Single molecule fluorescence spectroscopy for quantitative biological applications

Ruchuan Liu, Yuliang Li, Liyu Liu

PDF(1847 KB)
PDF(1847 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 177-191. DOI: 10.1007/s40484-016-0083-0
REVIEW
REVIEW

Single molecule fluorescence spectroscopy for quantitative biological applications

Author information +
History +

Abstract

Single molecule techniques emerge as powerful and quantitative approaches for scientific investigations in last decades. Among them, single molecule fluorescence spectroscopy (SMFS) is able to non-invasively characterize and track samples at the molecular level. Here, applications of SMFS to fundamental biological questions have been briefly summarized in catalogues of single-molecule counting, distance measurements, force sensors, molecular tracking, and ultrafast dynamics. In these SMFS applications, statistics and physical laws are utilized to quantitatively analyze the behaviors of biomolecules in cellular signaling pathways and the mechanisms of biological functions. This not only deepens our understanding of bio-systems, but also provides a fresh angle to those fundamental questions, leading to a more quantitative thinking in life science.

Graphical abstract

Keywords

single-molecule fluorescence spectroscopy / biomolecule detection / molecular tracking / molecular dynamics / molecular mechanism

Cite this article

Download citation ▾
Ruchuan Liu, Yuliang Li, Liyu Liu. Single molecule fluorescence spectroscopy for quantitative biological applications. Quant. Biol., 2016, 4(3): 177‒191 https://doi.org/10.1007/s40484-016-0083-0

