P., Toutchkine, A., Hu, D., Vorpagel, E. R., Hahn, K. M. and Lu, H. P. (2004) Single-molecule study of protein-protein interaction dynamics in a cell signaling system. J. Phys. Chem. B, 108, 737–744

[82]

Borghi, N., Sorokina, M., Shcherbakova, O. G., Weis, W. I., Pruitt, B. L., Nelson, W. J. and Dunn, A. R. (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. USA, 109, 12568–12573

[83]

Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. and Dunn, A. R. (2013) Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett., 13, 3985–3989

[84]

Suzuki, K. G., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M. and Kusumi, A. (2007) GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol., 177, 717–730

[85]

Suzuki, K. G., Fujiwara, T. K., Edidin, M. and Kusumi, A. (2007) Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol., 177, 731–742

[86]

Ha, T. and Tinnefeld, P. (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem., 63, 595–617

[87]

Tokunaga, M., Imamoto, N. and Sakata-Sogawa, K. (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods, 5, 159–161

[88]

Nishimura, H., Ritchie, K., Kasai, R. S., Goto, M., Morone, N., Sugimura, H., Tanaka, K., Sase, I., Yoshimura, A., Nakano, Y., (2013) Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol., 202, 967–983

[89]

Kusumi, A., Suzuki, K. G., Kasai, R. S., Ritchie, K. and Fujiwara, T. K. (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci., 36, 604–615

[90]

Zhang, J., Campbell, R. E., Ting, A. Y. and Tsien, R. Y. (2002) Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol., 3, 906–918

[91]

Zheng, Q., Juette, M. F., Jockusch, S., Wasserman, M. R., Zhou, Z., Altman, R. B. and Blanchard, S. C. (2014) Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev., 43, 1044–1056

[92]

Kusumi, A., Tsunoyama, T. A., Hirosawa, K. M., Kasai, R. S. and Fujiwara, T. K. (2014) Tracking single molecules at work in living cells. Nat. Chem. Biol., 10, 524–532

[93]

Huxley, A. F. (2000) Mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 433–440

[94]

Svoboda, K., Schmidt, C. F., Schnapp, B. J. and Block, S. M. (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365, 721–727

[95]

Block, S. M., Goldstein, L. S. and Schnapp, B. J. (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348, 348–352

[96]

Yanagida, T., Esaki, S., Iwane, A. H., Inoue, Y., Ishijima, A., Kitamura, K., Tanaka, H. and Tokunaga, M. (2000) Single-motor mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 441–447

[97]

Vale, R. D., Funatsu, T., Pierce, D. W., Romberg, L., Harada, Y. and Yanagida, T. (1996) Direct observation of single kinesin molecules moving along microtubules. Nature, 380, 451–453

[98]

Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E. and Selvin, P. R. (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300, 2061–2065

[99]

Yildiz, A., Tomishige, M., Vale, R. D. and Selvin, P. R. (2004) Kinesin walks hand-over-hand. Science, 303, 676–678

[100]

Yildiz, A., Park, H., Safer, D., Yang, Z., Chen, L. Q., Selvin, P. R. and Sweeney, H. L. (2004) Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem., 279, 37223–37226

[101]

Ökten, Z., Churchman, L. S., Rock, R. S. and Spudich, J. A. (2004) Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol., 11, 884–887

[102]

Alonso, M. C., Drummond, D. R., Kain, S., Hoeng, J., Amos, L. and Cross, R. A. (2007) An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science, 316, 120–123

[103]

Block, S. M. (2007) Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J., 92, 2986–2995

[104]

Yildiz, A., Tomishige, M., Gennerich, A. and Vale, R. D. (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell, 134, 1030–1041

[105]

Sielaff, H. and Borsch, M. (2013) Twisting and subunit rotation in single F0F1-ATP synthase. Phil. Trans. R. Soc. B 368, 20120024

[106]

Tang, G. Q., Roy, R., Ha, T. and Patel, S. S. (2008) Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol. Cell, 30, 567–577

[107]

Börsch, M., Diez, M., Zimmermann, B., Reuter, R. and Gräber, P. (2002) Stepwise rotation of the gamma-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett., 527, 147–152

[108]

Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N. and Kinosita, K. Jr. (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature, 409, 113–115

[109]

Pilizota, T., Sowa, Y. and Berry, R. M. (2009) Single-Molecule Studies of Rotary Molecular Motors. In Handbook of Single-Molecule Biophysics, P. Hinterdorfer and A. Oijen, Editors. PP. 183–216. Publisher: Springer US.

[110]

Brinks, D., Hildner, R., van Dijk, E. M., Stefani, F. D., Nieder, J. B., Hernando, J. and van Hulst, N. F. (2014) Ultrafast dynamics of single molecules. Chem. Soc. Rev., 43, 2476–2491

[111]

Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. and van Hulst, N. F. (2013) Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science, 340, 1448–1451

[112]

Gösch, M. and Rigler, R. (2005) Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv. Drug Deliv. Rev., 57, 169–190

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1847KB)

2749

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/