References

[1]
Hanoian, P., Liu, C. T., Hammes-Schiffer, S. and Benkovic, S. (2015) Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc. Chem. Res., 48, 482–489
CrossRef Pubmed Google scholar
[2]
Liebherr, R. B. and Gorris, H. H. (2014) Enzyme molecules in solitary confinement. Molecules, 19, 14417–14445
CrossRef Pubmed Google scholar
[3]
Janssen, K. P. F., De Cremer, G., Neely, R. K., Kubarev, A. V., Van Loon, J., Martens, J. A., De Vos, D. E., Roeffaers, M. B. and Hofkens, J. (2014) Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chem. Soc. Rev., 43, 990–1006
CrossRef Pubmed Google scholar
[4]
Grima, R., Walter, N. G. and Schnell, S. (2014) Single-molecule enzymology à la Michaelis-Menten. FEBS J., 281, 518–530
CrossRef Pubmed Google scholar
[5]
Puchner, E. M. and Gaub, H. E. (2012) Single-molecule mechanoenzymatics. ANN. REV. BIOPHYS., 41, 497–518
CrossRef Google scholar
[6]
Xie, S. and Lu, H. P. (1999) Single-molecule enzymology. J. Biol. Chem., 274, 15967–15970
CrossRef Pubmed Google scholar
[7]
Xie, S. (2001) Single-molecule approach to enzymology. Single Mol., 2, 229–236
CrossRef Google scholar
[8]
Lu, H. P., Xun, L. and Xie, X. S. (1998) Single-molecule enzymatic dynamics. Science, 282, 1877–1882
CrossRef Pubmed Google scholar
[9]
English, D. S., Furube, A. and Barbara, P. F. (2000) Single-molecule spectroscopy in oxygen-depleted polymer films. Chem. Phys. Lett., 324, 15–19
CrossRef Google scholar
[10]
Oukhaled, G., Mathé, J., Biance, A. L., Bacri, L., Betton, J. M., Lairez, D., Pelta, J. and Auvray, L. (2007) Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett., 98, 158101
CrossRef Pubmed Google scholar
[12]
Kuzmenkina, E. V., Heyes, C. D. and Nienhaus, G. U. (2005) Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions. Proc. Natl. Acad. Sci. USA, 102, 15471–15476
CrossRef Pubmed Google scholar
[13]
Okumus, B., Wilson, T. J., Lilley, D. M. and Ha, T. (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J., 87, 2798–2806
CrossRef Pubmed Google scholar
[14]
Brucale, M., Schuler, B. and Samorì, B. (2014) Single-molecule studies of intrinsically disordered proteins. Chem. Rev., 114, 3281–3317
CrossRef Pubmed Google scholar
[15]
Duzdevich, D., Redding, S. and Greene, E. C. (2014) DNA dynamics and single-molecule biology. Chem. Rev., 114, 3072–3086
CrossRef Pubmed Google scholar
[16]
Lu, H. P. (2014) Sizing up single-molecule enzymatic conformational dynamics. Chem. Soc. Rev., 43, 1118–1143
CrossRef Pubmed Google scholar
[17]
Sarkar, S. K., Andoy, N. M., Benítez, J. J., Chen, P. R., Kong, J. S., He, C. and Chen, P. (2007) Engineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator. J. Am. Chem. Soc., 129, 12461–12467
CrossRef Pubmed Google scholar
[18]
Weiss, S. (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol., 7, 724–729
CrossRef Pubmed Google scholar
[19]
Pressé, S., Peterson, J., Lee, J., Elms, P., MacCallum, J. L., Marqusee, S., Bustamante, C. and Dill, K. (2014) Single molecule conformational memory extraction: p5ab RNA hairpin. J. Phys. Chem. B, 118, 6597–6603
CrossRef Pubmed Google scholar
[20]
Bavishi, K. and Hatzakis, N. S. (2014) Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules, 19, 19407–19434
CrossRef Pubmed Google scholar
[21]
Hofmann, H. (2014) Single-molecule spectroscopy of unfolded proteins and chaperonin action. Biol. Chem., 395, 689–698
CrossRef Pubmed Google scholar
[22]
Lipman, E. A., Schuler, B., Bakajin, O. and Eaton, W. A. (2003) Single-molecule measurement of protein folding kinetics. Science, 301, 1233–1235
CrossRef Pubmed Google scholar
[23]
Schuler, B. and Eaton, W. A. (2008) Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol., 18, 16–26
CrossRef Pubmed Google scholar
[24]
Borgia, A., Williams, P. M. and Clarke, J. (2008) Single-molecule studies of protein folding. Annu. Rev. Biochem., 77, 101–125
CrossRef Pubmed Google scholar
[25]
Kisley, L. and Landes, C. F. (2015) Molecular approaches to chromatography using single molecule spectroscopy. Anal. Chem., 87, 83–98
CrossRef Pubmed Google scholar
[26]
Zhang, H. and Guo, P. (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods, 67, 169–176
CrossRef Pubmed Google scholar
[27]
Bharill, S., Fu, Z., Palty, R. and Isacoff, E. Y. (2014) Stoichiometry and specific assembly of Best ion channels. Proc. Natl. Acad. Sci. USA, 111, 6491–6496
CrossRef Pubmed Google scholar
[28]
Arant, R. J. and Ulbrich, M. H. (2014) Deciphering the subunit composition of multimeric proteins by counting photobleaching steps. ChemPhysChem, 15, 600–605
CrossRef Pubmed Google scholar
[29]
Bumb, A., Sarkar, S. K., Wu, X. S., Brechbiel, M. W. and Neuman, K. C. (2011) Quantitative characterization of fluorophores in multi-component nanoprobes by single-molecule fluorescence. Biomed. Opt. Express, 2, 2761–2769
CrossRef Pubmed Google scholar
[30]
Kneipp, K., Kneipp, H. and Kneipp, J. (2015) Probing plasmonic nanostructures by photons and electrons. Chem. Sci. (Camb.), 6, 2721–2726
CrossRef Google scholar
[31]
Dutta Choudhury, S., Badugu, R. and Lakowicz, J. R. (2015) Directing fluorescence with plasmonic and photonic structures. Acc. Chem. Res., 48, 2171–2180
CrossRef Pubmed Google scholar
[32]
Zohar, N., Chuntonov, L. and Haran, G. (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J. Photochem. Photobiol. Photochem. Rev., 21, 26–39
CrossRef Google scholar
[33]
Alemany, A., Mossa, A., Junier, I. and Ritort, F. (2012) Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nat. Phys., 8, 688–694
CrossRef Google scholar
[34]
Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2005) Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature, 437, 231–234
CrossRef Pubmed Google scholar
[35]
Gieseler, J., Quidant, R., Dellago, C. and Novotny, L. (2014) Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol., 9, 358–364
CrossRef Pubmed Google scholar
[36]
Seifert, U. (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75, 126001
CrossRef Pubmed Google scholar
[37]
Gore, J., Ritort, F. and Bustamante, C. (2003) Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc. Natl. Acad. Sci. USA, 100, 12564–12569
CrossRef Pubmed Google scholar
[38]
Jarzynski, C. (1997) Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78, 2690–2693
CrossRef Google scholar
[39]
Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2002) Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science, 296, 1832–1835
CrossRef Pubmed Google scholar
[40]
Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. and Evans, D. J. (2002) Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett., 89, 050601
CrossRef Pubmed Google scholar
[41]
Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2001) Reversible unfolding of single RNA molecules by mechanical force. Science, 292, 733–737
CrossRef Pubmed Google scholar
[42]
Margadant, F., Chew, L. L., Hu, X., Yu, H., Bate, N., Zhang, X. and Sheetz, M. (2011) Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol., 9, e1001223
CrossRef Pubmed Google scholar
[43]
Yu, J., Xiao, J., Ren, X., Lao, K. and Xie, X. S. (2006) Probing gene expression in live cells, one protein molecule at a time. Science, 311, 1600–1603
CrossRef Pubmed Google scholar
[44]
Rasnik, I., McKinney, S. A. and Ha, T. (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods, 3, 891–893
CrossRef Pubmed Google scholar
[45]
Liu, R., Hu, D., Tan, X. and Lu, H. P. (2006) Revealing two-state protein-protein interactions of calmodulin by single-molecule spectroscopy. J. Am. Chem. Soc., 128, 10034–10042
CrossRef Pubmed Google scholar
[46]
Shao, L., Kner, P., Rego, E. H. and Gustafsson, M. G. (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044–1046
CrossRef Pubmed Google scholar
[47]
Eggeling, C., Willig, K. I. and Barrantes, F. J. (2013) STED microscopy of living cells—new frontiers in membrane and neurobiology. J. Neurochem., 126, 203–212
CrossRef Pubmed Google scholar
[48]
Rust, M. J., Bates, M. and Zhuang, X. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793–796
CrossRef Pubmed Google scholar
[49]
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. and Hess, H. F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645
CrossRef Pubmed Google scholar
[50]
Small, A. and Stahlheber, S. (2014) Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods, 11, 267–279
CrossRef Pubmed Google scholar
[51]
Vandenberg, W., Leutenegger, M., Lasser, T., Hofkens, J. and Dedecker, P. (2015) Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res., 360, 151–178
CrossRef Pubmed Google scholar
[52]
Eggeling, C., Willig, K. I., Sahl, S. J. and Hell, S. W. (2015) Lens-based fluorescence nanoscopy. Q. Rev. Biophys., 48, 178–243
CrossRef Pubmed Google scholar
[53]
Shivanandan, A., Deschout, H., Scarselli, M. and Radenovic, A. (2014) Challenges in quantitative single molecule localization microscopy. FEBS Lett., 588, 3595–3602
CrossRef Pubmed Google scholar
[54]
Horrocks, M. H., Palayret, M., Klenerman, D. and Lee, S. F. (2014) The changing point-spread function: single-molecule-based super-resolution imaging. Histochem. Cell Biol., 141, 577–585
CrossRef Pubmed Google scholar
[55]
Jiang, D., Liu, C., Wang, L. and Jiang, W. (2010) Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling. Anal. Chim. Acta, 662, 170–176
CrossRef Pubmed Google scholar
[56]
Földes-Papp, Z. and Baumann, G. (2011) Fluorescence molecule counting for single-molecule studies in crowded environment of living cells without and with broken ergodicity. Curr. Pharm. Biotechnol., 12, 824–833
CrossRef Pubmed Google scholar
[57]
Fricke, F., Beaudouin, J., Eils, R. and Heilemann, M. (2015) One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci. Rep., 5, 14072
CrossRef Pubmed Google scholar
[58]
Durisic, N., Laparra-Cuervo, L., Sandoval-Álvarez, A., Borbely, J. S. and Lakadamyali, M. (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods, 11, 156–162
CrossRef Pubmed Google scholar
[59]
Lee, S. H., Shin, J. Y., Lee, A. and Bustamante, C. (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl. Acad. Sci. USA, 109, 17436–17441
CrossRef Pubmed Google scholar
[60]
Lu, C., Wu, F., Qiu, W. and Liu, R. (2013) P130Cas substrate domain is intrinsically disordered as characterized by single-molecule force measurements. Biophys. Chem., 180–181, 37–43
CrossRef Pubmed Google scholar
[61]
Yao, M., Qiu, W., Liu, R., Efremov, A. K., Cong, P., Seddiki, R., Payre, M., Lim, C. T., Ladoux, B., Mège, R. M., (2014) Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun., 5, 4525
CrossRef Pubmed Google scholar
[62]
Grashoff, C., Hoffman, B. D., Brenner, M. D., Zhou, R., Parsons, M., Yang, M. T., McLean, M. A., Sligar, S. G., Chen, C. S., Ha, T., (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 466, 263–266
CrossRef Pubmed Google scholar
[63]
del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J. M. and Sheetz, M. P. (2009) Stretching single talin rod molecules activates vinculin binding. Science, 323, 638–641
CrossRef Pubmed Google scholar
[64]
Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362
CrossRef Pubmed Google scholar
[65]
Chong, S., Chen, C., Ge, H. and Xie, X. S. (2014) Mechanism of transcriptional bursting in bacteria. Cell, 158, 314–326
CrossRef Pubmed Google scholar
[66]
Elf, J., Li, G.-W. and Xie, X. S. (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316, 1191–1194
CrossRef Pubmed Google scholar
[67]
Zong, C., Lu, S., Chapman, A. R. and Xie, X. S. (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338, 1622–1626
CrossRef Pubmed Google scholar
[68]
Jensen, E. (2014) Technical review: colocalization of antibodies using confocal microscopy. Anat. Rec., 297, 183–187
CrossRef Pubmed Google scholar
[69]
Cordelières, F. P. and Bolte, S. (2014) Experimenters’ guide to colocalization studies: finding a way through indicators and quantifiers, in practice. Methods Cell Biol., 123, 395–408
CrossRef Pubmed Google scholar
[70]
Zadran, S., Standley, S., Wong, K., Otiniano, E., Amighi, A. and Baudry, M. (2012) Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl. Microbiol. Biotechnol., 96, 895–902
CrossRef Pubmed Google scholar
[71]
Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R. and Weiss, S. (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA, 93, 6264–6268
CrossRef Pubmed Google scholar
[72]
Cornish, P. V. and Ha, T. (2007) A survey of single-molecule techniques in chemical biology. ACS Chem. Biol., 2, 53–61
CrossRef Pubmed Google scholar
[73]
Deniz, A. A., Mukhopadhyay, S. and Lemke, E. A. (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface, 5, 15–45
CrossRef Pubmed Google scholar
[74]
Slaughter, B. D., Unruh, J. R., Allen, M. W., Bieber Urbauer, R. J. and Johnson, C. K. (2005) Conformational substates of calmodulin revealed by single-pair fluorescence resonance energy transfer: influence of solution conditions and oxidative modification. Biochemistry, 44, 3694–3707
CrossRef Pubmed Google scholar
[75]
Hohng, S. and Ha, T. (2005) Single-molecule quantum-dot fluorescence resonance energy transfer. ChemPhysChem, 6, 956–960
CrossRef Pubmed Google scholar
[76]
Ha, T. (2001) Single-molecule fluorescence resonance energy transfer. Methods, 25, 78–86
CrossRef Pubmed Google scholar
[77]
Hohng, S., Lee, S., Lee, J. and Jo, M. H. (2014) Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev., 43, 1007–1013
CrossRef Pubmed Google scholar
[78]
Masson, J.-B., Dionne, P., Salvatico, C., Renner, M., Specht, C. G., Triller, A. and Dahan, M. (2014) Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J., 106, 74–83
CrossRef Pubmed Google scholar
[79]
Mazurkiewicz, J. E., Herrick-Davis, K., Barroso, M., Ulloa-Aguirre, A., Lindau-Shepard, B., Thomas, R. M. and Dias, J. A. (2015) Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biol. Reprod., 92, 100
CrossRef Pubmed Google scholar
[80]
Jurchenko, C. and Salaita, K. S. (2015) Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol., 35, 2570–2582
CrossRef Pubmed Google scholar
[81]
Lu, H. P., Iakoucheva, L. M. and Ackerman, E. J. (2001) Single-molecule conformational dynamics of fluctuating noncovalent DNA-protein interactions in DNA damage recognition. J. Am. Chem. Soc., 123, 9184–9185
CrossRef Pubmed Google scholar
[82]
Tan, X., Nalbant, P., Toutchkine, A., Hu, D., Vorpagel, E. R., Hahn, K. M. and Lu, H. P. (2004) Single-molecule study of protein-protein interaction dynamics in a cell signaling system. J. Phys. Chem. B, 108, 737–744
CrossRef Google scholar
[83]
Borghi, N., Sorokina, M., Shcherbakova, O. G., Weis, W. I., Pruitt, B. L., Nelson, W. J. and Dunn, A. R. (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. USA, 109, 12568–12573
CrossRef Pubmed Google scholar
[84]
Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. and Dunn, A. R. (2013) Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett., 13, 3985–3989
CrossRef Pubmed Google scholar
[85]
Suzuki, K. G., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M. and Kusumi, A. (2007) GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol., 177, 717–730
CrossRef Pubmed Google scholar
[86]
Suzuki, K. G., Fujiwara, T. K., Edidin, M. and Kusumi, A. (2007) Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol., 177, 731–742
CrossRef Pubmed Google scholar
[87]
Ha, T. and Tinnefeld, P. (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem., 63, 595–617
CrossRef Pubmed Google scholar
[88]
Tokunaga, M., Imamoto, N. and Sakata-Sogawa, K. (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods, 5, 159–161
CrossRef Pubmed Google scholar
[89]
Nishimura, H., Ritchie, K., Kasai, R. S., Goto, M., Morone, N., Sugimura, H., Tanaka, K., Sase, I., Yoshimura, A., Nakano, Y., (2013) Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol., 202, 967–983
CrossRef Pubmed Google scholar
[90]
Kusumi, A., Suzuki, K. G., Kasai, R. S., Ritchie, K. and Fujiwara, T. K. (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci., 36, 604–615
CrossRef Pubmed Google scholar
[91]
Zhang, J., Campbell, R. E., Ting, A. Y. and Tsien, R. Y. (2002) Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol., 3, 906–918
CrossRef Pubmed Google scholar
[92]
Zheng, Q., Juette, M. F., Jockusch, S., Wasserman, M. R., Zhou, Z., Altman, R. B. and Blanchard, S. C. (2014) Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev., 43, 1044–1056
CrossRef Pubmed Google scholar
[93]
Kusumi, A., Tsunoyama, T. A., Hirosawa, K. M., Kasai, R. S. and Fujiwara, T. K. (2014) Tracking single molecules at work in living cells. Nat. Chem. Biol., 10, 524–532
CrossRef Pubmed Google scholar
[94]
Huxley, A. F. (2000) Mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 433–440
CrossRef Pubmed Google scholar
[95]
Svoboda, K., Schmidt, C. F., Schnapp, B. J. and Block, S. M. (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365, 721–727
CrossRef Pubmed Google scholar
[96]
Block, S. M., Goldstein, L. S. and Schnapp, B. J. (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348, 348–352
CrossRef Pubmed Google scholar
[97]
Yanagida, T., Esaki, S., Iwane, A. H., Inoue, Y., Ishijima, A., Kitamura, K., Tanaka, H. and Tokunaga, M. (2000) Single-motor mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 441–447
CrossRef Pubmed Google scholar
[98]
Vale, R. D., Funatsu, T., Pierce, D. W., Romberg, L., Harada, Y. and Yanagida, T. (1996) Direct observation of single kinesin molecules moving along microtubules. Nature, 380, 451–453
CrossRef Pubmed Google scholar
[99]
Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E. and Selvin, P. R. (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300, 2061–2065
CrossRef Pubmed Google scholar
[100]
Yildiz, A., Tomishige, M., Vale, R. D. and Selvin, P. R. (2004) Kinesin walks hand-over-hand. Science, 303, 676–678
CrossRef Pubmed Google scholar
[101]
Yildiz, A., Park, H., Safer, D., Yang, Z., Chen, L. Q., Selvin, P. R. and Sweeney, H. L. (2004) Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem., 279, 37223–37226
CrossRef Pubmed Google scholar
[102]
Ökten, Z., Churchman, L. S., Rock, R. S. and Spudich, J. A. (2004) Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol., 11, 884–887
CrossRef Pubmed Google scholar
[103]
Alonso, M. C., Drummond, D. R., Kain, S., Hoeng, J., Amos, L. and Cross, R. A. (2007) An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science, 316, 120–123
CrossRef Pubmed Google scholar
[104]
Block, S. M. (2007) Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J., 92, 2986–2995
CrossRef Pubmed Google scholar
[105]
Yildiz, A., Tomishige, M., Gennerich, A. and Vale, R. D. (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell, 134, 1030–1041
CrossRef Pubmed Google scholar
[106]
Sielaff, H. and Borsch, M. (2013) Twisting and subunit rotation in single F0F1-ATP synthase. Phil. Trans. R. Soc. B 368, 20120024
CrossRef Google scholar
[107]
Tang, G. Q., Roy, R., Ha, T. and Patel, S. S. (2008) Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol. Cell, 30, 567–577
CrossRef Pubmed Google scholar
[108]
Börsch, M., Diez, M., Zimmermann, B., Reuter, R. and Gräber, P. (2002) Stepwise rotation of the gamma-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett., 527, 147–152
CrossRef Pubmed Google scholar
[109]
Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N. and Kinosita, K. Jr. (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature, 409, 113–115
CrossRef Pubmed Google scholar
[110]
Pilizota, T., Sowa, Y. and Berry, R. M. (2009) Single-Molecule Studies of Rotary Molecular Motors. In Handbook of Single-Molecule Biophysics, P. Hinterdorfer and A. Oijen, Editors. PP. 183–216. Publisher: Springer US.
[111]
Brinks, D., Hildner, R., van Dijk, E. M., Stefani, F. D., Nieder, J. B., Hernando, J. and van Hulst, N. F. (2014) Ultrafast dynamics of single molecules. Chem. Soc. Rev., 43, 2476–2491
CrossRef Pubmed Google scholar
[112]
Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. and van Hulst, N. F. (2013) Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science, 340, 1448–1451
CrossRef Pubmed Google scholar
[113]
Gösch, M. and Rigler, R. (2005) Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv. Drug Deliv. Rev., 57, 169–190
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was supported by the State Key Development Program for Basic Research of China (No. 2013CB837200), the National Natural Science Foundation of China (Nos. 11474345 and 21573281), the Beijing Natural Science Foundation (No.€7154221), and the Fundamental and Advanced Research Program of Chongqing (Grant # cstc2013jcyjA10047), China. We also gratefully acknowledge support from the Research Start Fund for Talent Recruitment, Chongqing University.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Ruchuan Liu, Yuliang Li and Liyu Liu declare that they have no conflict of interests.ƒThis article does not contain any studies with human or animal subjects performed by any of the authors.
Funding
 

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1847 KB)

Accesses

Citations

Detail

Sections
Recommended

/